Интегральные микросхемы и работа с ними

Горизонт дефицита

Самый оптимистичный прогноз дает глава Cisco Чак Роббинс. В конце апреля он заверил, что нехватка микросхем будет ощущаться остро лишь до осени 2021 года. По его словам, предприятия уже наращивают свои мощности, и ситуация будет улучшаться в течение следующих 12–18 месяцев.

В TSMC считают, что нехватка полупроводников сохранится и в 2022 году. Производителям придется поднять расходы, запустить новые заводы и скорректировать планы по росту.

Предприятие TSMC

(Фото: TSMC)

По прогнозам компании, дефицит полупроводников для автомобильной промышленности будет снижаться начиная с третьего квартала 2021 года, однако глобальный дефицит сохранится еще минимум год.

Похожей оценки придерживаются в Nvidia. Финдиректор корпорации Колетт Кресс рассказала, что нехватка микросхем будет ощущаться до конца года.

Однако в Intel считают, что дефицит микросхем сохранится и после 2022 года. Там видят выход из сложившегося положения в строительстве новых заводов. Директор Intel Пэт Гелсинджер уверен, что существующий дефицит чипов продолжит усугубляться, а его пик придется на вторую половину 2021 года. «Я не думаю, что индустрия микросхем вернется к здоровому балансу спроса и предложения до 2023 года», — заявил он.

Что такое интегральная микросхема

Интегральная микросхема — это миниатюрный электронный блок, содержащий в общем корпусе транзисторы, диоды, резисторы и другие активные и пассивные-элементы, число которых может достигать нескольких десятков тысяч.

Одна микросхема Может заменить целый блок радиоприемника, электронной вычислительной машины (ЭВМ) и электронного автомата. «Механизм» наручных электронных часов, например, — это всего лишь одна большей микросхема.

По своему функциональному назначению интегральные микросхемы делятся на две основные группы: аналоговые, или линейно-импульсные, и логические, или цифровые, микросхемы.

Аналоговые микросхемы предназначаются для усиления, генерирования и преобразования электрических колебаний разных частот, например, для приемников, усилителей, а логические — для использования в устройствах автоматики, в приборах с цифровым отсчетом времени, в ЭВМ.

Этот практикум посвящается знакомству с устройством, принципом работы и возможным применением самых простых аналоговых и логических интегральных микросхем.

Азы электроники для чайников

Книга «Электроника для чайников» содержит сотни микросхем и фотографий, позволяющих даже самому далекому от этого дела человеку разобраться в принципах электроники. Подробнейшие советы и инструкции по проведению опытов помогут разобраться, как функционируют те или иные электронные детали. Также материал содержит рекомендации по выбору важнейших инструментов для работы в этой области и их полные описания.

Важно! По мере ознакомления с каждой главой читатель постепенно погружается в предмет, который увлекает его все больше и больше. Теоретические знания закрепляются практикой путем сборки простейших, но интересных устройств

Книга содержит следующие разделы:

  • «Основы теории электрических цепей», в котором дается определение напряжению, силе тока, проводникам, рассеиваемой мощности.
  • «Компоненты электросхем», где рассказывается о том, как простейшие элементы по типу резисторов, транзисторов, диодов и конденсаторов управляют током и задают его характеристики.
  • «Электрические схемы универсального предназначения». Здесь будет рассказано, как использовать простейшие цифровые и аналоговые схемы в сложных устройствах.
  • «Анализ электрических цепей», который познакомит с основными законами электроники и научит управлять силой тока и напряжением в электрической сети, научит применять эти закономерности на практике.
  • «Техника безопасности и рекомендации по ней». Этот раздел обучит безопасной работе с электрическими цепями и током в целом, поможет защищать себя и свои приборы от поражения током.

Вам это будет интересно Определение мощности резистора

Обложка книги «Электроника для чайников»

https://youtube.com/watch?v=UqP_zfOkAwA

Микросхема в радиоприемнике

Предлагаем испытать эту микросхему в высокочастотном тракте приемника, собранного, например, по схеме, приведенной на рис. 3. Входной контур магнитной антенны такого приемника образуют катушка L1 и конденсатор переменной емкости С1. Высокочастотный сигнал радиостанции, на волну которой контур настроен, через катушку связи L2 и разделительный конденсатор С2 поступает на вход (вывод 3) микросхемы Л1.

