Оглавление
- Измерения
- Мощность при токах: постоянном и переменном
- Интересная инфа по теме
- Мощность электрического тока
- Пример расчета полной мощности для электродвигателя
- Расчет номинальной мощности трансформатора
- Как измеряют cosφ на практике
- Измерения
- Особенности расчёта в цепях переменного электричества
- Преобразование тока
- Вычисление мощности
- Что такое мощность в электричестве: просто о сложном
- Измерение мощности приборами
- Как измерить электрическую мощность дома
- Что такое мощность электрического тока
Измерения
Как показано выше, некоторые исходные данные можно получить в ходе практических измерений. Ниже отмечены особенности типовых специализированных приборов.
Прямые замеры
Ваттметры выпускают в разных модификациях для сетей ~220V и ~380V. Соответствующие коррекции делают в процессе выполнения рабочих операций. Следует подключать щупы с учетом инструкций производителя и соответствующего расположения проводников.
Как правило, в конструкциях приборов применяют две катушки с параллельным и последовательным подсоединением к нагрузке. Для повышенной точности пользуются профессиональными приборами «лабораторной» категории.
Косвенные замеры
Эти операции выполняют с применением мультиметров. Измеряют сопротивление, ток и напряжение, после чего вычисляют мощность.
Фазометры
С помощью этих приборов измеряют фазовый сдвиг между несколькими электрическими параметрами. Таким аппаратом можно определить cos ϕ, если паспортное значение отсутствует в сопроводительных документах к оборудованию.
Регулирование cos
Отмеченное выше негативное влияние реактивных составляющих компенсируют специальными дополнениями в общую электрическую схему. Расчеты выполняют с применением представленных формул.
Мощность при токах: постоянном и переменном
Когда возникает необходимость рассчитывать, сколько будет потреблять установленное оборудование, нужно помнить, что существует разница между значением P при подаче постоянного и переменного напряжений.
Формула P при постоянном токе показывает P в виде произведения мгновенных значений I и U. При этом момент времени может быть абсолютно любой.
Выражение P в условиях синусоидального движения электронов учитывает угол, на который сдвинуты фазы тока и напряжения. Косинус этого угла умножается на произведение тока и напряжения за период времени Т. Это период времени, за который ток меняет своё значение с положительного на отрицательное:
Интересная инфа по теме
Трехфазную схему электроснабжения используют в производстве. Суммарный вольтаж такой сети равен 380 В. Также такую проводку устанавливают на многоэтажные дома, а затем раздают по квартирам. Но есть один нюанс, который влияет на конечное напряжение в сети — соединение жилы под напряжение в результате дает 220 В. Трехфазная в отличие от однофазной не дает перекосы при подключении силового оборудования, так как нагрузка распределяется в щитке. Но для подведения трехфазной сети к частному дому требуется специальное разрешение, поэтому широко распространена схема с двумя жилами, одна их которых нулевая.
Мощность электрического тока
Работа, произведенная в единицу времени, называется мощностью и обозначается буквой P.
Из этой формулы имеем:
A = P × t.
Единица измерения мощности:
1 (Дж/сек) иначе называется ваттом (Вт). Подставляя в формулу мощности выражение для работы электрического тока, имеем:
P = U × I (Вт).
Формула мощности электрического тока может быть выражена также через потребляемый ток и сопротивление потребителя:
Кроме ватта, на практике применяются более крупные единицы измерения электрической мощности. Электрическая мощность измеряется в:
100 Вт = 1 гектоватт (гВт); 1000 Вт = 1 киловатт (кВт); 1000000 Вт = 1 мегаватт (МВт).
