Оглавление
- Электрические параметры
- Применение[править | править код]
- Свойства кварцевого резонатора
- Кварцевый резонатор-структура, принцип работы, как проверить
- Пьезоэлектричество
- Возможные причины выхода из строя
- Как проверить кварцевый резонатор
- Принцип работы кварцевого резонатора
- Описание и принцип работы
- О деталях устройства
- Заключение
Электрические параметры
Эквивалентная схема кварцевого резонатора – представляет собой электрическое описание кварцевого резонатора, работающего на резонансной частоте. Эквивалентная схема кварцевого резонатора представлена на рисунке 1. С0 – шунтирующая емкость. R1, L1 и С1 – соответственно динамическое сопротивление, динамическая индуктивность и динамическая емкость. Динамические параметры представляют собой соответствующие эквиваленты резонатора как электромеханической системы и определяются, в основном, характеристиками среза кварцевого элемента.
Шунтирующая емкость C0 – Емкость между выводами кристалла. Измеряется в пикофарадах. Шунтирующая емкость складывается из паразитной емкости кварца, емкости области электродов кристалла и емкости, вносимой кристаллодержателем. Шунтирующая емкость имеет значение порядка единиц пФ.
Динамическое сопротивление R1 – Параметр, характеризующий энергетические потери в колебательном контуре. Динамическое сопротивление R1 кварцевых резонаторов изменяется в интервале от нескольких Ом до сотен кОм в зависимости от частоты резонанса, номера гармоники и ряда конструктивных факторов. Часто обозначается как эквивалентное последовательное сопротивление ESR.
Динамическая индуктивность L1 – Параметр, характеризующий эквивалент массы в колебательном контуре. Динамическая индуктивность L1 кварцевых резонаторов изменяется в интервале от тысяч Гн для резонаторов низких частот до нескольких мГн для высокочастотных резонаторов.
Частота резонанса F – частота, определяемая в соответствии с формулой (5)
Емкость нагрузки СL
Рис. 2. Согласование емкости нагрузки
Измеренное или вычисленное значение емкости, включенной параллельно с кварцевым резонатором. Резонансная частота кварца, включенного в реальную электрическую цепь, будет изменяться в некоторых пределах при разных значениях емкости нагрузки. Для упрощения взаимодействия заказчиков и производителей резонаторов практикуется настройка резонаторов при определенном значении нагрузочной емкости. В этом случае измеренная частота должна соответствовать номинальной с учетом указанной точности настройки.
Как правило, для согласования емкости нагрузки используют конденсаторы Cg , подключаемые между выводами кварцевого резонатора и общим проводом (рисунок 2). Расчет номинала емкости конденсаторов Cg осуществляется по формуле (6), где CL – емкость нагрузки, указанная в технической документации, а CS – значение паразитной емкости (примерно 5 пФ).
Например, для емкости нагрузки равной 16 пФ имеем
Cg = 2·(16-5) = 22 пФ
Уровень управления (drive level)
Обычно определяется как мощность, рассеиваемая кварцевым резонатором. Минимальное значение этого параметра определяется количеством энергии, необходимой для нормального запуска резонатора и обеспечения устойчивых колебаний. Однако повышенное значение этого параметра может вызвать ухудшение параметров старения и механические повреждения кристалла.
Главная —
Микросхемы —
DOC —
ЖКИ —
Источники питания —
Электромеханика —
Интерфейсы —
Программы —
Применения —
Статьи
Применение[править | править код]
Одним из самых популярных видов резонаторов являются резонаторы, применяемые в часовых схемах и таймерах. Резонансная частота часовых резонаторов составляет 32 768 Гц; будучи поделённой на 15-разрядном , она даёт интервал времени в 1 секунду.
Применяются в генераторах с фиксированной частотой, где необходима высокая стабильность частоты. В частности, в опорных генераторах синтезаторов частот и в трансиверных радиостанциях для формирования DSB-сигнала на промежуточной частоте и детектирования SSB или телеграфного сигнала.
Также применяются в кварцевых полосовых фильтрах промежуточной частоты супергетеродинных приёмников. Такие фильтры могут выполняться по лестничной или дифференциальной схеме и отличаются очень высокой добротностью и стабильностью по сравнению с LC-фильтрами.
По типу корпуса кварцевые резонаторы могут быть выводные для объёмного монтажа (стандартные и цилиндрические) и для поверхностного монтажа (SMD).