С выхода микросхемы (вывод 10, соединенный с выводом 9) усиленный сигнал подается через конденсатор С4 на детектор, диоды VI и V2 которого включены по схеме умножения напряжения, а выделенный им низкочастотный сигнал телефоны В1 преобразуют в звук. Приемник питается от батареи GB1, составленной из четырех элементов 332, 316 или пяти аккумуляторов Д-01.

Рис. 3. Схема приемника на микросхеме.

Во многих транзисторных приемниках усилитель высокочастотного тракта образуют транзисторы, а в этом — микросхема. Только в этом и заключается разница между ними.

Имея опыт предыдущих практикумов, ты, надеюсь, сможешь самостоятельно смонтировать иг наладить такой приемник и даже, если пожелаешь, дополнить его усилителем НЧгдля громкоговорящего радиоприема.

Уровни проектирования

  • топологический — топологические фотошаблоны для производства
  • физический — методы реализации одного транзистора (или небольшой группы) в виде легированных зон на кристалле
  • электрический — принципиальная электрическая схема (транзисторы, конденсаторы, резисторы и т. п.)
  • схемо- и системотехнический уровень — схемо- и системотехнические схемы (триггеры, компараторы, шифраторы, дешифраторы, АЛУ и т. п.)
  • логический — логическая схема (логические инверторы, элементы ИЛИ-НЕ, И-НЕ и т. п.)
  • программный — позволяет программисту программировать (для ПЛИС, микроконтроллеров и микропроцессоров) разрабатываемую модель, используя виртуальную схему

В настоящее время (2014 г.) большая часть интегральных схем проектируется при помощи специализированных САПР, которые позволяют автоматизировать и значительно ускорить производственные процессы, например, получение топологических фотошаблонов.

Схема мультивибратора

Изготовить металлоискатель на микросхеме 555 сможет любой начинающий радиолюбитель, но для этого нужно изучить особенности работы этого прибора. Мультивибратор – это специальный генератор, который вырабатывает с определенной периодичностью прямоугольные импульсы. Причем строго задается амплитуда, длительность и частота – зависят значения от того, какая задача стоит перед устройством.

Для формирования повторяющихся сигналов применяются резисторы и конденсаторы. Длительность сигнала t1, паузы t2, частоту f, и период T можно найти по следующим формулам:

  • t1=ln2*(R1+R2)*C=0,693*(R1+R2)*C;
  • t2=0,693*C*(R1+2*R2);
  • T=0,693*C*(R1+2*R2);
  • f=1/(0,693*C*(R1+2*R2)).

Исходя из этих выражений, можно увидеть, что пауза по длительности не должна быть больше времени сигнала

Другими словами, скважность не будет никогда больше 2. От этого напрямую зависит практическое применение микросхемы 555

Схемы различных устройств и конструкций строятся по даташитам — инструкциям. В них даны все возможные рекомендации для сборки приборов. Скважность можно найти по формуле S=T/t1. Чтобы увеличить этот показатель, необходимо добавить в схему полупроводниковый диод. Его катод соединяется с шестой ножкой, а анод с седьмой.

Если посмотреть в даташит, то в нем указывается обратная величина скважности – ее можно посчитать по формуле D=1/S. Измеряется она в процентах

Работу схемы мультивибратора можно описать следующим образом:

  1. При подаче питания конденсатор полностью разряжен.
  2. Таймер переводится в высокоуровневое состояние.
  3. Конденсатор накапливает заряд и на нем напряжение достигает максимума – 2/3 от питающего.
  4. Происходит переключение микросхемы и на выходе появляется низкоуровневый сигнал.
  5. Конденсатор разряжается в течение t1 до уровня 1/3 от питающего напряжения.
  6. Микросхема 555 переключается снова и на выходе образуется опять высокоуровневый сигнал.

Такой режим работы называется автоколебательным. На выходе постоянно изменяется величина сигнала, микросхема-таймер 555 равные промежутки времени находится в различных режимах.

Что такое интегральная микросхема

Интегральная микросхема — это миниатюрный электронный блок, содержащий в общем корпусе транзисторы, диоды, резисторы и другие активные и пассивные-элементы, число которых может достигать нескольких десятков тысяч.

Одна микросхема Может заменить целый блок радиоприемника, электронной вычислительной машины (ЭВМ) и электронного автомата. «Механизм» наручных электронных часов, например, — это всего лишь одна большей микросхема.