Электрическая мощность измеряется специальным прибором – ваттметром. Ваттметр имеет две обмотки (катушки): последовательную и параллельную. Последовательная катушка является токовой и включается последовательно с нагрузкой на участке цепи, где производятся измерения, а параллельная катушка – это катушка напряжения, она соответственно включается параллельно этой нагрузке. Принцип действия ваттметра основан на взаимодействии двух магнитных потоков создаваемых током, протекающим по обмотке подвижной катушки (токовой катушки), и током, проходящим по неподвижной катушке (катушке напряжения). При прохождении измеряемого тока по обмотке подвижной и неподвижной катушек образуются два магнитных поля, при взаимодействии которых подвижная катушка стремится расположится так, чтобы направление ее магнитного поля совпадало с направлением магнитного поля неподвижной катушки. Вращающему моменту противодействует момент, созданный спиральными пружинками, через которые в подвижную катушку проводится измеряемый ток. Противодействующий момент пружинок прямо пропорционален углу поворота катушки. Стрелка, укрепленная на подвижной катушке, указывает значение измеряемой величины. Схема включения ваттметра показана на рисунке 2.
Рисунок 2. Схема включения ваттметра |
Если вы решили измерить потребляемую мощность, какой либо имеющейся у вас нагрузки, и при этом у вас отсутствует ваттметр, вы можете “изготовить” ваттметр своими руками. Из формулы P = I × U видно, что мощность, потребляемую в сети, можно определить, умножив ток на напряжение. Поэтому для определения мощности, потребляемой из сети, следует использовать два прибора, вольтметр и амперметр. Измерив амперметром потребляемый ток и вольтметром напряжение питающей сети, необходимо показание амперметра умножить на показание вольтметра.
Так, например, мощность, потребляемая сопротивлением r, при показании амперметра 3 А и вольтметра 220 В будет:
P = I × U = 3 × 220 = 660 Вт.
Для практических измерений электрической работы (энергии) джоуль является слишком мелкой единицей.
Если время t подставлять не в секундах, а в часах, то получим более крупные единицы электрической энергии:
1 Дж = 1 Вт × сек; 1 Вт × ч = 3600 ватт × секунд = 3600 Дж; 100 Вт × ч = 1 гектоватт × час (гВт × ч); 1000 Вт × ч = 1 киловатт × час (кВт × ч).
Электрическая энергия измеряется счетчиками электрической энергии.
Видео 1. Работа и мощность электрического тока
Видео 1. Работа и мощность электрического тока
Видео 2. Еще немного о мощности
Пример 1. Определить мощность, потребляемую электрическим двигателем, если ток в цепи равен 8 А и двигатель включен в сеть напряжением 220 В.
P = I × U = 8 × 220 = 1760 Вт = 17,6 гВт = 1,76 кВт.
Пример 2. Какова мощность, потребляемая электрической плиткой, если плитка берет из сети ток в 5 А, а сопротивление спирали плитки равно 24 Ом?
P = I 2 × r = 25 × 24 = 600 Вт = 6 гВт = 0,6 кВт.
При переводе механической мощности в электрическую и обратно необходимо помнить, что 1 лошадиная сила (л. с.) = 736 Вт; 1 киловат (кВт) = 1,36 л. с.
Пример 3. Определить энергию, расходуемую электрической плиткой мощностью 600 Вт в течение 5 часов.
A = P × t = 600 × 5 = 3000 Вт × ч = 30 гВт × ч = 3 кВт × ч
Пример 4. Определить стоимость горения двенадцати электрических ламп в течение месяца (30 дней), если четыре из них по 60 Вт горят по 6 часов в сутки, а остальные восемь ламп по 25 Вт горят по 4 часа в сутки. Цена за энергию (тариф) 2,5 рубля за 1 кВт × ч.
Мощность четырех ламп по 60 Вт.
P = 60 × 4 = 240 Вт.
Число часов горения этих ламп в месяц:
t = 6 × 30 = 180 часов.
Энергия, расходуемая этими лампами:
A = P × t = 240 × 180 = 43200 Вт × ч = 43,2 кВт × ч.
Мощность остальных восьми ламп по 25 Вт.
P = 25 × 8 = 200 Вт.
Число часов горения этих ламп в месяц:
t = 4 × 30 = 120 часов.
