Оглавление
- Содержание / Contents
- Целостность сигнала
- № 5 – Размер контактных площадок следует делать как можно меньше
- Фоторезист
- № 10 – Добавление контуров элементов неверных размеров или формы
- 4 Другие способы металлизации стальных деталей – вакуумное и плазменное напыление
- Подготовка отверстий
- № 2 – Формирование кислотных ловушек
- Сверление
- № 6 – Слои не проверены
- ↑ Реализация
- электролиз
- Гипофосфит меди (раствор активатора)
- Металлизация переходных отверстий печатной платы кабельными наконечниками
- Определение свойств переходного отверстия
- Гипофосфит меди (раствор активатора)
- Больше данных — больше электромагнитных помех
- 5 Несколько слов о металлизации печатных плат
- Обратное высверливание сквозных переходных отверстий
- № 10 – В заключение – общие правила трассировки печатной платы
Содержание / Contents
Недавно понадобилось мне сделать двустороннюю печатную плату. И не просто двустороннюю, а обязательно с переходами между слоями, так как при пайке доступа к противоположной стороне не будет. И не просто с переходами, а с достаточно мощными переходами, потому что по этим переходам предполагается протекание сравнительно больших токов.
Первой мыслью было сделать дополнительные площадки и соединить слои медными заклёпками из подходящего провода, но подсознание протестовало – решение-то неуклюжее…
но как-то не ассоциировались они у меня с заклёпками, пока у одного наконечника не свалился изолятор…
Вот тут-то всё и встало на свои места. В первый момент в голову стали приходить всякого рода развальцовки с фигурной формой рабочей части, весьма желательно, из подзакалённой стали, с отполированной поверхностью. Но, в конечном итоге, решил не заморачиваться и работать подручным инструментом.
Целостность сигнала
Переходные отверстия (далее п/о, англ. via) представляют собой неоднородности в линии передачи. Как и другие неоднородности, они портят сигнал. Этот эффект слабо выражен на низких частотах, однако с увеличением частоты значительно возрастает. Часто разработчики уделяют незаслуженно мало внимания структуре переходных отверстий: они могут быть скопированы из «соседнего» проекта, взяты из даташита или вообще не заданы в САПР (настройка по умолчанию). Перед тем как использовать рассчитанную структуру, необходимо понять, почему её сделали именно такой? Слепое повторение может только навредить.
На целостность сигнала в канале при прохождении через переходные отверстия главным образом влияют следующие факторы:
- отражения сигнала из-за изменения волнового сопротивления;
- деградация сигнала вследствие паразитной ёмкости и индуктивности;
- отражения от неиспользуемого отрезка п/о при переходе на внутренний слой (далее стаб от англ. via stub);
- перекрёстные помехи (англ. Cross talks);
- помехи в шинах питания.
Рассмотрим подробнее причины этих эффектов и методы их устранения.
№ 5 – Размер контактных площадок следует делать как можно меньше
Конструкция любых плат, над которыми вы работали раньше, возможно имели контактные площадки большего размера, чем это необходимо. Это делалось по очевидным причинам. Так проще наносить припой на площадку, быстрее проводить их контроль, точность размещения компонентов платы при этом не так актуальна.
Однако в конструкции высокочастотных печатных плат ценность каждого миллиметра поверхности взлетает до небес – каждый миллиметр, который вам удастся сэкономить, обязательно пригодится. В свете этого мы рекомендуем соблюдать минимальные припуски всех контактных площадок на уровне 0-5% от размеров выводов устанавливаемых деталей. Сравните эту цифру с традиционными припусками в 30% для обычных электронных устройств.
Почему следует экономить место? Это не только поможет нам улучшить механическую прочность, но также позволит уменьшить паразитные емкости, которые играют значительную роль, когда дело касается высоких частот
И, что еще более важно, чем меньше места вы отведете под контактные площадки, тем больше места у вас будет для дифференциальных пар проводников, переходных отверстий, а также деталей с высокой плотностью выводов, таких как ПЛИС и интегральных микросхем
Фоторезист
Лучше всего использовать стеклотекстолит FR4,уже с нанесенным пленочным резистом. В противном случае вам придется самостоятельно покрывать заготовку. Вам не понадобится темная комната или приглушенное освещение, просто избегайте попадания прямых солнечных лучей, минимизируя избыточное освещение, и производите проявку непосредственно после облучения ультрафиолетом.