По своему функциональному назначению интегральные микросхемы делятся на две основные группы: аналоговые, или линейно-импульсные, и логические, или цифровые, микросхемы.

Аналоговые микросхемы предназначаются для усиления, генерирования и преобразования электрических колебаний разных частот, например, для приемников, усилителей, а логические — для использования в устройствах автоматики, в приборах с цифровым отсчетом времени, в ЭВМ.

Этот практикум посвящается знакомству с устройством, принципом работы и возможным применением самых простых аналоговых и логических интегральных микросхем.

Примечания

  1.  (недоступная ссылка). Дата обращения: 11 октября 2010.
  2. . Chip News №8, 2000 г..
  3. .
  4. История отечественной электроники, 2012 г., том 1, под ред. директора Департамента радиоэлектронной промышленности Минпромторга России Якунина А. С., стр. 632
  5. Охраняется гл. 74 «Право на топологии интегральных микросхем» ГК РФ как интеллектуальная собственность ().
  6. Нефедов А.В., Савченко A.M., Феоктистов Ю.Ф. Зарубежные интегральные микросхемы для промышленной электронной аппаратуры: Справочник. — М.: Энергоатомиздат, 1989. — С. 4. — 300 000 экз. — ISBN 5-283-01540-8.
  7. Якубовский С.В., Барканов Н.А., Ниссельсон Л.И. Аналоговые и цифровые интегральные микросхемы. Справочное пособие. — 2-е изд. — М.: «Радио и связь», 1985. — С. 4—5.

Как сделать ШИМ блок питания (контроллер)

Как вы уже поняли, сердцем ШИМ контроллера будет мультивибратор или модулятор. Мультивибратор можно сделать даже на двух транзисторах, в виде самого рядового мультивибратора. А модулятор можно сделать на базе микроконтроллера. Чаще всего применяются именно микроконтроллеры. После остается лишь преобразовать низкий сигнал в управляющий силовой. Скажем с помощью транзистора. Пример для светодиода.

Если наша нагрузка имеет индуктивную составляющую, то транзистор защищается с помощью диода, который подключается параллельно нагрузке.

Это вроде того, как диод используется при управлении транзистором реле. В данном случае обмотка двигателя также может выдать высокий ток, который будет теперь идти не только через транзистор, но и через диод. О конкретных примерах БП ШИМ можно узнать из статьи «Драйвер для светодиодов».

Микросхемы TI со встроенным шунтом для измерения тока

В обширном ассортименте продукции компании Texas Instruments (TI) нашлось место и для измерителей тока со встроенным шунтом. Представляем два типа подобных микросхем, каждая из которых предназначена для решения различных специфических задач. Используя встроенный шунт, микросхемы INA250 и INA260 позволяют измерять двунаправленный ток нагрузки со стороны шины питания или шины заземления.

Интеграция в микросхемы прецизионного резистора для контроля тока обеспечивает высокую точность измерения, сравнимую с калиброванной, и минимальную зависимость характеристик от колебаний температуры. Кроме того, обе микросхемы используют оптимизированное 4-точечное подключение токоизмерительного шунта (схема Кельвина).

INA250

Микросхема INA250 является токоизмерительным усилителем с выходным напряжением, пропорциональным измеряемому току. Прецизионный встроенный резисторный шунт позволяет с высокой точностью измерять ток при синфазном напряжении, которое может изменяться от 0 до 36 В независимо от величины напряжения питания микросхемы.

Семейство INA250 доступно с четырьмя типами шкалы выходного напряжения: 200 мВ/A, 500 мВ/A, 800 мВ/A и 2 В/A. Все микросхемы рассчитаны на номинальный ток до 15 А (10 А – при максимальной температуре 125°C). Однополярное напряжение питания для INA250 составляет 2,7…36 В, а максимальный потребляемый ток достигает 300 мкА. Микросхема работает в расширенном температурном диапазоне -40…125°C и выпускается в 16-выводном корпусе типа TSSOP.

Основные характеристики INA250

  • Встроенный прецизионный резисторный шунт сопротивление шунта: 2 мОм
  • допустимая погрешность сопротивления шунта: 0,1% (макс.);
  • номинальный измеряемый ток: до 15 A при температуре -40…85°C;
  • температурный коэффициент: 10 ppm/°C в диапазоне 0…125°C.