Энергия, расходуемая этими лампами:
A = P × t = 200 × 120 = 24000 Вт × ч = 24 кВт × ч.
Общее количество расходуемой энергии:
43,2 + 24 = 67,2 кВт × ч
Стоимость всей потребленной энергии:
67,2 × 2,5 = 168 рублей.
Пример расчета полной мощности для электродвигателя
Отдельный интерес представляет собой нагрузка, подключенная к трехфазной сети, так как электрические величины, протекающие в ней, напрямую зависят от номинальной нагрузки каждой из фаз. Но для наглядности примера мы не будем рассматривать, как найти мощность несимметричного прибора, так как это довольно сложная задача, а приведем пример расчета трехфазного двигателя.
Особенность питания и асинхронной и синхронной электрической машины заключается в том, что на обмотки может подаваться и фазное и линейное напряжение. Тот или иной вариант, как правило, обуславливается способом соединения обмоток электродвигателя. Тогда мощность будет вычисляться по формуле:
S = 3*Uф*Iф
В случае выполнения расчетов с линейным напряжением, чтобы найти мощность формула примет вид:
Активная и реактивная мощности будут вычисляться по аналогии с сетями переменного тока, как было рассмотрено ранее.
Теперь рассмотрим вычисления на примере конкретной электрической машины асинхронного типа. Следует отметить, что официальная производительность, указываемая в паспортных данных электродвигателя – это полезная мощность, которую двигатель может выдать при совершении оборотов вала. Однако полезная кардинально отличается от полной, которую можно вычислить за счет коэффициента мощности.
Шильд электродвигателя
Как видите, для вычислений с шильда мы возьмем следующую информацию об электродвигателе:
- полезная производительность – 3 кВт, а в переводе на систему измерения – 3000 Вт;
- коэффициент полезного действия – 80%, а в пересчете для вычислений будем пользоваться показателем 0,8;
- тригонометрическая функция соотношения активных и реактивных составляющих – 0,74%;
- напряжение, при соединении обмоток треугольником составит 220 В;
- сила тока при том же способе соединения – 13,3 А.
С таким перечнем характеристик можно воспользоваться несколькими способами:
S = 1,732*220*13,3 = 5067 Вт
Чтобы найти искомую величину, сначала определяем активную составляющую:
P = Pполезная / КПД = 3000/0.8 = 3750 Вт
Далее полную по способу деления активной на коэффициент cos φ:
S = P/cos φ = 3750/0.74 = 5067 Вт
Как видите, и в первом, и во втором случае искомая величина получилась одинакового значения.
Расчет номинальной мощности трансформатора
Номинальная мощность, MB • А, трансформатора на подстанции с числом трансформаторов п > 1 в общем виде определяется из выражения
Для сетевых подстанций, где примерно до 25 % потребителей из числа малоответственных в аварийном режиме может быть отключено, обычно принимается равным 0,75…0,85. При отсутствии потребителей III категории К 1-2 = 1 Для производств (потребителей) 1й и особой группы известны проектные решения, ориентирующиеся на 50%ю загрузку трансформаторов.
Рекомендуется широкое применение складского и передвижного резерва трансформаторов, причем при аварийных режимах допускается перегрузка трансформаторов на 40 % на время максимума общей суточной продолжительностью не более 6 ч в течение не более 5 сут.
Так как К1-2 1 их отношение К = К 1-2 / К пер. всегда меньше единицы и характеризует собой ту резервную мощность, которая заложена в трансформаторе при выборе его номинальной мощности. Чем это отношение меньше, тем меньше будет закладываемый в трансформаторы резерв установленной мощности и тем более эффективным будет использование трансформаторной мощности с учетом перегрузки.
Уменьшение коэффициента возможно лишь до такого значения, которое с учетом перегрузочной способности трансформатора и возможности отключения неответственных потребителей позволит покрыть основную нагрузку одним оставшимся в работе трансформатором при аварийном выходе из строя второго трансформатора.