Редко применяются жидкие фоторезисты, которые наносятся распылением и покрывают медь тонкой пленкой. Я не рекомендовал бы их использование, если вы не имеете условий для получения очень чистой поверхности или хотите получить ПП с низким разрешением.
№ 10 – Добавление контуров элементов неверных размеров или формы
Вы уверены, что все компоненты, которые вы добавили в спецификацию (BOM), будут соответствовать контурам элементов, нанесенным на вашу печатную плату? Если вы нанесли контур элемента с неверными размерами, то, скорее всего, это приведет к тому, что эти детали будут сломаны в процессе монтажа печатных плат, либо не будут припаяны должным образом.
Вот интересный способ установки элемента на плату, контур которого не соответствует элементу! (Изображение элемента, имеющего большие размеры, чем контур на плате)
При нанесении контуров элементов всегда проверяйте, что вы делаете это в соответствии со стандартами IPC. Так ваши физические компоненты и их контуры всегда будут соответствовать друг другу, а вы не столкнетесь с ненужными задержками во время сборки.
4 Другие способы металлизации стальных деталей – вакуумное и плазменное напыление
Широкое распространение получила вакуумная металлизация и напыление конструкций из стекла, металла, керамики, пластмасс и пластика. Ее используют для улучшения декоративных характеристик:
- сварных конструкций;
- решеток, светильников, элементов экстерьера и интерьера;
- разной по назначению фурнитуры;
- сувениров;
- аксессуаров транспортных средств.
Чтобы качественно выполнить подобное напыление, требуются специальные устройства и дорогое оборудование – магнетронные системы, дуговые и ионные источники. Вакуумная металлизация подходит для защиты стеклянных, металлических, пластиковых и керамических изделий. Для процесса необходимо особое оборудование, поэтому выполнить его в домашних условиях невозможно.
Еще одна сложная методика защиты поверхности – плазменная металлизация. Она также требует применения специального оборудования, позволяющего получать ионизированный газ (техническую плазму). Такой вид обработки производят при помощи порошковых материалов, дополнительно используют металлические прутки и проволоку.
Подготовка отверстий
Рис.95. Отверстие после избыточной плазменной обработки.
Известны 3 метода подготовки отверстий:
— Перманганатная обработка (дешевая и относительно эффективная, но имеет ограничения по маркам ДЭ – совсем не травит фторпласт и плохо работает с полиимидом).
— Плазмохимическая подготовка (требует сложного инженерного обеспечения и высоко квалифицированного персонала). Для стеклотекстолита при длительном воздействии или выборе агрессивных режимов по частоте сильно утравливает ДЭ, образуя внутри отверстия «щетку» стеклянных волокон (рис.95). При этом столб металлизации частично заполненный кончиками стекловолокон приобретает увеличенное, по сравнению со сплошной медью сопротивление.
— Травление в составах с плавиковой ( или др. концентрированной) кислотой (устаревший и очень вредный для персонала метод, сегодня практически не применяется в реальном производстве).
№ 2 – Формирование кислотных ловушек
Скорее всего, мы, уже знаем, что в топологии печатной платы не следует использовать токопроводящие дорожки с острым углом, выбирая вместо соединения дорожек под углом 45 градусов, угол в 90 градусов. Это помогает предотвратить скапливание кислоты в процессе травления печатной платы, предупреждая любые серьезные дефекты в будущем.
Вот простая кислотная ловушка, которую можно пропустить в месте соединения двух дорожек. (Изображение печатной платы с дорожками под 45 градусов)
Но вновь и вновь конструкторы печатных плат забывают одну простую вещь и все так же допускают создание кислотных ловушек в местах соединения дорожек под острым углом. Окажите себе услугу и тщательно проследите все искривления дорожек после завершения трассировки
печатной платы.
Непреднамеренно создали кислотную ловушку в месте соединения двух дорожек даже при использовании трассировки с углами в 45 градусов? Бывает, но исправьте этот недостаток до того, как ваш изготовитель получит проектные файлы.