Качество схемы, в которую входят кварцевые резонаторы, определяют такие параметры, как допуск по частоте (отклонение частоты), стабильность частоты, нагрузочная ёмкость, старение.
Преимуществаправить | править код
- Достижение намного бо́льших значений добротности (104—106) эквивалентного колебательного контура, нежели любым другим способом.
- Малые размеры устройства (вплоть до долей миллиметра).
- Высокая температурная стабильность.
- Большая долговечность.
- Лучшая технологичность.
- Построение качественных каскадных фильтров без необходимости их ручной настройки.
Недостаткиправить | править код
Чрезвычайно узкий диапазон подстройки частоты внешними элементами. На практике для многодиапазонных систем эта проблема решается построением синтезаторов частот различной степени сложности.
Свойства кварцевого резонатора
Какие бывают счетчики электроэнергии Нева?
Во многих приборах резонансный радиокомпонент является незаменимым элементом. К положительным свойствам КР относятся:
- Хорошая добротность превышает этот показатель аналогичных устройств. Добротность характеризует ширину резонанса, определяющую, во сколько раз запас энергии больше её потери за время изменения фазы на 1 радиан. Кварц достигает значений добротности в 104-106 раз больше, чем эквивалентный колебательный контур.
- Невосприимчивость к перепадам температуры окружающей среды;
- Каскадные фильтры на кварцевых радиодеталях позволяют обходиться без ручной настройки;
- Большой срок службы;
- Простота устройства прибора делает КР доступной деталью на радиорынке.
Кварцевый резонатор-структура, принцип работы, как проверить
Резонатором называют систему способную на колебательные движения с максимальной амплитудой при определённых условиях. Кварцевый резонатор — пластина из кварца, обычно в форме параллелепипеда, действует так при подаче переменного тока (частота для разных пластин различна). Рабочую частоту этой детали определяет её толщина. Зависимость здесь обратная. Наибольшую частоту (не превышающую при том 50 МГц) имеют самые тонкие пластины.
В редких случаях можно добиться частоты в 200 МГц. Это допустимо только при работе на обертоне (неосновной частоте, превышающей основной показатель). Специальные фильтры способны погасить основную частоту кварцевой пластины и выделить кратную ей обертоновую.
Для работы подходят только нечётные гармоники (другое название обертонов). К тому же, при их использовании показания по частоте увеличиваются на более низких амплитудах. Обычно максимальным становится девятикратное уменьшение высоты волны. Далее засечь изменения становится затруднительно.
Кварц относится к диэлектрикам. В комбинации с парой металлических электродов он превращается в конденсатор, но его ёмкость мала и нет смысла её замерять. На схеме эта деталь отображается как кристаллический прямоугольник между пластинами конденсатора. Кварцевой пластине, как и иным упругим телам, свойственно наличие собственной резонансной частоты, зависящей от её размера.
Пластины малой толщины имеют более высокую резонансную частоту. Как итог: необходимо лишь выбрать пластину с такими параметрами, при которых частота механических колебаний совпадала бы с приложенной к пластине частотой переменного напряжения.
Кварцевая пластина, пригодна только при использовании переменного тока, поскольку постоянный ток может спровоцировать лишь единичное сжатие или разжатие.
В результате очевидно, что кварц является весьма простой резонансной системой (со всеми свойствами, присущими для колебательных контуров), но это вовсе не снижает качество его работы.
Кварцевый резонатор является даже более действенным. Показатель добротности у него составляет 105 — 107. Резонаторы из кварца увеличивают общий срок службы конденсатора за счёт своей температурной устойчивости, долговечности и технологичности. Удобства в применении добавляют и небольшие размеры деталей. Но самое главное достоинство — способность обеспечивать стабильную частоту.
В любом случае, кварцевые резонаторы весьма популярны, и используются в часах, многочисленной радиоэлектронике и иных приборах. В некоторых странах кварцевые пластины устанавливаются прямо на тротуарах, а люди продуцируют энергию просто ходя туда и обратно.
Принцип работы
Функции кварцевого резонатора обеспечиваются пьезоэлектрическим эффектом. Данное явление провоцирует возникновение электрического заряда в случае, если происходит механическая деформация некоторых типов кристаллов (из природных сюда относят кварц и турмалин).
Сила заряда при этом находится в прямой зависимости от силы деформации. Это называют прямым пьезоэлектрическим эффектом. Суть обратного пьезоэлектрического эффекта заключается в том, что если на кристалл воздействовать электрическим полем, он будет деформироваться.