Повышенная точность измерения:

  • погрешность коэффициента усиления (шунт и усилитель): 0,3% (макс.);

ток смещения: 50 мА (макс., для INA250A2).
Четыре коэффициента усиления

  • INA250A1: 200 мВ/A;

INA250A2: 500 мВ/A;
INA250A3: 800 мВ/A;
INA250A4: 2 В/A.
Широкий диапазон синфазного сигнала: -0,1…36 В
Рабочий диапазон температур: -40…125°C

INA260

Микросхема INA260 предназначена для контроля тока, мощности и напряжения с использованием встроенного шунтирующего резистора высокой точности. Цифровой выход этого интегрального монитора обеспечивает совместимость с шинами I²C и SMBus.

Микросхема обеспечивает высокую точность измерений тока и мощности в сочетании с возможностью обнаружения превышения тока в режиме синфазных напряжений, уровень которых может изменяться от 0 до 36 В независимо от напряжения питания. У INA260 можно задать до 16 адресов для работы нескольких микросхем на единой шине I²C. Цифровой интерфейс позволяет программировать критические уровни тока, время преобразования и усреднение аналого-цифрового преобразователя (ЦАП). Для упрощения использования измерителя внутренний множитель обеспечивает прямые отсчеты тока в амперах и мощности в ваттах.

Выполненный в 16-ти выводном корпусе TSSOP интегральный измеритель INA260 работает от источника питания напряжением 2,7…5,5 В при среднем потребляемом токе 310 мкА в диапазоне рабочих температур -40…125°C.

Основные характеристики INA260

  • Интегрированный резисторный шунт высокой точности сопротивление шунта: 2 мОм;
  • эквивалентная погрешность: не более 0,1%;
  • номинальный ток: до 15 A при температуре -40…85°C;
  • температурный коэффициент: 10 ppm/°C (0…125°C).

Измеряемое шинное напряжение: 0…36 В
Измерение в цепи между источником питания и нагрузкой или между нагрузкой и общим проводом
Считываемые данные о токе, напряжении и мощности
Повышенная точность

  • системная погрешность усиления: 0,15% (макс.);

ток смещения: 5 мА (макс.).
Настраиваемые функции усреднения
16 программируемых адресов
Напряжение питания: 2,7…5,5 В;
Корпус типа TSSOP, 16 выводов.

Принцип работы ШИМ контроллера

Задача ШИМ контроллера состоит в управлении силовым ключом за счёт изменения управляющих импульсов. Работая в ключевом режиме, транзистор находится в одном из двух состояний (полностью открыт, полностью закрыт). В закрытом состоянии ток через p-n-переход не превышает несколько мкА, а значит, мощность рассеивания стремится к нулю. В открытом состоянии, несмотря на большой ток, сопротивление p-n-перехода чрезмерно мало, что также приводит к незначительным тепловым потерям. Наибольшее количество тепла выделяется в момент перехода из одного состояния в другое. Но за счёт малого времени переходного процесса по сравнению с частотой модуляции, мощность потерь при переключении незначительна.

Широтно-импульсная модуляция разделяется на два вида: аналоговая и цифровая. Каждый из видов имеет свои преимущества и схемотехнически может реализовываться разными способами.

Аналоговая ШИМ

Принцип действия аналогового ШИ-модулятора основан на сравнении двух сигналов, частота которых отличается на несколько порядков. Элементом сравнения выступает операционный усилитель (компаратор). На один из его входов подают пилообразное напряжение высокой постоянной частоты, а на другой – низкочастотное модулирующее напряжение с переменной амплитудой. Компаратор сравнивает оба значения и на выходе формирует прямоугольные импульсы, длительность которых определяется текущим значением модулирующего сигнала. При этом частота ШИМ равна частоте сигнала пилообразной формы.

Цифровая ШИМ

Широтно-импульсная модуляция в цифровой интерпретации является одной из многочисленных функций микроконтроллера (МК). Оперируя исключительно цифровыми данными, МК может формировать на своих выходах либо высокий (100%), либо низкий (0%) уровень напряжения. Однако в большинстве случаев для эффективного управления нагрузкой напряжение на выходе МК необходимо изменять. Например, регулировка скорости вращения двигателя, изменение яркости светодиода. Что делать, чтобы получить на выходе микроконтроллера любое значение напряжения в диапазоне от 0 до 100%?