Сверление
Если в качестве основного материала вы используете FR-4, то вам понадобятся сверла, покрытые карбидом вольфрама, сверла из быстрорежущих сталей очень быстро изнашиваются, хотя сталь можно применять для сверления одиночных отверстий большого диаметра (больше 2 мм), т.к. сверла с напылением карбида вольфрама такого диаметра слишком дорогие. При сверлении отверстий диаметром меньше 1 мм, лучше использовать вертикальный станок, иначе ваши сверла будут быстро ломаться. Движение сверху вниз самое оптимальное с точки зрения нагрузки на инструмент. Карбидные сверла изготавливают с жестким хвостовиком (т.е. сверло точно соответствует диаметру отверстия), или с толстым (иногда называют «турбо») хвостовиком, имеющим стандартный размер (обычно 3.5 мм).
При сверлении сверлами с карбидным напылением важно жестко закрепить ПП, т.к. сверло может при движении вверх вырвать фрагмент платы
Сверла маленьких диаметров обычно вставляются либо в цанговый патрон различных размеров, либо в трех кулачковый патрон — иногда 3-х кулачковый патрон является оптимальным вариантом. Для точного фиксирования, однако, это закрепление не подходит, и маленький размер сверла (меньше 1 мм) быстро делает желобки в зажимах, обеспечивающих хорошую фиксацию. Поэтому для сверл диаметром меньше 1 мм лучше использовать цанговый патрон. На всякий случай приобретите дополнительный набор, содержащий запасные цанги для каждого размера. Некоторые недорогие сверла производят с пластиковыми цангами — выбросите их и купите металлические.
Для получения приемлемой точности необходимо правильно организовать рабочее место, т.е., во-первых, обеспечить освещение платы при сверлении. Для этого можно использовать 12 В галогеновую лампу (или 9В, чтобы уменьшить яркость) прикрепив ее на штативе для возможности выбирать позицию (освещать правую сторону). Во-вторых, поднять рабочую поверхность примерно на 6″ выше высоты стола, для лучшего визуального контроля процесса. Неплохо было бы удалить пыль (можно использовать обычный пылесос), но это не обязательно — случайное замыкание цепи пылевой частицей — это миф. Надо отметить, что пыль от стекловолокон, образующаяся при сверлении, очень колкая, и при попадании на кожу вызывает ее раздражение. И, наконец, при работе очень удобно пользоваться ножным включателем сверлильного станка, особенно при частой замене сверл.
Типичные размеры отверстий: · Переходные отверстия — 0.8 мм и менее · Интегральная схема, резисторы и т.д. — 0.8 мм. · Большие диоды (1N4001) — 1.0 мм; · Контактные колодки, триммеры — от 1.2 до 1.5 мм;
Старайтесь избегать отверстия диаметром менее 0.8 мм. Всегда держите не менее двух запасных сверл 0.8 мм, т.к. они всегда ломаются именно в тот момент, когда вам срочно надо сделать заказ. Сверла 1 мм и больше намного надежнее, хотя и для них неплохо бы иметь запасные. Когда вам надо изготовить две одинаковые платы, то для экономии времени их можно сверлить одновременно. При этом необходимо очень аккуратно сверлить отверстия в центре контактной площадки около каждого угла ПП, а для больших плат — отверстия, расположенные близко от центра. Итак, положите платы друг на друга и просверлите отверстия 0.8 мм в двух противоположных углах, затем, используя штифты как колышки, закрепите платы относительно друг друга.
№ 6 – Слои не проверены
Вы можете думать, что процесс разработки завершается сразу после того, как вы хлопнули по кнопке «Сгенерировать» приложения Gerber, но постойте! Необходимо выполнить еще один шаг. Изготовители время от времени получают файлы Gerber со слоями, которые даже не совпадают, так как, мы знаем, формат файла 30-летней давности несовершенен.
