Новое поколение эмалированных алюминиевых обмоточных проводов

Оглавление

Самодельный ЧПУ станок

Самодельный намоточный станок из старого принтера

Эта статья продолжает тему самодельных ЧПУ станков начатую в статьях ЧПУ из подручных средств и ЧПУ станок из печатных машинок.

Сегодняшний разговор пойдет о намоточных станках. Такие станки промышленного изготовления стоят дорого, от нескольких десятков тысяч рублей до 150 тысяч вечнодеревянных денежных знаков нашей страны. Но, если вы не боитесь взять в руки отвертку, паяльник и молоток, то подобный компьютеризированный станок можно изготовить своими руками.

Для начала рассмотрим теоретическую часть построения намоточных станков с приводом от шагового двигателя и компьютерным управлением.

Как и во всех остальных самодельных ЧПУ станках основная задача состоит в том, что бы изготовить механику, точнее механическую часть станка. Электроника не сильно сложна, ее можно сделать самостоятельно, например по статье Простая электроника для ЧПУ станка или приобрести готовую — например взять контроллер от фирмы purelogic.ru.

Итак, описание намоточного станка

Достаточно подробное описание конструкции намоточного станка часто можно найти в старых журналах, например мне попадалось схема самодельного станка для намотки тороидальных трансформаторов в журнале Радио семидесятых годов.

Основа намоточного станка это прижимной механизм и подача намотки. Прижимной механизм состоит из двух пластин (изготавливается из текстолита или стали, можно использовать и дюралюминий). На одной пластине установлено два ролика с промежутком для третьего прижимного ролика. Вторая пластина подвижна и на ней закреплен прижимной ролик.

Укладочный механизм собран из мебельных направляющих и текстолитовой пластины все приводится по шаговым двигателем на котором установлен винт М8 а в механизме установлен дюралевый уголок с отверстием и резьбой М8.

Общий вид расположения блоков самодельного намоточного станка, по этому виду можно понять — как располагаются детали относительно друг друга.

Самодельный редуктор изготавливается из трех пластиковых шестеренок взятых от принтера. Передаточное отношение на нем 2,5 : 1.

На выходном вале редуктора нарезается резьба М6 для соединения через сгонную муфту с валом на котором закрепляется каркас катушки. Крепление каркаса делается при помощи подручных средств, например подходящих шайб и гаек М6.

Для практического изготовления можно использовать старый матричный принтер, например Epson LQ 100

Переделка данного принтера в самодельный намоточный станок, причем даже с сохранением изначальной компоновки заключается в следующем: — сдвигается направляющая для каретки в сторону от печатного валика, — заменяется обрезиненный валик на съемный вал с элементами крепления каркасов, — устанавливается на каретку самодельный укладчик провода, — изменяется схема управления шаговым двигателем, для этого достаточно поставить только контроллер, который подключается к ключевым транзисторам или напрямую микросхеме драйвера шагового двигателя принтера.

Как вариант для изготовления самодельного намоточного станка, в качестве шасси (то на чем закреплен сам станок) можно использовать блок питания от телевизора или персонального компьютера.

Кстати, для того, что бы не путаться в подсчете количества намотанных витков, например при отключении электроэнергии, можно поставить на самодельный намоточный станок механический счетчик или, как вариант, можно использовать геркон или оптронную пару заведенную на параллельный порт компьютера. В данном случае на ПК необходимо установить бесперебойный блок питания.

Самодельный ЧПУ станок

Обмоточный провод для высоких частот


Литцендрат с волокнистой изоляцией

  • Кроме стандартных одножильных проводов для катушек, работающих при высоких частотах, используют специальные провода — литцендраты.
  • Дело в том, что высокочастотные токи проходят только по поверхности проводника. Сопротивление в этом случае, зависит не от площади сечения проводника, а от длины его периметра.
  • Для того чтобы максимально увеличить ее, обмоточный провод делают многожильным — из пучка тонких, диаметром в доли миллиметра, проводников. Перевивка ведется тоже особым способом. Обозначают такие провода буквой Л.

