Какие документы регламентируют устройство молниезащиты для зданий и сооружений

Устройство заземления молниезащиты

Заземляющие контуры располагаются на расстоянии не менее 1 метра от самого объекта, дорожек и прочих мест частого появления людей. Данное требование позволяет избежать шагового напряжения, возникающего в процессе растекания заряда по грунту.

При наличии у объекта массивного железобетонного фундамента, заземление должно располагаться еще дальше, а внутри здания устанавливаются грозоразрядники, защищающие электронную аппаратуру. Это требование обязательно для выполнения, поскольку часть заряда молнии попадает на фундамент и другие элементы, контактирующие с ним – инженерные сети, корпуса оборудования.

Основным показателем заземления является его сопротивление. Если используются два отдельных контура, они соединяются между собой стальными проводниками при помощи сварки. Показатель сопротивления контура должен быть минимальным, чтобы ток мог легко уходить в землю. Если удельное сопротивление грунта 500 Ом, то нормативное сопротивление заземлителя составит 10 Ом. При более высоких сопротивлениях грунта для вычислений применяется формула: Rз = 10 + 0,0022 (ρ – 500) Ом, где Rз – сопротивление заземлителя, ρ – показатель удельного сопротивления грунта.

Нормативные значения можно получить путем замены грунта. Старый грунт убирается, а в яму или траншею закладывается земля с другими параметрами и характеристиками. После этого в обновленном грунте выполняется монтаж заземления. В другом случае в грунт добавляются химические реагенты, способные изменить его показатели в нужную сторону.

После того как заземление установлено, в дальнейшем проводятся регулярные замеры его сопротивления. Если его показатели выходят за пределы нормативного диапазона, следует выполнить установку дополнительного штыря или заменить несоответствующий элемент

Особое внимание обращается на соединения между всеми компонентами заземляющего устройства

ПУЭ (седьмая редакция)

Отдельными пунктами ПУЭ оговаривается, что РУ и ТП 20-750 кВ открытого типа оборудуются молниеприёмниками в обязательном порядке. Для некоторых видов сооружений допускается отсутствие специальной молниезащиты, но лишь при условии ограниченной продолжительности гроз в течение года (не более 20 часов).

Те же сооружения закрытого типа требуют защиты от молнии лишь в районах с показателем продолжительности гроз более 20.

Заземление

В том случае, когда здания закрытого типа имеют металлическую кровлю – молниезащита осуществляется с помощью заземляющих устройств, подсоединённых непосредственно к покрытию. Если кровельное перекрытие изготовлено из железобетонных плит, то при наличии хорошего контакта между отдельными элементами строения допускается заземление через входящую в их состав арматуру.

Защита зданий РУ и ТП в закрытом исполнении выполняется либо с помощью молниеотводов стержневого типа, либо путём укладки специальной металлической сетки.

Стержневая и сеточная защита

При установке на защищаемом строении типовых стержневых молниеприёмников, от каждого из них в сторону заземлителя прокладывается не менее 2-х токоотводов, расположенных по разным сторонам здания.

Особой конструкции молниеприемная сетка, укладываемая поверх кровли на специальных держателях, изготавливается из стальной проволоки диаметром 6-8 миллиметров.

При скрытом монтаже согласно ПУЭ такой молниеотвод кладётся под кровельное покрытие (на слой утеплительного или гидроизоляционного материала с негорючими свойствами).

Выполненная в виде сетки защитная конструкция должна состоять из ячеек площадью не более 12х12 метров, а её узлы рекомендуется фиксировать посредством сварки.

Токоотводы или спуски, используемые для соединения молниеприёмной сетки с ЗУ, должны устраиваться по периметру здания через каждые 25 метров (не реже).

Воздействия молний

По типу воздействия различают два типа повреждений.

  • Прямой удар молнии. Он оказывает непосредственное механическое и термическое воздействие на конструкции (кровля, оборудование на кровле, вентшахты, стены и пр.) здания. Следствием этого может явиться возгорание сооружения или его частичное повреждение (прожег кровельного покрытия, разрушение зенитных фонарей, вентиляционных шахт и пр.), поражение людей, находящихся в здании, плавление и, как следствие, разрушение металлических конструкций;

  • Вторичное воздействие. Оно связано с протеканием токов молнии по строительным конструкциям здания, заносом потенциала по проводящим коммуникациям (кабели электроснабжения, металлические трубопроводы и пр.), появлением сильнейшего электромагнитного поля вследствие распространения высокого напряжения, распространением разрядов молнии по поверхности земли и так далее.