Бесплатное приложение Gerber Viewer дает вам возможность легко сравнивать слои готовой разведенной печатной платы (Скриншот Gerber Viewer)
Перед отправкой конструкторских файлов изготовителю, потратьте немного времени и откройте их в стороннем приложении для просмотра файлов Gerber, чтобы убедиться, что все слои совпадают. Если они не совпадают, тогда вам по всей вероятности будет необходимо вновь сгенерировать выходную документацию, либо внести те или иные изменения в топологию печатной платы.
↑ Реализация
Итак, берём наконечник.
Удаляем изолятор.
Получается вот такая штука.
Вставляем развальцованную трубку в плату. Лучше, если отверстие в ПП будет максимально соответствовать наружному диаметру трубки наконечника, трубка должна входить плотно, с трудом. Максимально осаживаем пальцами. Специальную трубчатую осадку с молотком применять не стал. Получающийся в результате неполного прилегания развальцовки к плате запас, как раз и идёт на развальцовку заклёпки с другой стороны платы.
Обкусываем заклёпку заподлицо с фольгой. Как показала практика, обкусывать лучше всего бокорезами с плоскими (без фаски) режущими поверхностями.
Трубка, естественно, сжимается на резе, я пробовал, перед обкусыванием, вставлять внутрь трубки кусок обмоточного провода, но результат получился не шибко складным. Оказалось, что гораздо проще вставить со стороны развальцовки подходящее конусное шило и расправить этот сжим.
Дальше совсем просто. Осталось взять керн и развальцевать получившуюся заклёпку.
Пара лёгких ударов по выступающим краям и новенькая заклёпка стоит на своём месте. Иногда, по ситуации, бывает нужно слегка расширить отверстие конусным шилом.
Обрезок наконечника — сплющенную трубку слегка сжимаем пассатижами,
Расправляем шилом, вставляем в плату и развальцовываем расправленный конец
Получаем новую заготовку для пустотелой заклёпки
А дальше – всё по кругу… Вот результат – плата односторонняя
С другой стороны
Плата двухсторонняя
С другой стороны.
электролиз
Раствор: 10 гр. медного купороса растворяется в 100 мл. воды туда доливаем 1см3 (=1мл) серной кислоты (электролит для свинцовых автомобильных аккумуляторов) = раствор серной кислоты
Блескообразующую добавку RV-T по возможности.
Электроды надо закрывать полностью
Емкость: посередине катод — МИНУС(наша плата), двигается влево / вправо (ардуина + серво двигатель на пластмассовых внутренностях CD ROMа) по бокам анод — это ПЛЮС .
Даем ток 2А из расчета на 1дм2 платы. Моя первая установка для электролиза выглядела так:
Электролит живет долго, главное следить за его чистотой (фильтровать, через ватные диски или марлю). Электролит у меня хранится в обычной пластмассовом пищевом контейнере (хранить можно где угодно).
Использовать печку для приготовления пищи понятно нельзя. Пробовал нагревать плату на плите и по неопытности пережарил плату вплоть до размягчения текстолита — вонь была ужасная. Пришлось купить обычную печку 25$ (до 250С) и сразу процесс пошел в правильном направлении. Результат после 10мин электролиза. К сожалению МИНУС был подан только на одну сторону платы (вторая была без потенциала), но надо признаться все очень даже обнадеживающе :
дырки 0.4мм
Фоткал подсвечивая снизу фонариком.
В результате надо сделать вывод, что медь в дырках осаждается, хотя и не достаточно равномерно (есть заметные проплешины).
Не нужным эффектом является также осаждение меди на всей плоской поверхности платы, увеличивая и без того достаточную толщину меди 0.35мм. Дело в том , что медь расходуется довольно интенсивно и Анод на глазах исчезает.
Может быть имеет смысл все закрывать маской из чего нибудь и оставлять только дырки?