Перечислим наиболее распространенные марки таких проводов:

  1. ЛЭП и ЛЭЛ — пучок проводников не имеет дополнительной общей изоляции.
  2. ЛЭШО и ЛЭШД — обматываются шелком в один и два слоя соответственно.
  3. ЛЭПКО — с волокнистым капроновым покрытием.

Определение направления витков обмотки катушек

В зависимости от параметрических данных самого устройства, формы его магнитопровода, типе и геометрии провода встречается или выбирается определенное направление обмотки из витков на катушке.

При использовании обмотки в одну сторону встречается левое и правое направление обмотки катушки или же с применяя необходимый шаблон с помощью намоточного станка выполняется левосторонняя или правосторонняя цилиндрическая намотка проводника.

Встречается многослойный тип намотки катушек преобразователей, если этим обусловлено дальнейшее использование устройства и техническая необходимость. При этом цилиндрическая обмотка в несколько слоев на станке может накладываться в виде

  • встречной направленности – где новый слой проходит встречным направлением по старому слою проводников;
  • в одном направлении – несколько слоев прямоугольного проводника накладываются друг на друга в одном направлении.

Каждый слой при этом проходит прокладку изоляционного слоя из бумаги и полимеров. Осевые каналы создаются в момент проведения намотки на станке. В сердечник закладываются специальные рейки, которые по окончании процесса создания обмоток демонтируются, оставляя необходимые каналы.

Иногда требуется создание зазоров в намоточных проводниках. Их расчеты проводят с помощью специальных базовых форм, используя параметры проводников, конструктивного исполнения будущей обмотки и других параметров, которые берутся из технической литературы.

Разницу между фактически полученными значениями при расчете сравнивают с табличными значениями.

Намотку резонансных катушек преобразовательных устройств электрической энергии проводят, дополнительно руководствуясь их значениями номинальной индуктивности, необходимой собственной емкости и стойкости, и длительности работы.

Счетчик оборотов для подсчета витков

Один оборот равен одному витку – так раньше в уме подсчитывал, мотая трансформатор на примитивном приспособлении

С появлением полноценного намоточного станка с предусмотренным счетчиком стало намного проще, но самое важно, что при намотке витков процент на ошибку свелся практически к нулю

В рассматриваемом намотчике использован механический счетчик УГН-1 (СО-35) от советской аппаратуры. Его можно заменить на велосчетчик или механический счетчик от старого бытового магнитофона, где он отмерял расход ленты. Также можно собрать простой счетчик своими руками, имея только калькулятор, геркон, два провода и магнит.

Разберите калькулятор на два контакта, замыкаемых кнопкой «равно», припаяйте два провода, а на концы проводов запаяйте геркон. Если поднести магнит к геркону, то его пластины внутри стеклянной колбы замкнутся и на калькуляторе произойдет имитация нажатия кнопки. Используя функцию сложения калькулятора 1+1 можно подсчитывать обороты.

Далее закрепляем самодельный диск на первую ось. К диску приклеиваем магнит, а на корпусе станка или кронштейне крепим геркон. Геркон располагаем так, чтобы при обороте диска магнит проходил рядом с герконом и смыкал его контакты.

Расчеты

Наиболее сложный вариант, если вы будете изготавливать трансформатор своими руками с нуля. В таком случае расчет электрической машины производится в зависимости от выходной мощности. Исходя из этого параметра, рассчитывается мощность первичной обмотки. Если вы используете заводской сердечник, то можно считать эти величины одинаковыми, если вы соберете его самостоятельно, то P2 = 0,9 * P1

Это приблизительный расчет с учетом потерь в сердечнике. В зависимости от качества шихтовки своими руками, разница мощностей может находиться в пределах от 5 до 20%.

В зависимости от мощности первички определяется сечение магнитопровода, которое вычисляется по формуле: S = √P1

Следует отметить, что мощность для вычислений берется в Ваттах, а размеры сердечника получаем в квадратных сантиметрах.