Таким образом, для двухтрансформаторной подстанции
В настоящее время существует практика выбора номинальной мощности трансформатора для двух трансформаторной подстанции с учетом значения к = 0,7, т.е.
Формально выражение (3.14) выглядит ошибочно: действительно, единица измерения активной мощности — Вт; полной (кажущейся) мощности — ВА. Есть различия и в физической интерпретации S и Р. Но следует подразумевать, что осуществляется компенсация реактивной мощности на шинах подстанции 5УР, ЗУР и что коэффициент мощности cos ф находится в диапазоне 0,92… 0,95.
Таким образом, суммарная установленная мощность двухтрансформаторной подстанции
При этом значении к в аварийном режиме обеспечивается сохранение около 98 % Рмах без отключения неответственных потребителей. Однако, учитывая принципиально высокую надежность трансформаторов, можно считать вполне допустимым отключение в редких аварийных режимах какойто части неответственных потребителей.
При двух и более установленных на подстанции трансформаторах при аварии с одним из параллельно работающих трансформаторов оставшиеся в работе трансформаторы принимают на себя его нагрузку. Эти аварийные перегрузки не зависят от предшествовавшего режима работы трансформатора, являются кратковременными и используются для обеспечения прохождения максимума нагрузки.
Далее приведены значения кратковременных перегрузок масляных трансформаторов с системами охлаждения М, Д, ДЦ, Ц сверх номинального тока (независимо от длительности предшествующей нагрузки, температуры окружающей среды и места установки).
Для трехобмоточных трансформаторов и автотрансформаторов указанные перегрузки относятся к наиболее нагруженной обмотке.
Источник
Как измеряют cosφ на практике
Значение коэффициента cosφ обычно указано на бирках электроприборов, однако, если необходимо измерить его на практике пользуются специализированным прибором – фазометром. Также с этой задачей легко справится цифровой ваттметр.
Если полученный коэффициент cosφ достаточно низок, то его можно компенсировать практически. Осуществляется это в основном путем включения в цепь дополнительных приборов.
- Если необходимо скорректировать реактивную составляющую, то следует включить в цепь реактивный элемент, действующий противоположно уже функционирующему прибору. Для компенсации работы асинхронного двигателя, для примера индуктивной нагрузки, в параллель включается конденсатор. Для компенсации синхронного двигателя подключается электромагнит.
- Если необходимо скорректировать проблемы нелинейности в схему вводят пассивный корректор коэффициента cosφ, к примеру, это может быть дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой.
Мощность – это один из важнейших показателей электроприборов, поэтому знать какой она бывает и как рассчитывается, полезно не только школьникам и людям, специализирующимся в области техники, но и каждому из нас.
Как перевести амперы в ватты и обратно?
Как перевести амперы в киловаты?
Как рассчитать падение напряжения по длине кабеля в электрических сетях
Что такое коэффициент трансформации трансформатора?
Способы вычисления потребления электроэнергии бытовыми приборами
Что такое делитель напряжения и как его рассчитать?
Измерения
Как показано выше, некоторые исходные данные можно получить в ходе практических измерений. Ниже отмечены особенности типовых специализированных приборов.
Прямые замеры
Ваттметры выпускают в разных модификациях для сетей ~220V и ~380V. Соответствующие коррекции делают в процессе выполнения рабочих операций. Следует подключать щупы с учетом инструкций производителя и соответствующего расположения проводников. Как правило, в конструкциях приборов применяют две катушки с параллельным и последовательным подсоединением к нагрузке. Для повышенной точности пользуются профессиональными приборами «лабораторной» категории.
Косвенные замеры
Эти операции выполняют с применением мультиметров. Измеряют сопротивление, ток и напряжение, после чего вычисляют мощность.
Фазометры
С помощью этих приборов измеряют фазовый сдвиг между несколькими электрическими параметрами. Таким аппаратом можно определить cos ϕ, если паспортное значение отсутствует в сопроводительных документах к оборудованию.
Регулирование cos
Отмеченное выше негативное влияние реактивных составляющих компенсируют специальными дополнениями в общую электрическую схему. Расчеты выполняют с применением представленных формул.