Проверка работоспособности
Существует несколько несложных методов проверки состояния кварца в механизме. Вот пара из них:
- Чтобы достаточно точно определить состояние резонатора, потребуется подсоединить к генератору на выход осцилограф или частометр. Требуемые данные можно будет вычислить при помощи фигур Лиссажу. Однако, при подобных обстоятельствах возможно непреднамеренное возбуждение колебательных движений кварца как на обертонических, так и на основных частотах. Это может создавать неточность замеров. Такой метод может быть использован в диапазоне от 1 до 10 МГц.
- Частота работы генератора зависит от кварцевого резонатора. При подаче энергии генератор продуцирует импульсы, совпадающие с частотой основного резонанса. Череда этих импульсов пропускается через конденсатор, который отсеивает постоянный компонент, оставляя только обертоны, а сами импульсы передаются аналоговому частометру. Его легко можно сконструировать из двух диодов, конденсатора, резистора и микроамперметра. В зависимости от показаний по частоте будет изменяться и напряжение на конденсаторе. Данный метод тоже не отличается точностью и может применятся только в диапазоне от 3 до 10 МГц.
В целом, достоверную проверку кварцевых резонаторов можно осуществлять только при их замене. Да и подозревать поломку резонатора в механизме стоит только в самом крайнем случае. Хотя к портативной электронике, подверженной частым падениям, это не относится.
Пьезоэлектричество
Кристаллы кварца обладают пьезоэлектрическими свойствами; они развивают электрический потенциал при приложении механического напряжения . Раннее использование этого свойства кристаллов кварца было в звукоснимателях фонографа . Одно из наиболее распространенных пьезоэлектрических применений кварца сегодня — это кварцевый генератор . Кварцевые часы знакомое устройство , использующее минерал. Резонансная частота кварцевого генератора изменяется путем механического нагружения, и этот принцип используется для очень точных измерений очень малых изменений массы в микровесах из кварцевого кристалла и в мониторах толщины тонких пленок .
Возможные причины выхода из строя
Существует достаточно много методов вывести собственный кварцевый резонатор
из строя. С некими самыми пользующимися популярностью стоит ознакомиться, чтоб в дальнейшем избежать каких-либо заморочек:
- Падения с высоты. Самая пользующаяся популярностью причина. Помните: всегда нужно содержать рабочее место в полном порядке и смотреть за своими действиями.
- Присутствие неизменного напряжения. В целом кварцевые резонаторы не страшатся его. Но прецеденты были. Для проверки работоспособности включите поочередно конденсатор на 1000 мФ — этот шаг вернет его в строй либо дозволит избежать негативных последствий.
- Очень большая амплитуда сигнала. Решить данную делему можно различными методами:
- Увести частоту генерации мало в сторону, чтоб она отличалась от основного показателя механического резонанса кварца. Это более непростой вариант.
- Снизить количество Вольт, что питают сам генератор. Это более лёгкий вариант.
- Проверить, вышел ли кварцевый резонатор вправду из строя. Так, предпосылкой падения активности может быть флюс либо посторонние частички (нужно в таком случае его отменно очистить). Также может быть, что очень интенсивно эксплуатировалась изоляция, и она растеряла свои характеристики. Для контрольной проверки по этому пт можно на КТ315 спаять «трехточку» и проверить осцом (сразу можно сопоставить активность).
Кварцевый резонатор это кристаллический электронный прибор, поддерживающий резонансные колебания на заданной частоте. Кварцевый резонатор обладает высокой стабильностью и точность. Чтобы проверить работоспособность кварцевого резонатора, нужно собрать одну из предложенных ниже схем для проверки.
Здесь транзистор VT1 используется в роли генератора, а его частоту определяет проверяемый кварцевый резонатор. При поступлении питания на схему, генератор начинает генерировать импульсы с частотой его основного резонанса. Импульсная последовательность проходит через конденсатор С3, который отфильтровывает постоянную составляющую и поступает на аналоговый частотомер построенный на детекторных диодах VD1, VD2 и пассивных элементах С4, R3 и микроамперметре. В зависимости от частоты прямо пропорционально меняется напряжение на конденсаторе С4, то есть чем выше частота резонанса кварца, тем выше напряжение. Данным пробником можно не только проверить работу кварцевого резонатора, но и косвенно определить частоту его резонанса. С помощью этой схемы можно проверить кварцевые резонаторы с частотой от 3 до 10 мГц.