Категории молниезащиты зданий

Согласно одному из нормативных документов, регулирующих перечень мероприятий по защите зданий и сооружений от молнии РД 34.21.122-87, все системы молниезащиты делятся на 3 категории. На объектах, подлежащих защите по 1-й категории, постоянно присутствуют взрывоопасные вещества в твёрдом, жидком и газообразном состоянии. При попадании разряда молнии на данных объектах возможны значительные жертвы и разрушения. На объектах, требующих 2-ю категорию, такая ситуация возможна только во время производственных аварий – легковоспламеняющиеся и взрывчатые вещества хранятся в закрытой таре в специально отведённых местах, а производственные процессы не подразумевают открытое выделение веществ, образующих взрывоопасную концентрацию. В строениях, достаточной мерой для которых является третья категория, данные взрывоопасные вещества либо не находятся вовсе, либо их объем относительно общего объема строения существенно мал. К таким объектам относятся большинство жилых домов, торгово-офисных и административных зданий.

Здания, оснащаемые системой защиты от молний, должны быть защищены от обоих вариантов повреждений, однако, объем мероприятий может быть скорректирован собственником недвижимости.

Принцип действия

Для молниезащиты зданий и сооружений от данных поражающих факторов монтируются молниеотводы. Они принимают удар молнии на себя и отводят электрический заряд в землю. Молниеотводы бывают разных типов. Самыми распространенными являются стержневые и в виде сеток. Молниеотводы могут быть выполнены на сооружении или располагаться отдельно от него.

Стержневые молниеотводы состоят из одного или нескольких металлических стержней, принимающих удар молнии, токоотводов – проводников, отводящих потенциал к заземляющему устройству молниезащиты, и, собственно, заземляющее устройство молниезащиты. Количество стержней зависит от геометрии, площади, высоты строения и оборудования, расположенного на его кровле. Количество токоотводов рассчитывается, исходя из категории молниезащиты и габаритных размеров здания.

Молниеотводы в виде сетки отличаются от стержневых типом молниеприемной части – молниепреимная сетка. Чаще всего она состоит из стальных оцинкованных проводников диаметром 8мм, располагающихся на кровле в виде сетки 12 х 12 метров. Несмотря на широкое распространение, эффективность молниеприемной сетки крайне мала.

Правильно разработанная и выполненная молниезащита обезопасит постройку, находящихся внутри и в непосредственной близости людей, дорогостоящее электрооборудование от поражающих факторов молнии.

Ваш отзыв очень важен для нас! Пожалуйста, оцените данную статью.

Устройство системы молниезащиты

Система молниезащиты устанавливается на полностью возведенное здание, в разделе строительных конструкций. Для правильного установки молниезащиты разрабатывается проект лицензионной организацией. В проекте рассчитывается количество устройств молниезащиты и правильность их установки. Далее на основании проекта проводится монтаж молниезащиты и последующие испытания с приемкой в эксплуатацию.

Составляющими элементами системы молниезащиты являются:

Молниеприемник. Задачей которого является перехват электрического разряда молнии в верхней точке здания. Существует 3 типа конструкции молниеприемника: сетка, стержень, тросовая конструкция. Далее электрический заряд от молнии передается на токоотвод.

Токоотвод. Задачей которого является соединение молниеприемника и заземлителя, для передачи на последнего разряд электричества от удара молнии. Токоотвод представляет собой проводник из метала с малым сопротивлением и небольшой температурой нагревания при прохождении электрического тока. Минимальный диаметр токоотвода круглой формы составляет 6 мм и более. Для соединения токоотвода, как правило, используются сварочные швы и болтовое соединение. Количество соединений на токоотводе должно быть минимальным. Токоотводы допускается прокладывать в средине здания и снаружи. Элементы токоотвода прокладываются кратчайшим путем к заземлителю.

Заземлитель. Задачей которого является передача электрического тока от токоотвода в землю. Выполняется в виде одного или нескольких проводников, опущенных в землю на расчетную глубину. Защищаются специальными материалами от коррозии. Допускается соединять бытовое заземление здания и заземление молниезащиты.

Подготовка

Инструкция по проектированию дает главные рекомендации и граничные значения параметров солниезащиты, которые нельзя нарушать. Если указывается, что ячейка молниеприемной сети должна быть не более 12 м, значит, при возможности можно и лучше установить сеть с меньшей ячейкой. То же самое можно сказать о количестве стержней в заземлителе, чем больше, тем лучше.