Далее определяется коэффициент передачи электромагнитной энергии: k = f/S,

Где k – коэффициент передачи, f – частота сетевого напряжения переменного тока, S – площадь сечения магнитопровода.

Исходя из полученного коэффициента, определяется число витков в обмотках по величине входных и выходных напряжений: N1 = k*U1, N2 = k*U2

Это приблизительные вычисления, предназначенные для бытового применения радиолюбителями. Заводские трансформаторы имеют более сложную процедуру расчета, которая производится по справочникам и зависит от их типа и назначения (силовые, измерительные, трехобмоточные, тороидальные устройства и т.д.)

Далее рассчитывается сила тока в первичной обмотке трансформатора: I1 = P1 / U1

Соответственно, ток, протекающий по вторичной обмотке трансформатора, вычисляется по формуле: : I2 = P2 / U2

Исходя из величины тока в каждой обмотке, выбирается сечение жилы. Но заметьте, что проводник в обмотке значительно хуже охлаждается, поэтому запас сечения делается на 20 – 30%. Проще выполнять данную работу медными проводами, но это требование не критично.

Таблица: выбор сечения, в зависимости от протекающего тока

Как функционирует однофазный трансформатор: основные принципы работы

Первоначально уточним, какие существуют основные комплектующие однофазного трансформатора: магнитопровод, состоящий из пластин стали, по которым и протекает магнитный поток, первичная и вторичная обмотки трансформатора.

Физически объяснимо, что появляются и снимаются в первой обмотке потоки благодаря переменному напряжению. Находясь рядом, вторичная обмотка ловит эти потоки и преобразовывает в переменное напряжение, сохраняя ту же частоту. Напряжение, которое выдается агрегатом со вторичной обмотки, всецело зависит от витков, которые намотаны на имеющиеся в трансформаторе первичные и вторичные обмотки (катушки).

Маркировка

Различное конструктивное исполнение геометрии проводника, использование разнообразных типов изоляции провода для обмоток трансформаторов, остальные электротехнические свойства в «ПУЭ» привели к созданию регламентированных аббревиатур их маркировки.

Первый буквенный символ в такой аббревиатуре обозначает сам материал проводника: «А» – дает понимание, что провод обмотки алюминиевый. Другой символ обозначает нихром, а его отсутствие принято считать, что проводник медного исполнения.

Второй поясняет о том, что это непосредственно сам провод для обмотки, а последующие дают обозначение к какому типу и материалу диэлектрика относится его изоляция.

В маркировке используются и цифровые символы, после буквенных. Ими принято обозначать сечение проводника, а также максимально допустимое напряжение изоляции, на который рассчитан провод. В других случаях цифры могут относится к количеству слоев изоляции. Примеры обмоточных проводов трансформаторов:

  • ПЭМ-1 – медный провод с эмалированной изоляцией в один слой;
  • ПКР-1 – медный провод с капроновой изоляцией в одну прядку.

Запомнить все маркировки проводников для обмоток практически невозможно. Главное знать принцип составления этих маркировок и обладать умением пользоваться справочной литературой для его верного подбора.

Классификация проводов

Специальный провод из нихрома для обмоток

Классифицируют провода по нескольким критериям.

Материал проводника

Это:

  1. Медные — наиболее широко распространены.
  2. Алюминиевые — из-за большего, чем у меди удельного сопротивления применяют реже. Но, в последнее время, их использование расширяется, так как алюминий дешевле.
  3. Из сплавов сопротивления (нихром и тому подобное) — используют для некоторых устройств.

Геометрия сечения

Прямоугольные провода

Сечения проводов бывают круглыми и прямоугольными. Вторые используют при необходимости пропускания через проводник большого тока, для проводников с большой площадью сечения. Для охлаждаемых катушек, используют полую проволоку.

Материал изоляции

Используются различные материалы — от бумаги и натуральных волокон, до стекла. Часто применяют несколько слоев, например: бумагу и эмаль.

Для изоляции важны не только диэлектрические свойства, но и механическая прочность, а также толщина. Чем она меньше, тем больше витков можно уложить в катушке при заданном диаметре провода.