Если мы захотим более точно определить резонансную частоту кварцевого резонатора, необходимо подключить к выходу генератора частотомер или осциллограф. Он позволяет рассчитать частоту с помощью фигур Лиссажу. Однако не следует забывать, что кварц может возбудится как на основной частоте, так и на гармониках.
Проверка сразу двух кварцевых резонаторов
Как проверить кварцевый резонатор
Проблемы с небольшими приборами возникают, если они получают сильный удар. Такое происходит при падении устройств, содержащих в конструкции резонаторы. Последние выходят со строя и требуют замены по тем же параметрам.
Проверка резонатора на работоспособность требует наличия тестера. Его собирают по схеме на основе транзистора КТ3102, 5 конденсаторов и 2 резисторов (устройство подобно кварцевому генератору, собранному на транзисторе).
Прибор необходимо в подключаемых соединениях, подключениях подключить к базе транзистора и отрицательному полюсу, защищая установкой защитного конденсатора. Питание схемы включения постоянное – 9В. Плюс подключают на вход транзистора, к его выходу – через конденсатор – частотомер, который фиксирует частотные параметры резонатора.
Схемой пользуются при настройке контура колебаний. Когда резонатор исправный, он при подключении выдает колебания, которые приводят к появлению переменного напряжения на эмиттере транзистора. Причем частота напряжения совпадает с аналогичной характеристикой резонатора.
Прибор неисправен, если частотомер не фиксирует возникновение частоты или определяет наличие частоты, но она – либо намного отличается от номинала, либо при нагреве корпуса паяльником сильно изменяется.
Кварцевый резонатор как проверить? Проверка кварцевых резонаторов
Колебаниям уделяется одна из важнейших ролей в современном мире. Так, даже существует так именуемая теория струн, которая утверждает, что всё вокруг нас — это просто волны. Но есть и другие варианты использования данных познаний, и одна из их — это кварцевый резонатор
Так бывает, что неважно какая техника временами выходит из строя, и они здесь не исключение. Как убедиться, что после негативного инцидента она всё ещё работает как следует?
Принцип работы кварцевого резонатора
Работает прибор на основе пьезоэффекта, проявляющегося на пластинке из кварца, причем низкотемпературного. Элемент вырезают из цельного кристалла кварца, соблюдая задаваемый угол. Последний определяет электрохимические параметры резонатора.
Пластинки с обеих сторон покрывают слоем серебра (подходит платина, никель, золото). Затем их прочно фиксируют в корпусе, который герметизируется. Устройство представляет колебательную систему, которая обладает собственной резонансной частотой.
Когда электроды подвергаются переменному напряжению, пластинка из кварца, обладающая пьезоэлектрическим свойством, изгибается, сжимается, сдвигается (зависит от типа обработки кристалла). Одновременно в ней появляется противо-ЭДС, как это происходит в катушке индуктивности, находящейся в колебательном контуре.
Когда подается напряжение с частотой, совпадающей с собственными колебаниями пластинки, то в устройстве наблюдается резонанс. Одновременно:
- у элемента из кварца увеличивается амплитуда колебаний;
- сильно уменьшается сопротивления резонатора.
Энергия, которая необходима для поддержания колебаний, в случае равенства частот низкая.
Описание и принцип работы
Некоторые из факторов, которые влияют на стабильность частоты генератора, как правило, включают в себя: изменения температуры, изменения нагрузки, а также изменения напряжения питания постоянного тока и многое другое.
Стабильность частоты выходного сигнала может быть значительно улучшена путем правильного выбора компонентов, используемых для резонансной цепи обратной связи, включая усилитель. Но есть предел стабильности, который можно получить из обычных контуров резервуаров LC и RC.
Чтобы получить очень высокий уровень стабильности генератора, кварцевый кристалл обычно используется в качестве устройства для определения частоты для создания осциллятора другого типа, известного как кварцевый генератор.
Когда источник напряжения подается на небольшой тонкий кусочек кристалла кварца, он начинает менять форму, создавая характеристику, известную как пьезоэлектрический эффект. Этот пьезоэлектрический эффект является свойством кристалла, посредством которого электрический заряд создает механическую силу, изменяя форму кристалла, и наоборот, механическая сила, приложенная к кристаллу, создает электрический заряд.
Затем пьезоэлектрические устройства могут быть классифицированы как преобразователи, поскольку они преобразуют энергию одного вида в энергию другого (электрическую в механическую или механическую в электрическую). Этот пьезоэлектрический эффект создает механические колебания или колебания, которые можно использовать для замены стандартной цепи LC- бака в предыдущих генераторах.