Гипофосфит меди (раствор активатора)
Дигидрат гипофосфит диаминмеди два
Раствор: Гипофосфит кальция (кальций фосфорноватистокислый) — 20 гр. Медный купорос (Медь 2 сернокислая 5вод) — 25 гр. (кстати в магазинах для садоводов продается) Аммиак (аптечный 10%), = 10%-й водный раствор гидроксида аммония — 50 мл. (NH3+H20) Дистиллированная вода 100 мл. Моющее средство «Капля» — 3 гр. (вода, ПАВ, хлорид натрия, консервант, парфюмерная композиция, лимонная кислота, СИ 19140, 42090)
1. Медный купорос 25гр + вода 50ml = долго (+осадок) 2. Гипофосфит кальция 15гр + вода 50ml = долго 3. 1 вливаем в 2. (перемешать) = +осадок 4. фильтр (осадок выкинуть) 5. + 50 мл. аптечного 10% аммиака 6. + 5 грамм гипофосфита кальция 7. + моющее средство (жидкое мыло)- 3 гр
Плату зачищаем с абразивным моющим средством без фанатизма, промываем тщательно.
По окончании промывки вода должна «липнуть» к заготовке, стекая с нее крайне неохотно.
Тщательно стряхиваем, опускаем в активатор горизонтально , не касаемся дна.
Несколько раз 2-3 сек вынимаем горизонтально на поверхностью.
Жидкость должна равномерно затечь во все отверстия
Наклоняем и краем касаемся края емкости, чтобы излишки активатора стекли обратно (без фанатизма).
Закрывает емкость с активатором наклоняем под разными углами, стараясь дать возможность активатору растечься как можно равномернее.
Потом кладем в печку выставляем 125С и держим 12-15 минут.
Потом 175С и держим 7-8минут открываем дверку и даем остыть мин до 100С.
Моющим средством без абразива и мягкой губкой легко отмываем (пока без воды).
Мочалкой продавливаем моющее средство сквозь все отверстия спокойно не торопясь , стараясь ничего не пропустить.
Далее струей воды, промываем все отверстия. не нужно отмывать все до единого пятна.
Активатор храниться долго, главное чтобы аммиак из него не испарился, то есть храним герметично (в темноте). Значит емкость лучше — бутылка где минимум не занятого жидкостью пространства. У меня хранился на балконе месяц до -10С доходило. Раз 10 пользовался без проблем (свойства активатора сохранялись).
Активатор стабилен и может храниться долгое время. В процессе использования нужно следить за тем, что бы на дне все время был осадок гипофосфита кальция и при необходимости досыпать пару грамм. Если этого не делать, могут появляться неметаллизированные отверстия.
Металлизация переходных отверстий печатной платы кабельными наконечниками
Помню, в детстве, когда фольгированный гетинакс делался самостоятельно, с помощью клея «БФ» и утюга, у нас была мечта – пустотелые заклёпки.
В каком-то журнале публиковалась технология их изготовления. Предлагалось протянуть полоску фольги через коническое отверстие (подобие фильерной доски), чтобы получилась трубочка. Потом нужно нарезать трубочку и расклепать с двух сторон в плате.
Похоже, статья была неполная, потому что я до сих пор с трудом представляю, как можно реализовать её на практике в домашних условиях, начиная с изготовления фильеры.
Трудов было затрачено немало, но ничего путного так и не получилось. Конфигурация фильеры должна быть непростой, рабочая поверхность — отполированной, заготовка для неё — калёной, а самое главное – ширина полоски должна быть выдержана с довольно высокой точностью. Разрезать получающуюся трубку – ещё одна задача, да и расклепать тоже весьма непросто.
Недавно понадобилось мне сделать двустороннюю печатную плату. И не просто двустороннюю, а обязательно с переходами между слоями, так как при пайке доступа к противоположной стороне не будет. И не просто с переходами, а с достаточно мощными переходами, потому что по этим переходам предполагается протекание сравнительно больших токов.
Первой мыслью было сделать дополнительные площадки и соединить слои медными заклёпками из подходящего провода, но подсознание протестовало – решение-то неуклюжее…
но как-то не ассоциировались они у меня с заклёпками, пока у одного наконечника не свалился изолятор…
Вот тут-то всё и встало на свои места. В первый момент в голову стали приходить всякого рода развальцовки с фигурной формой рабочей части, весьма желательно, из подзакалённой стали, с отполированной поверхностью. Но, в конечном итоге, решил не заморачиваться и работать подручным инструментом.
Определение свойств переходного отверстия
Вкладка Via Types в Layer Stack Manager используется для определения требований к вертикальному соединению слоев для переходов каждого типа. Размеры переходного отверстия, в том числе размер отверстия и диаметр, не определяются на вкладке Via Types.