Рекомендации по выбору материалов

При создании преобразовательных устройств в электротехники, радиолюбителями, опытными и не очень, в силу опыта фактического проведения таких работ, сложились определенные полезные советы для будущих проектантов и создателей, которые регламентируются в трех сегментах.

Каркас

В зависимости от конкретики конечного трансформаторного устройства, для верной, удобной и качественной намотки их обмоток существует ряд каркасных механизмов и приспособлений самостоятельного изготовления из подручных инструментов, использования заводских станков для правильной намотки проводника и других.

Сердечник

Здесь тоже исходят изначально из назначения, мощности трансформатора, который есть желание или отремонтировать или создать заново. Цели и назначение преобразовательного устройства позволят точнее выбрать и форму его сердечника и материалы, из которого он будет состоять. Исходя из предназначения оборудования станет ясно, что будет проще – перепаковать имеющиеся под рукой старые шихтованные сердечники, модернизировать и улучшить их электрические и магнитные свойства или купив в радио магазинах специальные материалы создать его с нуля самому, заказать создание на производстве.

Провод

Выбор этой составной части подробно описан выше, исходя также из назначения устройства, его электрических характеристик, мощности и сферы использования, включая полезные параметры и необходимую длительность, безопасность использования.

Подкладки изоляционные

В качестве прокладок диэлектрика самым распространенным диэлектриком является бумага или электротехнический картон. Иногда возможно использование полимерных сред.

Самодельный намоточный станок с укладчиком | мк-союз.рф

В работе радиолюбителей и электриков полезны устройства для наматывания медного провода диаметром 1,5 мм на специальную электрическую катушку. В промышленных условиях данный процесс требует скорости и точности. Домашние мастера могут воспроизвести такую технологию. Для этого понадобится самодельный намоточный станок. Для него характерны такие признаки:

  • простота создания и эксплуатации,
  • возможность использования разных трансформаторов,
  • наличие дополнительных функций: подсчет количества проволочных мотков.

Устройство укладчика проволоки

Укладка и намотка проволоки осуществляются за счет трех пластин, скрепленных между собой винтами диаметром 20 мм. В верхней части делают небольшое отверстие 6 мм, куда вставляют винт регулировки натяжения:

  • В верхнюю и нижнюю часть внутренней пластины монтируют фторопластовую и стальную втулки диаметром и длиной по 20 мм.
  • Между наружными элементами вклеивают кожаный желобок толщиной до 2-х мм, необходимый для выравнивания и натягивания проволоки катушки.
  • Вверху укладчика монтируют специальный стержень с резьбой или мини-струбцину, которая скрепляет внешние пластины и регулирует натяжение. Расстояние крепления зависит от диаметра провода.
  • Для удобства работы конструкцию дополнительно оснащают откидным кронштейном для катушки.

Изготовление счетчика витков

Для определения количества намотанных витков на станке необходим специальный счётчик. В самодельном станке устройство делают так:

  • К верхнему валу крепят электромагнит.
  • Герметизированный контакт располагают на одной из боковин.
  • Выведенные контакты геркона соединяют с калькулятором в том месте, где находится кнопка «=».
  • Катушку с проводом размещают отдельно – на другом валу с рычагами, которые поднимают устройство вверх и складывают его внутрь станка.

Благодаря этим элементам, оборудование становится компактным и не занимает много места.

Принцип работы на станке

Трудиться на сконструированном станке несложно. Технологический процесс требует выполнения определенных действий:

  1. Верхний вал подготавливают к работе: снимают шкив, задают нужную длину каркаса катушки, устанавливают правый и левый диски.
  2. В отверстие верхнего вала вставляют крепежное изделие, центрируют и зажимают каркас специальной гайкой.
  3. На подающий вал монтируют нужный шкив для первичной обмотки.
  4. Напротив каркаса катушки устанавливается укладчик.
  5. Пассик одевают на шкивы кольцом или восьмеркой, в зависимости от вида укладки.
  6. Металлический провод заводят под дополнительный вал, укладывают в желобок, закрепляют.
  7. Натяжение проволоки регулируют при помощи зажимов, расположенных вверху укладчика.
  8. Провод должен плотно наматываться на основу катушки.
  9. На калькуляторе фиксируют числовое значение «1+1».
  10. Каждый оборот вала прибавляет заданный счет.
  11. Если витки нужно отмотать назад, на вычислительном устройстве нажимают «–1».
  12. Когда провод достигнет противоположной части каркаса, с помощью цангового зажима меняют положение пассика.