Существует множество различных типов кристаллических веществ, которые можно использовать в качестве осцилляторов, причем наиболее важными из них для электронных схем являются минералы кварца, что отчасти объясняется их большей механической прочностью.
Кристалл кварца, используемый в кварцевом генераторе, представляет собой очень маленький, тонкий кусок или пластину из резаного кварца с металлизацией двух параллельных поверхностей для обеспечения требуемых электрических соединений. Физический размер и толщина кусочка кварцевого кристалла строго контролируются, поскольку он влияет на конечную или основную частоту колебаний. Основная частота обычно называется характеристической частотой кристаллов.
После резки и формирования кристалл не может быть использован на любой другой частоте. Другими словами, его размер и форма определяют его основную частоту колебаний.
Характеристика или характерная частота кристаллов обратно пропорциональна его физической толщине между двумя металлизированными поверхностями. Механически вибрирующий кристалл может быть представлен эквивалентной электрической цепью, состоящей из низкого сопротивления R, большой индуктивности L и небольшой емкости C, как показано ниже.
О деталях устройства
Часть платы собрана на выводных деталях, а часть на SMD. Плата разработана под ЖКИ индикатор «Винстар» однострочный WH1601A (это тот у которого контакты слева вверху), контакты 15 и 16, служащие для подсветки, не разведены, но кому надо может для себя добавить дорожки и детали. Я не развёл подсветку так как применил индикатор без подсветки от какого-то телефона на таком-же контроллере, но сначала стоял винстаровский. Кроме WH1601A можно применить WH1602B – двухстрочный, но вторая строка задействована не будет. Вместо транзистора, что на схеме можно применить любой такой же проводимости желательно с бОльшим h21. На плате разведены два входа питания, один от мини USB, другой через мост и 7805. Также предусмотрено место под стабилизатор в другом корпусе.
Заключение
В статье было рассмотрено, как проверить работоспособность таких элементов электрических схем, как частота кварцевого резонатора, а также их свойство. Были обговорены способы установления необходимой информации, а также возможные причины, почему они выходят из строя во время эксплуатации. Но для избегания негативных последствий всегда трудитесь с ясной головой — и тогда работа кварцевого резонатора будет меньше беспокоить.
Резонатором называют систему способную на колебательные движения с максимальной амплитудой при определённых условиях. Кварцевый резонатор — пластина из кварца, обычно в форме параллелепипеда, действует так при подаче переменного тока (частота для разных пластин различна). Рабочую частоту этой детали определяет её толщина. Зависимость здесь обратная. Наибольшую частоту (не превышающую при том 50 МГц) имеют самые тонкие пластины.
В редких случаях можно добиться частоты в 200 МГц. Это допустимо только при работе на обертоне (неосновной частоте, превышающей основной показатель). Специальные фильтры способны погасить основную частоту кварцевой пластины и выделить кратную ей обертоновую.
Кварц относится к диэлектрикам. В комбинации с парой металлических электродов он превращается в конденсатор, но его ёмкость мала и нет смысла её замерять. На схеме эта деталь отображается как кристаллический прямоугольник между пластинами конденсатора. Кварцевой пластине, как и иным упругим телам, свойственно наличие собственной резонансной частоты, зависящей от её размера. Пластины малой толщины имеют более высокую резонансную частоту. Как итог: необходимо лишь выбрать пластину с такими параметрами, при которых частота механических колебаний совпадала бы с приложенной к пластине частотой переменного напряжения. Кварцевая пластина, пригодна только при использовании переменного тока, поскольку постоянный ток может спровоцировать лишь единичное сжатие или разжатие.
В результате очевидно, что кварц является весьма простой резонансной системой (со всеми свойствами, присущими для колебательных контуров), но это вовсе не снижает качество его работы.
Кварцевый резонатор является даже более действенным. Показатель добротности у него составляет 10 5 — 10 7 . Резонаторы из кварца увеличивают общий срок службы конденсатора за счёт своей температурной устойчивости, долговечности и технологичности. Удобства в применении добавляют и небольшие размеры деталей. Но самое главное достоинство — способность обеспечивать стабильную частоту.
К числу минусов относят лишь узость диапазона сонастройки имеющейся частоты с частотой внешних элементов.
В любом случае, кварцевые резонаторы весьма популярны, и используются в часах, многочисленной радиоэлектронике и иных приборах. В некоторых странах кварцевые пластины устанавливаются прямо на тротуарах, а люди продуцируют энергию просто ходя туда и обратно.