Среди систем защиты от молний самая распространенная пассивная стержневая молниезащита. Она проще всего в монтаже.

Для монтажа необходимо получить проект молниезащиты или самому сделать его, беря за основу руководящие документы, указанные в начале. Для наглядного примера можно использовать типовой проект молниезащиты какого-либо здания.

В процессе подготовки к монтажу необходимо:

  • получить все габаритные размеры здания, выяснить материал конструкций, возможность их использования в качестве токоотводов;
  • определить место для установки заземления;
  • выбрать места спусков токоотводов от молниеприемников к заземляющему контуру;
  • определить места установки молниеотводов и их высоту.

После этого вычисляется необходимое количество токоотводов, молниеприемников, заземляющих стержней и полос. Определяется необходимое количество держателей элементов молниезащиты и крепежа. Подбирается нужное количество инвентаря в виде лестниц, стремянок и прочих приспособлений, необходимых при монтаже, а также инструмент.

Теперь, создав задел из перечисленных материалов и приспособлений, можно непосредственно приступать к монтажным работам.

Особенности защиты городских объектов

Система молниезащиты любых городских сооружений (включая жилые многоквартирные дома) может иметь самые различные исполнения. Выбор того или иного варианта защитной конструкции, как правило, определяется следующими факторами:

  • конструктивные особенности самого защищаемого строения;
  • наличие электрооборудования, размещённого на открытых и закрытых пространствах здания, а также его уязвимость с точки зрения грозового удара;
  • качество используемого в системе защиты заземления;
  • показатель грозовой активности, характерный для данной местности.

Помимо этого требования к молниезащите таких строений должны удовлетворять действующим стандартам, которые предполагают деление их с точки зрения защищённости на различные категории.

Эти категории учитывают наличие в этих строениях и характер хранения или переработки взрывоопасных и горючих веществ. При этом самой опасной с точки зрения поражения молнией считается 1-я категория, а наиболее безопасной – третья.

Немаловажным фактором, оказывающим существенное влияние на выбор молниезащиты для городского объекта, является его «окружение», которое может включать и высотные объекты (трубы котельных, местные телевизионные башни и тому подобное).

С учётом всех приведённых выше факторов и организуется грозозащита типовых городских объектов, включая многоквартирные дома и промышленные предприятия.

Активная и пассивная молниезащита

Разные типы внешней молниезащиты представляют собой систему, состоящую из токопроводящих конструкций, часть которых устанавливается в верхней части объектов. Они перехватывают разряд молнии, а затем отводят в землю ее высокую энергию. Эффект от подобной защиты зависит от количества компонентов и плотности покрытия опасной зоны, от архитектурных особенностей конкретного здания. Все процессы здесь происходят естественным путем, поэтому такие стандартные системы представляют собой пассивную молниезащиту.

Как правило, она включает в себя следующие компоненты:

  • Молниеприемник. Притягивает к себе и принимает электростатический атмосферный разряд. Конструктивно варианты исполнения бывают в виде металлических стержней, тросов, натянутых между опорами или приемной сетки с установленным шагом ячейки. Последний вариант используется в основном на плоских крышах с большими площадями.
  • Токоотводы. Находятся вроде бы на второстепенных ролях, однако без них совершенно невозможно отведение высоких токов, попавших в молниеприемник. Они изготавливаются из толстой стальной проволоки, диаметром от 8 мм и более. Такое сечение обеспечивает безопасное прохождение большого потенциала в течение короткого промежутка времени.
  • Заземление и молниезащита. Используются в совместном виде и состоят из отдельных заземлителей или целой системы, объединяющей сразу несколько электродов в единый контур заземления. Токоотводы могут подключаться к уже действующему заземлению, но для этого в цепь потребуется подключить специальные разрядники.

Активная защита определяется ГОСТ и существенно отличается от пассивной, в первую очередь наличием в ней активного молниеприемника, представляющего собой не стержень, а специальное электронное устройство с возможностью самостоятельной активации непосредственно перед наступлением грозы. Поля статического электричества, возникающие во время грозы, воздействуют на головку приемника и способствуют возникновению импульсов высокого напряжения. Под их влиянием в окружающем воздушном пространстве создается обратная ионизация, вызывающая эффект притягивания электрических разрядов.

Монтаж активного компонента осуществляется на металлическом стержне, превышающем наиболее высокую точку здания не менее чем на 1 метр. Все остальные компоненты устанавливаются и работают практически одинаково, как и на пассивной защите.