Под разную толщину металлического провода соотносят шкив с шагом намотки.

Разновидности обмоточных проводов

Любая марка имеет в названии букву П (провод). Далее идет маркировочный код изоляции. Существует волокнистая, эмалевая и комбинированная изоляция. Волокнистую изоляцию изготавливают из натурального и искусственного шелка, хлопчатобумажного волокна, капрона, стекловолокна и лавсана. Такие провода используются в основном для изготовления обмоток масляных трансформаторов. Эмалевая изоляция представляет собой смесь синтетических лаков, при нагреве образующую на проволоке прочный тонкий слой. Применяется для намотки электрических машин и приборов, у которых нет жестких ограничений по толщине изоляции провода. Волокнистая изоляция

  • Натуральный шелк — Ш
  • Пряжа хлопчатобумажная — Б
  • Капрон — К
  • Искусственный шелк — ИШ
  • Волокно асбестовое — А
  • Стекловолокно — С

Буквенный код О или Д указывает количество слоев используемой изоляции, один или два соответственно. Эмалевая изоляция

  • Винифлекс (высокопрочная эмаль) — ЭВ
  • Эмаль теплостойкая полиэфирная — ЭТ
  • Лакостойкая эмаль — ЭЛ
  • Полиамиднорезольная эмаль — ЭЛР
  • Эмаль полиуретановая — ЭВТЛ

Комбинированная изоляция состоит из нескольких слоев, внутреннее покрытие изготавливается из эмали, а внешнее — волокнистый материал. К примеру, маркировка ПЭЛШО расшифровывается как медный обмоточный провод изолированный слоем натурального шелка и лакостойкой эмалью. Если обмоточный провод пропитан в теплостойком лаке и изолирован стекловолокном, в маркировке будет присутствовать буква К. Такой провод достаточно распространен благодаря своим высоким показателям надежности, применяется для обмоток электродвигателей для кранов, в том числе судостроительных. Алюминиевые провода имеют в маркировке дополнительную букву А. Примеры маркировки обмоточных проводов:

  • ПЭТВ — Провод обмоточный Эмалированный Теплостойкий с Эмалевой изоляцией, представляет собой медную жилу–проволоку;
  • ПЭТВ2 — где «2» — количество слоёв лака на проводе;
  • ПЭЛШО — медный обмоточный провод изолированный лакостойкой эмалью и слоем натурального шелка;
  • ПБ — провод обмоточный медный, изолирован бумагой в несколько слоев;
  • ПБО — обмоточный провод из меди, изолятор — один слой хлопчатобумажной пряжи;
  • АПБ — алюминиевый провод круглого или прямоугольного сечения, изолированный кабельной бумагой в несколько слоев;
  • АПСД — провод обмоточный алюминиевый, изолирован двумя слоями стекловолоконной обмотки, пропитанной термостойким глифталевым лаком;
  • ПЭТСО — провод, изолированный эмалью винифлекс повышенной прочности, и одним слоем обмотки из стеклянной пряжи.

ПЭТВ


ПЭТВ2


ПЭЛШО


АПБ

Назначение провода

В отличие от монтажных и установочных, обмоточный продукт применяется только для определенных целей. При этом каждая категория используется в зависимости от технических характеристик — материала токопроводящих жил, типа использованной изоляции, физико-механических характеристик и нагревостойкости. Разновидности провода в зависимости от его предназначения:

  • ПЭЛ — медный, с изоляцией из масляных лаков, применяют в электроприборах — для изготовления рамок и катушек;
  • в радиотехнике и промышленном приборостроении чаще необходимы изделия с эмалированным покрытием и высокой устойчивостью к внешней агрессивности, электроизоляционными свойствами;
  • провода с волокнистой или комбинированной изоляцией предназначены для электродвигателей и других устройствах, в которых есть вероятность превышения механического воздействия, но не имеет значение толщина изолирующего слоя.