Размеры перехода определяются следующими способами:
- вручную, при редактировании размещенного переходного отверстия в панели Properties;
- настройками примитивов редактора плат по умолчанию, при размещении переходного отверстия вручную (Place » Via);
- правилом проектирования Routing Via Style, если переходное отверстие размещается в процессе интерактивной или автоматической трассировки.
Настройка правила проектирования Routing Via Style
Главная страница: Определение ограничений конструкции – Правила проектирования
Размеры переходных отверстий, размещаемых в процессе интерактивной трассировки, определяются применяемым правилом Routing Via Style. Чтобы правило проектирования было применено к определенным переходным отверстиям, существует набор ключевых слов языка запросов, относящихся к переходным отверстиям. Вы можете использовать эти ключевые слова для определения области действия правила (Where the Object Matches), они .
При изменении слоя в процессе трассировки система смотрит на начальный и конечный слои для этого изменения слоя и выбирает допустимый тип перехода из Layer Stack Manager. Затем система определяет применимое правило проектирования Routing Via Style с наивысшим приоритетом и применяет к размещаемому переходному отверстию размеры, заданные в области Constraints этого правила.
Например, у вас может быть набор цепей , для которых необходимы микропереходы для соединения слоев и и слоев и , а также сквозное переходное отверстие для всех остальных соединений слоев (которое также отличается от переходов, необходимых для других цепей). Для этого можно создать два правила проектирования Routing Via Style, областью действия которых являются цепи . Пример подходящего правила проектирования для микропереходов показан ниже. Наведите курсор на изображение, чтобы показать правило для сквозных переходов.
Область действия правил проектирования можно настроить на применение определенных типов переходных отверстий.
Ключевые слова языка запросов
Для упрощения процесса определения области действия правила Routing Via Style доступны следующие ключевые слоя для запросов, относящихся к переходам:
Запрос для типа переходов | Результат |
---|---|
IsVia | Все переходы, независимо от типа. |
IsThruVia | Все переходы, которые соединяют верхний и нижний слои. |
IsBlindVia | Все переходы, которые начинаются на внешнем слое и заканчиваются на внутреннем слое и которые не являются микропереходами. |
IsBuriedVia | Все переходы, которые начинаются на внутреннем слое и заканчиваются на другом внутреннем слое и которые не являются микропереходами. |
IsMicroVia | Все переходы, для которых включена опция µVia и которые соединяют соседние слои. |
IsSkipVia | Все переходы, для которых включена опция µVia и которые проходят через слой. |
Используйте маску в Query Helper для поиска доступных ключевых слов, относящихся к переходнам (показать изображение). Нажмите F1, когда ключевое слово выделено в списке, чтобы получить справку об этом ключевом слове.
Гипофосфит меди (раствор активатора)
Дигидрат гипофосфит диаминмеди два
Раствор: Гипофосфит кальция (кальций фосфорноватистокислый) — 20 гр. Медный купорос (Медь 2 сернокислая 5вод) — 25 гр. (кстати в магазинах для садоводов продается) Аммиак (аптечный 10%), = 10%-й водный раствор гидроксида аммония — 50 мл. (NH3+H20) Дистиллированная вода 100 мл. Моющее средство «Капля» — 3 гр. (вода, ПАВ, хлорид натрия, консервант, парфюмерная композиция, лимонная кислота, СИ 19140, 42090)
1. Медный купорос 25гр + вода 50ml = долго (+осадок) 2. Гипофосфит кальция 15гр + вода 50ml = долго 3. 1 вливаем в 2. (перемешать) = +осадок 4. фильтр (осадок выкинуть) 5. + 50 мл. аптечного 10% аммиака 6. + 5 грамм гипофосфита кальция 7. + моющее средство (жидкое мыло)- 3 гр
Плату зачищаем с абразивным моющим средством без фанатизма, промываем тщательно.
По окончании промывки вода должна «липнуть» к заготовке, стекая с нее крайне неохотно.
Тщательно стряхиваем, опускаем в активатор горизонтально , не касаемся дна.