Вопрос решается применением метода широтно-импульсной модуляции и, используя явление передискретизации, когда заданная частота переключения в несколько раз превышает реакцию управляемого устройства

Изменяя скважность импульсов, меняется среднее значение выходного напряжения. Как правило, весь процесс происходит на частоте в десятки-сотни кГц, что позволяет добиться плавной регулировки

Технически это реализуется с помощью ШИМ-контроллера – специализированной микросхемы, которая является «сердцем» любой цифровой системы управления. Активное использование контроллеров на основе ШИМ обусловлено их неоспоримыми преимуществами:

  • высокой эффективности преобразования сигнала;
  • стабильность работы;
  • экономии энергии, потребляемой нагрузкой;
  • низкой стоимости;
  • высокой надёжности всего устройства.

Получить на выводах микроконтроллера ШИМ сигнал можно двумя способами: аппаратно и программно. В каждом МК имеется встроенный таймер, который способен генерировать ШИМ импульсы на определённых выводах. Так достигается аппаратная реализация. Получение ШИМ сигнала с помощью программных команд имеет больше возможностей в плане разрешающей способности и позволяет задействовать большее количество выводов. Однако программный способ ведёт к высокой загрузке МК и занимает много памяти.

Примечательно, что в цифровой ШИМ количество импульсов за период может быть различным, а сами импульсы могут быть расположены в любой части периода. Уровень выходного сигнала определяется суммарной длительностью всех импульсов за период. При этом следует понимать, что каждый дополнительный импульс – это переход силового транзистора из открытого состояния в закрытое, что ведёт к росту потерь во время переключений.

Элемент интегральной схемы

— часть интегральной схемы, реализующая функцию какого-либо электрорадиоэлемента (резистора, диода, транзистора и т. д.), причем эта часть выполнена нераздельно от других частей и не может быть выделена как самостоятельное изделие с точки зрения требований к испытаниям, приемке, поставке и эксплуатации.

Компонент интегральной схемы в отличие от элемента может быть выделен как самостоятельное изделие с указанной выше точки зрения.

По конструктивно-технологическим признакам интегральные схемы обычно разделяют на:

  • полупроводниковые;
  • гибридные;
  • пленочные.

В полупроводниковой схеме все элементы и межэлементные соединения выполнены в объеме или на поверхности полупроводника. В таких схемах нет компонентов. Это наиболее распространенная разновидность интегральных схем.

Интегральную схему называют гибридной, если она содержит компоненты и (или) отдельные кристаллы полупроводника.

Абрамян Евгений Павлович

Доцент кафедры электротехники СПбГПУ

Задать вопрос

В пленочных интегральных схемах отдельные элементы и межэлементные соединения выполняются на поверхности диэлектрика (обычно используется керамика). При этом применяются различные технологии нанесения пленок из соответствующих материалов.

По функциональным признакам интегральные схемы подразделяют на аналоговые (операционные усилители, источники вторичного электропитания и др.) и цифровые (логические элементы, триггеры и т. п.).

Практика

До этого момента в статье была сплошь теория. Сейчас я предлагаю закрепить ее практической частью и собрать восьмибитный сумматор. Нам потребуется пара беспаечных макетных плат, несколько DIP-переключателей, светодиоды для индикации, токоограничивающие резисторы на 10 кОм и пара микросхем 74HC283.

Серия 74xx включает в себя микросхемы самого разного назначения. Это могут быть как сборки логических вентилей (например, 74HC04 — шесть инверторов в одном корпусе), так и полноценные АЛУ (74HC181). Помимо комбинационных схем, там есть и последовательностные: триггеры (74НС74), регистры (74НС373) и счетчики (74НС393).

Чтобы ориентироваться во всем этом номенклатурном разнообразии, я рекомендую не скачивать документацию на каждую микросхему в отдельности, а сразу найти целый справочник по всей серии. Например, есть справочник Texas Instruments в PDF.

Расположение выводов у микросхемы 74HC283 можно найти на странице 176 справочника, принципиальную схему и таблицы истинности смотри на страницах 390–391. И хотя это сумматор всего лишь на четыре бита, тут есть функция ускоренного переноса, а сами микросхемы можно объединять, собирая сумматоры на 8, 16 или даже 32 бит.