Необходимость самостоятельно перемотать определенную деталь в устройстве, означает для ремонтника или радиолюбителя тщательный подбор необходимого материала по маркировке производителя и техническому регламенту.

Виды обмоточного провода

Как рассчитать сечение по току?

Табличные значения не могут учесть индивидуальных особенностей устройства и эксплуатации сети. Специфика у таблиц среднестатистическая. Не приведены в них параметры максимально допустимых для конкретного кабеля токов, а ведь они отличаются у продукции с разными марками. Весьма поверхностно затронут в таблицах тип прокладки. Дотошным мастерам, отвергающим легкий путь поиска по таблицам, лучше воспользоваться способом расчетаразмера сечения провода по току. Точнее по его плотности.

Допустимая и рабочая плотность тока

Начнем с освоения азов: запомним на практике выведенный интервал 6 — 10. Это значения, полученные электриками многолетним «опытным путем». В указанных пределах варьирует сила тока, протекающего по 1 мм² медной жилы. Т.е. кабель с медной сердцевиной сечением 1 мм² без перегрева и оплавления изоляции предоставляет возможность току от 6 до 10 А спокойно достигать ожидающего его агрегата-потребителя. Разберемся, откуда взялась и что означает обозначенная интервальная вилка.

Согласно кодексу электрических законов ПУЭ 40% отводится кабелю на неопасный для его оболочки перегрев, значит:

  • 6 А, распределенные на 1 мм² токоведущей сердцевины, являются нормальной рабочей плотностью тока. В данных условиях проводник работать может бесконечно долго без каких-либо ограничений по времени;
  • 10 А, распределенные на 1 мм² медной жилы, протекать по проводнику могут краткосрочно. Например, при включении прибора.

Потоку энергии 12 А в медном миллиметровом канале будет изначально «тесно». От тесноты и толкучки электронов увеличится плотность тока. Следом повысится температура медной составляющей, что неизменно отразиться на состоянии изоляционной оболочки.

Обратите внимание, что для кабеля с алюминиевой токоведущей жилой плотность тока отображает интервал 4 – 6 Ампер, приходящийся на 1 мм² проводника. Выяснили, что предельная величина плотности тока для проводника из электротехнической меди 10 А на площадь сечения 1 мм², а нормальные 6 А. Следовательно:

Следовательно:

Выяснили, что предельная величина плотности тока для проводника из электротехнической меди 10 А на площадь сечения 1 мм², а нормальные 6 А. Следовательно:

  • кабель с жилой сечением 2,5 мм² сможет транспортировать ток в 25 А всего лишь несколько десятых секунды во время включения техники;
  • он же бесконечно долго сможет передавать ток в 15А.

Приведенные выше значения плотности тока действительны для открытой проводки. Если кабель прокладывается в стене, в металлической гильзе или в пластиковом кабель канале, указанную величину плотности тока нужно помножить на поправочный коэффициент 0,8. Запомните и еще одну тонкость в организации открытого типа проводки. Из соображений механической прочности кабель с сечением меньше 4 мм² в открытых схемах не используют.

Изучение схемы расчета

Суперсложных вычислений снова не будет, расчет провода по предстоящей нагрузке предельно прост.

  • Сначала найдем предельно допустимую нагрузку. Для этого суммируем мощность приборов, которые предполагаем одновременно подключать к линии. Сложим, например, мощность стиральной машины 2000 Вт, фена 1000 Вт и произвольно какого-либо обогревателя 1500 Вт. Получили мы 4500 Вт или 4,5 кВт.
  • Затем делим наш результат на стандартную величину напряжения бытовой сети 220 В. Мы получили 20,45…А, округляем до целого числа, как положено, в большую сторону.
  • Далее вводим поправочный коэффициент, если в нем есть необходимость. Значение с коэффициентом будет равно 16,8, округленно 17 А, без коэффициента 21 А.
  • Вспоминаем о том, что рассчитывали рабочие параметры мощности, а нужно еще учесть предельно допустимое значение. Для этого вычисленную нами силу тока умножаем на 1,4, ведь поправка на тепловое воздействие 40%. Получили: 23,8 А и 29,4 А соответственно.
  • Значит, в нашем примере для безопасной работы открытой проводки потребуется кабель с сечением более 3 мм², а для скрытого варианта 2,5 мм².