Несколько раз 2-3 сек вынимаем горизонтально на поверхностью.
Жидкость должна равномерно затечь во все отверстия
Наклоняем и краем касаемся края емкости, чтобы излишки активатора стекли обратно (без фанатизма).
Закрывает емкость с активатором наклоняем под разными углами, стараясь дать возможность активатору растечься как можно равномернее.
Потом кладем в печку выставляем 125С и держим 12-15 минут.
Потом 175С и держим 7-8минут открываем дверку и даем остыть мин до 100С.
Моющим средством без абразива и мягкой губкой легко отмываем (пока без воды).
Мочалкой продавливаем моющее средство сквозь все отверстия спокойно не торопясь , стараясь ничего не пропустить.
Далее струей воды, промываем все отверстия. не нужно отмывать все до единого пятна.
Активатор храниться долго, главное чтобы аммиак из него не испарился, то есть храним герметично (в темноте). Значит емкость лучше — бутылка где минимум не занятого жидкостью пространства. У меня хранился на балконе месяц до -10С доходило. Раз 10 пользовался без проблем (свойства активатора сохранялись).
Активатор стабилен и может храниться долгое время. В процессе использования нужно следить за тем, что бы на дне все время был осадок гипофосфита кальция и при необходимости досыпать пару грамм. Если этого не делать, могут появляться неметаллизированные отверстия.
Больше данных — больше электромагнитных помех
В 2005 году скорость 3 Гбит/с считалась типичной для высокоскоростной передачи данных, но сегодня инженеры имеют дело со скоростями передачи в 10 Гбит/с и даже 25 Гбит/с. И делается это не только потому, что мы стремимся достичь все больших тактовых частот, но и потому, что мы стремимся уменьшать размеры устройств, чтобы поспевать за растущими запросами потребителей. Какое бы устройство вы не проектировали сегодня, скорее всего, вы уже включали в него различные узлы, работающие на высоких скоростях, будь то DDR, PCI Express, USB, SATA и т. д.
Сложность и плотность размещения компонентов на плате для применения
в высокоскоростных устройствах может слегка ошеломлять.
Основной задачей при конструировании высокочастотных печатных плат является устранение помех. Чем выше скорость передачи данных, тем сложнее становится сохранить целостность ваших сигналов. Большинство из этих проблем связано с излучением электромагнитных волн. Это излучение относительно безвредно при слабых взаимодействиях с электрической схемой. Однако когда оно начинает создавать помехи работе вашего электронного устройства в целом, то излучение превращается в помехи, открывающие перед вами новый мир задач, которые необходимо решать. Если вы когда-либо слышали или сталкивались с проблемами, связанными с шумом, то вы точно знаете, о чем мы говорим.
Любой ток создает магнитное поле. Так начинается распространение электромагнитного излучения.
Итак, вам может быть интересно, как вообще понять, что вы работаете над высокочастотным проектом, если при этом не обнаруживаются проблемы с электромагнитным излучением? Есть несколько научных теорий, но мы сократим их до 3 самых популярных:
-
Частота. Первая теория заключается в том, что высокочастотная конструкция является таковой вследствие рабочей частоты печатной платы, и ее способностью влиять на производительность электронной схемы. Некоторые считают, что этот порог начинается с 50 МГц. Другие делят скорости устройств на группы: низкочастотные (<25 МГц), среднечастотные (25-100 МГц), высокочастотные (100-1000 МГц), а выше – сверхвысокочастотные, которыми занимаются конструкторы радиопередающих устройств.
-
Токопроводящие дорожки. Существует теория, которая говорит о том, что можно использовать физические размеры токопроводящих дорожек для определения высокочастотности устройства. Ее руководящий принцип заключается в том, что если время прохождения сигнала по дорожке больше 1/3 времени переключения сигнала устройства, то вы имеете дело с высокочастотным устройством.
-
Модульность. Последняя точка зрения использует общий подход, в котором рассматривается конструкция схемы в целом и задается следующий вопрос – работает ли ваша система физически в виде единой системы? Или у вас набор подсхем, из которых собрана одна большая схема, в которой отдельные модули работают независимо? В последнем случае вы имеете дело с царством высокочастотных устройств.