Хорошо видно, что схема здесь несколько отличается от той, что мы вывели ранее. В этом нет ничего необычного, одну и ту же функцию можно реализовать несколькими способами, и в производстве зачастую используют тот, который дешевле (по элементам) и лучше подходит для техпроцесса.

При этом все равно осталось некоторое сходство — его можно заметить при внимательном изучении. Например, элементы XOR от полусумматоров располагаются непосредственно перед выходом для значений каждого из разрядов.

Кроме того, можно понять, что значение для переноса вычисляется параллельно со значениями разрядов — для этого в микросхеме и присутствуют «лишние» элементы. Пожалуй, это самая сложная часть в статье. Поэтому, если у тебя возникли трудности, попробуй рассмотреть схему ускоренного переноса отдельно — это ИС 74HC182 на с. 338 (вот она, польза от полноценного справочника).

Сложение

Теперь, когда принцип работы микросхемы и назначение каждого ее вывода для нас не составляет секрета, можно собирать рабочий сумматор на восемь бит на макетных платах. Потребуется целый ворох проводов и перемычек, чтобы соединить все компоненты, так что главное здесь — быть внимательным и не допускать ошибок.

Как правило, значения в АЛУ попадают из регистров — самого быстрого типа памяти в компьютере. Здесь же я для удобства использую пару DIP-переключателей (левый верхний угол), чтобы можно было легко задавать нужные значения. По сути, это регистры А и В нашего протокомпьютера.

К сожалению, производитель переключателей явно не рассчитывал на такое применение, поэтому нумерация битов в каждом регистре мало того что начинается с единицы, так еще и идет в «неправильном» порядке, слева направо! Учитывай это, когда будешь работать со схемой.

Пара 74НС283 располагается по центру на нижней макетке, а результат операции отображается на линии из светодиодов (правый верхний угол). В левом нижем углу роль источника питания выполняет преобразователь USB — UART (другого способа подать стабильные 5 В я в тот момент не нашел).

Если схема была собрана без ошибок, то, задавая двоичное представление чисел на переключателях, ты сможешь наблюдать значение суммы на светодиодах. Примерно как на картинке выше.

Вычитание

Удивительно, но такую схему без каких-либо изменений и доработок можно использовать и для вычитания. Да, раньше я не говорил об этом ни слова, но такое действительно возможно. Если использовать представление отрицательных чисел в дополнительном коде, нам никак не нужно переопределять операцию сложения — все будет работать на имеющемся железе.

Наверняка ты уже представляешь, как на уровне цифровой схемы из положительного числа можно сделать отрицательное (в дополнительном коде). Действительно, достаточно только к каждому биту применить операцию NOT, а затем подать на вход сумматора вместе с единицей. Как видишь, подобное представление неочевидно с точки зрения человека, но очень удобно для реализации из набора логических вентилей.

Семейства цифровых микросхем

Современные цифровые микросхемы очень разнообразны по своему функциональному назначению и электрическим параметрам, но среди этого разнообразия можно выделить два принципиально разных семейства цифровых микросхем: микросхемы семейства ТТЛ и микросхемы семейства КМОП. Давайте выясним их принципиальные различия.

Семейство ТТЛ

Цифровые микросхемы семейства ТТЛ (TTL) выполнены на основе биполярных транзисторов по транзисторно-транзисторной логике. Микросхемы семейства ТТЛ за счёт применения биполярных транзисторов обладают высоким быстродействием, но в тоже время для обеспечения высокого быстродействия необходима значительная мощность, то есть относительно большая сила тока.

Для всех ТТЛ-микросхем обычным является напряжение источника питания +5 В. Для правильной работы схемы эта величина должна оставаться в пределах 4,75…5,25 В и ни при каких обстоятельствах не должна превышать напряжения порядка 7 В. Каждый вход «стандартной» ТТЛ-микросхемы потребляет ток 40 мкА, когда на его входе поддерживается логическая 1, и отдает ток 1,6 мА при значении входного сигнала, равного логическому 0. Каждый выход логического элемента способен отдать ток величиной 400 мкА и принимать ток величиной не менее 16 мА. Поэтому к входам и выходам можно подключить до 10 логических элементов ТТЛ (говорят, что «логический элемент имеет нагрузочную способность по выходу равную 10»).