Не забудем о том, что в силу разнообразных обстоятельств порой включаем одновременно больше агрегатов, чем рассчитывали. Что есть еще лампочки и прочие приборы, незначительно потребляющие энергию

Запасемся некоторым резервом сечения на случай увеличения парка бытовой техники и с расчетами отправимся за важной покупкой

Расчет сечения провода электропроводки по мощности подключаемых электроприборов

Для выбора сечения жил провода кабеля при прокладке электропроводки в квартире или доме нужно проанализировать парк имеющихся электробытовых приборов с точки зрения одновременного их использования. В таблице представлен перечень популярных бытовых электроприборов с указанием потребляемого тока в зависимости от мощности.

Вы можете узнать потребляемую мощность своих моделей самостоятельно из этикеток на самих изделиях или паспортам, часто параметры указывают на упаковке. В случае если сила потребляемого тока электроприбором не известна, то ее можно измерять с помощью амперметра.

Обычно мощность потребления электроприборов указывается на корпусе в ваттах (Вт или VA) или киловаттах (кВт или kVA). 1 кВт=1000 Вт.

Таблица потребляемой мощности/силы тока бытовыми электроприборами

Электроприбор Потребляемая мощность, Вт Сила тока, А
Стиральная машина 2000 – 2500 9,0 – 11,4
Джакузи 2000 – 2500 9,0 – 11,4
Электроподогрев пола 800 – 1400 3,6 – 6,4
Стационарная электрическая плита 4500 – 8500 20,5 – 38,6
СВЧ печь 900 – 1300 4,1 – 5,9
Посудомоечная машина 2000 – 2500 9,0 – 11,4
Морозильники, холодильники 140 – 300 0,6 – 1,4
Мясорубка с электроприводом 1100 – 1200 5,0 – 5,5
Электрочайник 1850 – 2000 8,4 – 9,0
Электрическая кофеварка 630 – 1200 3,0 – 5,5
Соковыжималка 240 – 360 1,1 – 1,6
Тостер 640 – 1100 2,9 – 5,0
Миксер 250 – 400 1,1 – 1,8
Фен 400 – 1600 1,8 – 7,3
Утюг 900 –1700 4,1 – 7,7
Пылесос 680 – 1400 3,1 – 6,4
Вентилятор 250 – 400 1,0 – 1,8
Телевизор 125 – 180 0,6 – 0,8
Радиоаппаратура 70 – 100 0,3 – 0,5
Приборы освещения 20 – 100 0,1 – 0,4

Ток потребляют еще холодильник, осветительные приборы, радиотелефон, зарядные устройства, телевизор в дежурном состоянии. Но в сумме эта мощность составляет не более 100 Вт и при расчетах ее можно не учитывать.

Если Вы включите все имеющиеся в доме электроприборы одновременно, то необходимо будет выбрать сечение провода, способное пропустить ток 160 А. Провод понадобится толщиной в палец! Но такой случай маловероятен. Трудно представить, что кто-то способен одновременно молоть мясо, гладить утюгом, пылесосить и сушить волосы.

Пример расчета. Вы встали утром, включили электрочайник, микроволновую печь, тостер и кофеварку. Потребляемый ток соответственно составит:

7 А + 8 А + 3 А + 4 А = 22 А

С учетом включенного освещения, холодильника и в дополнение, например, телевизора, потребляемый ток может достигнуть 25 А.