Особенности расчёта в цепях переменного электричества
Чтобы выполнить расчёты P, потребляемой нагрузкой в цепях изменяющегося электричества, нужно чётко разделять схемы включения. Они могут быть однофазными и трёхфазными.
В однофазных цепях P находят, перемножив значение силы тока на значение напряжения (220 В). При этом учитывают наличие фазного сдвига между ними.
В трёхфазных сетях с напряжением 380 В рассматривают два случая:
- симметричная нагрузка по фазам;
- ассиметричная нагрузка фаз.
В первом случае P находят по формуле:
Во втором случае необходимо рассчитывать P для каждой фазы (А, В, С). Общее значение P – это результат суммирования:
P общ = PфА + PфВ + PфС.
Внимание! Когда необходимо найти полную мощность трёхфазной цепи, находят по такому же принципу значения реактивной Q. Рассчитать ток по мощности, зная, какое напряжение: фазное (220 В) или линейное (380 В), можно и в этом случае, выразив его из общей формулы P
Рассчитать ток по мощности, зная, какое напряжение: фазное (220 В) или линейное (380 В), можно и в этом случае, выразив его из общей формулы P.
Преобразование тока
Поскольку электрическая мощность выражается произведением напряжения на силу тока, то из закона сохранения энергии следует: если при передаче одной и той же мощности напряжение повысить, сила тока пропорционально уменьшится, и наоборот.
Преобразованием напряжения переменного тока занимается специальное устройство — трансформатор. В самом простом виде он состоит из двух обмоток, надетых на магнитопровод.
Магнитное поле, возбуждаемое в первичной обмотке, наводит ЭДС во вторичной (закон электромагнитной индукции) и величина ее соотносится с напряжением на выводах первичной обмотки так же, как число витков в обмотках.
Если, к примеру, первичная обмотка содержит 300 витков, и на нее подается переменное напряжение с действующим значением 220 В, то в цепи вторичной обмотки со 150-ю витками возникнет ЭДС в 110 В, то есть в 2 раза меньшая. Поскольку мощность останется практически постоянной (потерями на нагрев и перемагничивание сердечника пренебрегаем), то сила тока в цепи вторичной катушки окажется, наоборот, вдвое выше тока в первичной катушке.
Потому вторичные обмотки понижающих трансформаторов наматывают проводом большего сечения, чем первичные. С повышающим трансформатором все происходит с точностью до наоборот. Снижение силы тока за счет увеличения напряжения применяется при передаче электроэнергии на значительные расстояния.
Сгенерированный электростанцией ток напряжением 10-20 кВ преобразуют находящейся тут же подстанцией, поднимая напряжение до сотен кВ.
В населенных пунктах напряжение снова понижают местными трансформаторными подстанциями, уже до 220 В, и в таком виде электроэнергия поступает в распределительную сеть.
Наибольшей величины этот параметр достигает на ЛЭП «Экибастуз — Кокчетав» — 1,15 МВ (мегавольт). При этом многократно падает сила тока, а поскольку работа тока в проводнике, состоящая в его нагреве, выражается формулой W = I2 * R (R — сопротивление проводника), то и потери значительно сокращаются.
Вычисление мощности
Формула мощности электрического тока и принцип расчета будут отличаться при рассмотрении цепей постоянного и переменного токов. Постоянный ток используется в бортовой сети автомобилей, портативных устройствах, питающем напряжении троллейбусов. Переменный — применяется в электрической проводке зданий, мощных электродвигателях и генераторах.
При постоянном напряжении
Чтобы предположить значение тока, нужно знать мощность используемых потребителей электроэнергии. Расчет тока по мощности производится из этой величины по формуле:
I = P / U,
где I — сила тока, U — напряжение в сети, P — суммарная мощность, которую будут потреблять подключенные устройства.