Природа образования молний

Природное явление под названием молнии представляет собой протекание электрического разряда с колоссальной энергией через воздух от грозовых туч и облаков в землю.

Основой проявления молний служит накопление электростатической энергии в несколько гигавольт от ионизации паров воды в облаках под воздействием солнечных лучей. При накоплении определенного количества электростатического заряда происходит ионизация атмосферного воздуха между облаками и землей, в результате чего происходит лавинообразный электрический пробой, который представляет поток направленных электронов размерами всего в несколько десятков миллиметров в диаметре.

Этот высокоэнергетический поток электронов силой до нескольких тысяч ампер и представляет главную угрозу поражения разрядом электрического тока людей и животных, а также способен при попадании в здания и сооружения причинить значительный ущерб конструкциям и находящемуся там оборудованию или стать причиной пожара.

Что такое молниезащита

Молния – это такое явление, когда по каналу с огромной разницей в заряженных потенциалах движется поток от туч к земле. Для него не может быть никаких препятствий. Если встречается дом, любое другое строение или же человек, то всё просто прожигается. Самой тяжелой ситуацией может быть, если молния вызовет короткое замыкание или же другие трагедии в виде пожаров, взрывов и т.п.

Ответить на вопрос, для чего нужна молниезащита очень просто. Она необходима для того, чтобы предотвратить все эти печальные ситуации и свести потери после грозы к минимуму. Это комплекс техники и особых устройств, которые смогут предотвратить беду.

Виды молниеприемников

В системах защиты по возможности максимально используются естественные молниеотводы, на основе имеющихся конструктивных элементов. Если же они не дают нужного эффекта, применяются искусственные молниеприемники, в большинстве случаев играющие ключевую роль. Они просты в устройстве, не требуют специального тех. обслуживания, но вместе с тем гарантируют надежную пассивную защиту от высоких токовых зарядов, вызванных ударами молнии.

Все молниеприемники правила и нормы условно разделяют на три основных типа. Стержневые конструкции (рис. 1) изготавливаются в виде вертикальной металлической мачты, высотой от 1 до 20 метров. Они устанавливаются непосредственно на крыше или возле здания. В последнем случае защитная зона должна перекрывать объект, находящийся под защитой.

При помощи зажимов они закрепляются на любых поверхностях – вертикальных и горизонтальных. Каждая мачта соединяется с двумя токоотводами, которые, в свою очередь, подключаются к заземляющему контуру. Устройства стержневого типа защищают в основном небольшие здания в простом архитектурном исполнении.

Тросовый молниеприемник (рис. 2) представляет собой конструкцию, включающую в себя две мачты и стальной трос, натянутый между ними. Концы троса соединяются со своими токоотводами и далее – с заземлителями. Правильное расположение всех компонентов гарантирует уход электрических разрядов в грунт за внешними границами здания. Тросовые устройства, так же, как и стержневые, бывают одиночными, двойными или многократными, полностью охватывая и защищая объект. Многократная система устанавливается в крупных зданиях или нескольких сооружениях, расположенных на значительной территории.

Для изготовления молниеприемной сетки (рис. 3) используется металлическая проволока или пруток. Она укладывается на поверхность кровли с шагом ячеек от 5х5 м до 20х20 м в соответствии с категорией защиты данного объекта. Если кровля выполнена из негорючих материалов, укладку сетки можно производить прямо на нее. В противном случае должно выдерживаться расстояние не менее 10 см.

Зажимы креплений могут контактировать со стенами из горючих материалов, если повышенная температура не представляет для них никакой опасности. Монтаж токоотводов осуществляется по всему периметру на расстоянии 10-25 метров друг от друга, в соответствии с уровнем защиты здания.

Виды молниеприёмников

Городские промышленные и многоэтажные жилые строения в основном различаются по материалу кровельного покрытия. Кровля здания оказывает определяющее влияние на выбор типа приёмника молний для молниезащиты.

В соответствии с требованиями к уровню защищённости различных кровель все известные молниеприёмники пассивного типа делятся на следующие классы:

  • штыревые или пиковые устройства, устанавливаемые на коньке или на отдельной мачте;
  • тросовые приёмники, изготавливаемые в виде толстой проволоки, натягиваемой вдоль конька и по периметру кровли;
  • и, наконец, так называемые «сеточные» молниеприёмники, представляющие собой крупноячеистую сетку, укладываемую по всей поверхности крыши с креплением на специальных изоляторах.