Выбор сечения провода для подключения электроприборов к трехфазной сети 380 В

При работе электроприборов, например, электродвигателя, подключенных к трехфазной сети, потребляемый ток протекает уже не по двум проводам, а по трем и, следовательно, величина протекающего тока в каждом отдельном проводе несколько меньше. Это позволяет использовать для подключения электроприборов к трехфазной сети провод меньшего сечения.

Для подключения электроприборов к трехфазной сети напряжением 380 В, например электродвигателя, сечение провода для каждой фазы берется в 1,75 раза меньше, чем для подключения к однофазной сети 220 В

Внимание, при выборе сечения провода для подключения электродвигателя по мощности следует учесть, что на шильдике электродвигателя указывается максимальная механическая мощность, которую двигатель может создать на валу, а не потребляемая электрическая мощность

Например, нужно подключить электродвигатель потребляющий мощность от сети 2,0 кВт. Суммарный ток потребления электродвигателем такой мощности по трем фазам составляет 5,2 А. По таблице получается, что нужен провод сечением 1,0 мм2, с учетом вышеизложенного 1,0 / 1,75 = 0,5 мм2. Следовательно, для подключения электродвигателя мощностью 2,0 кВт к трехфазной сети 380 В понадобится медный трехжильный кабель с сечением каждой жилы 0,5 мм2.

Гораздо проще выбрать сечение провода для подключения трехфазного двигателя, исходя из величины тока его потребления, который всегда указывается на шильдике. Например, ток потребления двигателя мощностью 0,25 кВт по каждой фазе при напряжении питания 220 В (обмотки двигателя подключены по схеме «треугольник») составляет 1,2 А, а при напряжении 380 В (обмотки двигателя подключены по схеме «звезда») всего 0,7 А.

Взяв силу тока, указанную на шильдике, по таблице для выбора сечения провода для квартирной электропроводки выбираем провод сечением 0,35 мм2 при подключении обмоток электродвигателя по схеме «треугольник» или 0,15 мм2 при подключении по схеме «звезда».

Основание (станина) намоточного станка

Сделать станок для намотки трансформаторов можно из любого прочного легко обрабатываемого материала. Самым подходящим будет: метал, фанера (дерево) или пластмасса. В зависимости от того, что у Вас есть в наличии и с чем Вы любите больше всего работать, можно отдать предпочтение тому или иному материалу.

В основном мастерю самоделки из того, что у меня есть под рукой, так и в этом случае, в завалах барахла под названием «в хозяйстве пригодится» нашлись обрезки из 10 миллиметровой полужесткой пластмассы, которую успешно применил в конструкции намотчика и его элементов.

Изначально, при разработке, необходимо сделать пробный макет, продумать компоновку намотчика, задать себе вопрос, какие необходимые функции должно выполнять устройство. В процессе макетирования легко дополнять и совершенствовать, подгонять размеры, что позволит на выходе получить самый удачный вариант.

По проекту у нас три оси:

Первая ось (намотчик) — на ней будет вращаться наматываемая катушка трансформатора. На одном конце будет крепиться счетчик количества сделанных витков, а на другой стороне привод вращения оси с набором шкивов. Привод может быть ручным в виде закрепленной ручки на оси либо электрическим в виде шагового двигателя.

Вторая ось (укладчик) — на ней будет «бегать» поводок укладчика проволоки, также на оси будет закреплен второй набор шкивов, который через ременную передачу с помощью пассика будет сопрягаться с первым набором шкивов на первой оси.

Третья ось (держатель катушек) – служит опорой для катушки с обмоточным проводом.

На этапе проектирования следует правильно разнести оси между собой, чтобы каркас наматываемой катушки трансформатора не цеплялся за станок и не задевал другую ось, также выбрать высоту расположения катушки с проволокой, чтобы можно было свободно навешивать разные по габаритам катушки. Можно предусмотреть дополнительную ось для смотки-намотки проволоки с катушки на катушку.

По разметке на выбранном материале для станины ножовкой по металлу вырезаем части основания станка (боковины, дно, поперечины), также высверливаем необходимые отверстия. С помощью металлических уголков и саморезов скрепляем все составляющие вместе.