Итак, вы определили, что ваш будущий проект является высокочастотным. Замечательно. Теперь рассмотрим все возможные «фоновые шумы», с которыми вам придется иметь дело. Давайте подробно рассмотрим 10 лучших советов для достижения успеха в конструировании устройств.
5 Несколько слов о металлизации печатных плат
Надежность эксплуатации печатных плат напрямую зависит от того, насколько качественно выполнена металлизация сквозных отверстий в них. В ходе процесса в отверстиях осаждается медь. Это, по сути, электрохимическая обработка печатных плат, которая не вызывает особых сложностей у опытных людей.
Метод металлизации сквозных отверстий в печатных платах состоит из двух этапов:
- сначала происходит активация меди за счет катализирующего воздействия палладия, входящего в состав смеси для обработки печатных плат;
- затем на центрах активации начинается процесс восстановления меди.
В результате этой двухстадийной операции в отверстиях печатных плат создается сплошное проводящее покрытие. При наличии спецоборудования и некоторых умений несложно выполнить металлизацию отверстий в домашних условиях.
Обратное высверливание сквозных переходных отверстий
Главная страница: Сверление управляемой глубины, или обратное высверливание
Обратное высверливание, также известное как сверление управляемой глубины (Controlled Depth Drilling, CDD) – это технология, которая используется для удаления неиспользуемых участков отрезков проводящего материала из сквозных переходных отверстий печатной платы. Когда высокоскоростной сигнал переходит между слоями платы по проводящему отрезку, сигнал может быть искажен. Если длина этого отрезка проводящего материала достаточно большая, то искажения могут стать существенными.
Эти отрезки можно удалить путем повторного высверливания этих отверстий с несколько бо́льшим диаметром сверления после изготовления слоя. Эти отверстия высверливаются на управляемую глубину, близко, но не касаясь последнего слоя, используемого в переходе. В зависимости от материалов и возможностей производства, можно оставить отрезки длиной 7 милов, в идеале оставшийся отрезок будет менее 10 милов.
Улучшить целостность сигнала можно путем повторного высверливания отверстия несколько бо́льшего диаметра на определенную глубину, чтобы удалить неиспользуемый проводящий материал отверстия.
Включение обратного высверливания включается через меню Tools в Layer Stack Manager. Настройка осуществляется на вкладке Back Drills в Layer Stack Manager.
В конструкции печатной платы, отрезок переходного отверстия – это длина проводящего столбика, который выступает за пределы сигнальных слоев, используемых для передачи сигнала. Неиспользуемая часть проводящего столбика выступает в роли отрезка (короткого открытого пути), который создает отражения высокоскоростного сигнала. Эти отрезки можно удалить с помощью второго прохода сверления, где отрезок высверливается на точную глубину, как показано выше.
► Узнайте больше об обратном высверливании
№ 10 – В заключение – общие правила трассировки печатной платы
В заключение наших ТОП-10 советов упомянем о трассировке платы, которая сама по себе заслуживает отдельной статьи, а возможно и книги, в которой бы рассказывалось о таких вещах, как излучение в радиочастотном диапазоне, микроволнах и о конструировании антенн. Этот список не закрытый, поэтому обязательно обратитесь за помощью к опытному инженеру по трассировке печатных плат, используемых в задачах, подобной вашей. Итак:
-
Не используйте 90-градусные искривления дорожек. Во-первых, избегайте использования искривления дорожек под 90 градусов. Дорожки, согнутые под прямым углом могут вызвать отражения сигнала.
-
Дифференциальные пары. Вы можете получить взаимное подавление электромагнитных полей, если обе сигнальные линии в вашей дифференциальной паре имеют одинаковую длину и постоянное расстояние между ними. Скорее всего, это потребует подгонки длин дорожек в приложении для разработки конструкции печатных плат.
-
Линии передачи. Уделите время тщательному проектированию линий передач с использованием микрополосковых линий и полосковых дорожек. Микрополосковые линии используют лишь один опорный слой, отделенный диэлектриком. При необходимости лучшего экранирования, воспользуйтесь полосковой линией передачи, располагающейся между несколькими заземляющими слоями и слоями диэлектрика.