Штыревые приёмники молний чаще всего применяются на металлических кровлях с покрытиями из металлизированной черепицы, типового профнастила или профлиста. Они выполняются в виде стального прута определённой длины, крепящегося на самой высокой точке крыши и имеющего специальный контакт для подключения токоотвода.

Так называемые «тросовые» молниеприёмники выполняются в виде толстой и хорошо натянутой стальной проволоки, также имеющей выход для подсоединения к заземлителю (через токоотвод). Такие устройства чаще всего применяются на кровлях из традиционного шифера или керамической черепицы.

При монтаже сеточных молниеприёмников, устанавливаемых обычно на мягких и плоских кровлях зданий, вся защищаемая поверхность закрывается специальной сетью из тонких стальных проводников. Размер ячейки такой сетчатой молниезащиты выбирается в зависимости от категории здания и предполагаемой грозовой активности в данной местности.

Поражающие факторы молнии

Для того чтобы до конца понять всю опасность ударов молнии, необходимо более подробно ознакомиться с ее поражающими факторами. Они в обязательном порядке учитываются, когда проектируется устройство молниезащиты зданий и сооружений. В момент разряда подавляющее число грозовых туч обладают отрицательной полярностью, тогда как на земле происходит индукция положительных зарядов.

В среднем, каждое облако перед началом разряда обладает следующими характеристиками:

  • Возле поверхности земли туча имеет напряженность электрического поля в диапазоне 5-300 кВ/м.
  • Потенциал составляет от 100 миллионов до 1 миллиарда вольт.
  • Единичный разряд тучи происходит в промежутке от 15х10-6 до 10-3 секунды, для полного разряда требуется 1,13 секунды.
  • Непосредственно в канале молнии образуется температура 20 тысяч градусов и более.
  • Величина амплитудного значения тока составляет 50 кА, в некоторых случаях – до 250 кА.

Действие электрических разрядов может быть первичным или вторичным в зависимости от поражающих факторов. Они учитываются, когда создается система молниезащиты зданий. Первичный поражающий фактор является прямым ударом молнии в конкретный объект. Основными последствиями считаются пожары и механические повреждения зданий и сооружений.

Вторичные поражающие факторы, которых существует несколько видов, проявляются в следующем:

  • Электростатическая индукция. На металлических конструкциях, изолированных от земли, возникают наведенные электрические потенциалы. Их появление связано со статическим полем высокой напряженности между грозовыми тучами и землей. В результате, между деталями оборудования и металлическими конструкциями наблюдается искрение.
  • Электромагнитная индукция. На металлических трубах, воздуховодах и других элементах большой протяженности, обладающих незамкнутыми контурами, в момент разряда происходит индуцирование ЭДС. Данное явление возникает под действием мощного магнитного поля, изменяющегося во времени. Как следствие, здесь также образуется искрение в местах максимально близкого взаимного расположения металлических конструкций.
  • Высокие потенциалы, которые могут попасть в здание по коммуникациям и металлическим конструкциям, находящимся вне объекта. Все это нужно учитывать при строительстве еще на стадии проектирования.

Все виды поражающих факторов вызывают те или иные негативные последствия. В первую очередь, это поражение людей электротоком, пожары, взрывы, разрушения вследствие механических повреждений. Все это приводит к значительному материальному ущербу и невосполнимым потерям.

Пассивная защита

Приёмные элементы грозозащиты открытого типа размещаются в самой верхней точке строения и, несмотря на отсутствие 100%-ой гарантии гашения, отличаются следующими преимуществами:

  • эксплуатационная надёжность и достаточно простое обслуживание;
  • относительно низкая стоимость;
  • возможность самостоятельного изготовления.

Все перечисленные достоинства пассивных систем молниезащиты удаётся реализовать лишь в случае неукоснительного соблюдения условий, оговариваемых в рассмотренных выше инструкциях и ГОСТах. Содержащиеся в этих документах требования строго регламентируют порядок и правила обустройства систем молниезащиты с подробнейшим описанием отдельных элементов конструкции.

Помимо этого в них включены и требования по проектированию и непосредственному монтажу этих систем, а также подробно описываются вопросы обслуживания и ремонта.

Принцип работы системы молниезащиты.

При атомсферной активности между грозовыми наэлектризованными облаками и землей возникает разряд. В разряде молнии сила тока достигает сотни тысяч ампер, а сила тока – миллионы вольт. При ударе такого разряда молнии в здание и сооружение, непременно возникнет механическое повреждение, а также из-за высокой температуры разряда начинается пожар. Дополнительно, все электрические приборы, которые находятся в средине здания будут подвержены воздействию разряда молнии, что приведет к замыканию электрических сетей. Замыкание электрических сетей – причина возникновения пожара в электрических приборах.