В настоящее время «стандартные» ТТЛ-микросхемы устарели, их заменили маломощные ТТЛ-микросхемы с диодами Шотки (ТТЛШ), которые потребляют в 4 раза меньшую мощность при такай же величине быстродействия, а в некоторых случаях увеличилось и быстродействие.

Сегодня в большинстве промышленных применений микросхемы типа ТТЛ и ТТЛШ заменяются КМОП-микросхемами. Однако ТТЛ-микросхемы продолжают оставаться наиболее удобными для экспериментов. Выходной ток ТТЛ-микросхем достаточен для работы светодиодов, а в некоторых случаях и для непосредственного подключения реле.

Ниже представленны типовые значения параметров различных серий ТТЛ и ТТЛШ микросхем.

Параметр Серия микросхем
K155 K531 K555 K1531 K1533
74 74S 74LS 74F 74ALS
tPHL, нс 22 17,5 15 5,5 11
tPLH, нс 15 12 15 5,6 8
IIL, мА -1,6 -1,6 -0,4 -0,6 -0,1
I, мА 0,04 0,04 0,02 0,02 0,02
IОL, мА 16 16 8 20 15
IОН, мА -0,4 -0,8 -0,4 -1 -0,4
UОL, B 0,4 0,2 0,5 0,3 0,5
UОН, B 2,4 3,4 2,7 3,4 2,5
ICC, мА 12 11 4,4 4,1 3

Семейство КМОП

Микросхемы семейства КМОП (CMOS) выполнены на основе комплементарной структуры металл-оксид-полупроводник. То есть КМОП микросхемы выполнены на полевых транзисторах, благодаря чему ток покоя данных микросхем составляет меньше 1мкА, а большое входное сопротивление исключает проблемы нагрузки, приводя к бесконечной нагрузочной способности на низких частотах. Однако при переключениях с высокой частотой (больше 10 МГц), за счёт более частого разряда емкостей, увеличивается ток, и его величина достигает таких же значений, как и у ТТЛШ-микросхем.

Изначально цифровые КМОП-микросхемы обладали большим уровнем задержки (порядка 100 нс против 10 нс у ТТЛШ), что было большим недостатком, но они обладают большой помехоустойчивостью и слабо реагируют на высокочастотные помехи. Однако на сегодня используемые технологии позволяют достигать времени задержки порядка 10 нс, что сравнивает их с ТТЛШ. Разрабатываемые и перспективные серии КМОП-микросхем в настоящее время позволяют достигать величин задержек всего в 3 – 4 нс, а также уменьшить напряжение питания вплоть до нескольких десятых долей вольта.

Ниже представленны типовые значения параметров различных серий КМОП микросхем.

Параметр Серия микросхем
K176 K561 K1561 K1554 K1564 K1564
4000 4000A 4000B 74AC 74HCT 74ACT
tPHL, нс 250 120 50 8,7 18 3,2
tPLH, нс 250 120 50 8,7 18 3,2
IIL, мА -0,0001 -0,0001 -0,0001 -0,0001 -0,0001 -0,0001
I, мА 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001
UОL, B 0,3 0,3 0,3 1,65 1,65 1,65
UОН, B 8,2 8,2 8,2 3,9 3,9 3,9
ICC, мА 0,0005 0,0002 0,0002 0,4 0,08 2,4

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Начало изучения радиотехники начинающими

Перед тем, как изучать радиотехнику или электронику, нужно понять, зачем именно это нужно человеку

Если это увлечение на пару дней или месяцев, то лучше сразу бросить затею, поскольку, если относиться к электронике халатно и не соблюдать меры предосторожности, можно нанести сильный вред своему организму. Если данная сфера увлекала еще с детства, но не было времени начать заниматься, то сейчас самое время начать

Постепенное погружение подразумевает:

  • Получение или закрепление теоретических знаний физики. Для начала достаточно будет школьных знаний по электрофизике, включающих подробное изучение закона Ома – основы всей электрики.
  • Ознакомление с теорией. От более абстрактных вещей физики следует перейти к более осязаемым. Теория подразумевает точное и полное описание всех понятий, деталей, инструментов и приборов, которые будут использоваться на практике. Садиться и начать что-либо паять без теоретических основ не получится.
  • Применение на практике. Логическое завершение теории, позволяющее закрепить весь изученный материал и применить его при создании конкретных схем или приборов.