В обиходе существует мнение, что громоотвод спасет от удара молнии. Ответственно сообщаем, что гром — это звуковое явление в атмосфере, сопровождающее удар молнии. Соответственно, защищать здание и сооружение от звукового эффекта нет необходимости. Устройство по защите зданий и сооружений от ударов молнии называется молниезащита.

Для борьбы с ударами молнии, была разработана система молниезащиты. Принцип действия данной системы состоит в принятии разряда молнии и перенаправление его в землю. Чтобы исключить воздействие разряда на здание и сооружение, а также на внутренние электрические сети.

Принцип работы

Активная молниезащита была разработана сравнительно недавно, но, по заявлениям исследователей, способна существенно повысить безопасность защищаемого объекта.

Принцип действия заключается в следующем:

  1. По мере приближения грозового облака к объекту защиты активируются специальные конденсаторы в конструкции активного молниеприемника, в которых начинает накапливаться заряд.
  2. После того как напряжение заряда достигает необходимых значений, производится разряд с напряжением до 200 000 вольт с последующим формированием восходящего лидера.
  3. Так как статический заряд облака тоже достиг критического показателя, это приводит к образованию пробоя, и молния попадает в активный молниеприемник.

В результате работы такой системы происходит разрядка потенциала грозовой тучи, что практически полностью исключает вероятность повторного удара по объектам в пределах защищенной области.

Положения инструкции

Согласно основным положениям инструкции молниезащита должна обеспечивать эффективное отведение грозового разряда в землю. Вследствие этого эффекта всем жилым и производственным объектам, расположенным в пределах действия молниезащиты, никакого вреда от удара молнии не причиняется.

Для различных условий эксплуатации строений, а также в зависимости от конструкции их кровли возможны различные варианты устройства молниезащиты, отличающиеся эффективностью действия всей системы в целом.

Все существующие постройки и сооружения в зависимости от опасности хранящихся в них материалов и веществ разделяются на 3 категории, которые и определяют необходимую степень их защищённости.

Для самой незащищённой категории зданий (первой) рекомендуется применение активных методов молниезащиты. Особенность их устройства заключается в искусственной ионизации воздуха и притягивании на себя опасных разрядов.

Однако активная молниезащита по причине своей высокой стоимости не пользуется особым спросом у рядового потребителя. К тому же есть мнение, что она действует не лучше пассивных систем. Молниезащита активного типа применяется лишь в случаях крайней необходимости.

Для всех остальных категорий зданий, как правило, достаточно обустройства традиционной пассивной молниезащиты, элементы которой монтируются открытым образом или же встраиваются непосредственно в конструкции и сети. Образцы локальных встроенных средств молниезащиты будут рассмотрены в отдельном разделе.

Нормативные документы

С целью регулирования вопросов проектирования и обустройства молниезащиты разработаны и успешно используются на практике следующие технические нормативы:

  • ПУЭ (редакция №7);
  • специальный ГОСТ Р МЭК 62561.2-2014;
  • инструкция по устройству молниезащиты РД 34.21.122-87;
  • инструкция Минэнерго под номером СО 153-34.21.122-2003;
  • нормативы и рекомендации СНиП 3.05.06-85 и другие регламентирующие документы.

Помимо вопросов проектирования, в этих документах оговариваются и конструктивные параметры молниезащиты, состоящих из молниеприёмника, комплекта токоотводящих шин и заземлителя.

Испытание и проверка

  1. Сварочные соединения на прочность. Проводится визуально или простукиванием молотком.
  2. Болтовые соединения и стяжки. Необходимо законтрогаить все соединения, особенно те, которые будут в земле или на крыше.
  3. Сопротивление заземлителя. Измеряется специальным прибором — измеритель сопротивления изоляции.
  4. Измеряются переходные сопротивления контактов и стыков измерителем сопротивления изоляции или омметром.
  5. Измерение сопротивления растекания тока измерителем сопротивления изоляции.
  6. Проверить на соответствие проектной документации.
  7. Надежность закрепления молниеприемника и промежуточных фиксаторов.

Рекомендуется перед весенне-летним периодом ежегодно проводить визуальную проверку системы на наличие повреждений и обрывов после зимних обледенений и ветров.

На защите от поражения электрическим током человека и безопасности жилья и электроприборов не стоит экономить средства. Лучший вариант — комплекс мер по предотвращению последствий и разрушений от попадания молний.