Для примера можно посчитать ток питания электродвигателя троллейбуса 150 кВт. В троллейбусной сети используется постоянное напряжение 600 В. Соответственно, при вычислении тока через указанную формулу, получается значение, равное 250 ампер. Для таких больших значений в троллейбусной сети используются специальные провода.
Существует специальные таблицы, позволяющие по известному току сразу найти сечение медного или алюминиевого проводника. Это же значение можно вычислить в калькуляторе онлайн. Необходимо ввести используемый материал, ток или мощность потребителя — и сервис рассчитает оптимальное сечение. В стандартных проводках зданий используются сечения 1,5 квадратных миллиметра для сетей освещения и 2,5 кв. мм. для розеток.
При переменном напряжении
Для питания электрических сетей домашних и офисных зданий используется переменное напряжение. Его применение обосновано несколькими причинами:
- Меньшие затраты при передаче по ЛЭП;
- Простое создание повышающих и понижающих напряжение устройств;
- Отсутствие полярности.
Мощность переменного тока сильно зависит от параметров питаемой нагрузки. Поэтому формула электрической мощности в переменных сетях приобретает вид:
P = U ⋅ I ⋅ cosφ,
где cosφ определяет характер нагрузки.
В таких цепях это активная мощность, то есть превращающаяся при работе в другие виды энергии: электромагнитную и тепловую.
Для активного сопротивления, то есть обычных резисторов, cosφ = 1. Чем больше реактивная составляющая в цепи, то есть больше элементов имеют емкостное или индуктивное сопротивление, тем меньше будет cosφ. Коэффициент cosφ для большинства электроприборов имеет значение 0,95, исключение составляют только сварочные аппараты и электродвигатели, имеющие высокую индуктивную нагрузку.
Существует и реактивная мощность. Она определяет энергию, подаваемую с источника питания в реактивные элементы, а затем возвращаемая этими элементами обратно. Формула мощности тока для реактивных цепей имеет вид:
P = U ⋅ I ⋅ sinφ.
Здесь sinφ характеризует вклад в полную мощность индуктивных и конденсаторных элементов. Измеряется реактивная мощность в таких единицах, как вар (вольт-ампер реактивный).
В промышленных электросетях распространены трехфазные системы. Их преимущества важны для индустрии:
- Более экономная передача электричества на дальние расстояния;
- Уменьшение затрат при создании электродвигателей 3-х фазной системы;
- Равномерность механической нагрузки на электрогенератор.
Особенностью трехфазных систем электрического тока является то, что напряжение в этих системах используется повышенное, равное 380 В. При распределенной по трем ветвям нагрузке это приводит к уменьшению рабочего тока по отношению к однофазной системе, в которой рабочим напряжением принято 220 В. Формула для расчета мощности в трехфазной цепи будет иметь следующий вид:
P = 1,73 ⋅ I ⋅ U ⋅ cosφ.
Повышающий коэффициент 1,73 здесь связан с распределённой нагрузкой и меньшим влиянием реактивной составляющей в таких системах.
Рассчитать значение переменного тока, зная потребляемую мощность, легко по указанным формулам. Например, для однофазной сети:
I = P /(U ⋅ cosφ).
Что такое мощность в электричестве: просто о сложном
Механическая мощность как физическая величина равна отношению выполненной работы к некоторому промежутку времени. Поскольку понятие работы определяется количеством затраченной энергии, то и мощность допустимо представить как скорость преобразования энергий.
Разобрав составляющие механической мощности, рассмотрим из чего складывается электрическая. Напряжение — выполняемая работа по перемещению одного кулона электрического заряда, а ток — количество проходящих кулонов за одну секунду. Произведение напряжения на ток показывает полный объем работы, выполненной за одну секунду.
Мощность электрического тока
Проанализировав полученную формулу, можно заключить, что силовой показатель зависит одинаково от тока и напряжения. То есть, одно и тоже значение возможно получить при низком напряжении и большом тока, или при высоком напряжении и низком токе.
Наука подразделяет электрическую мощность на:
- активную. Подразумевает преобразование мощности в тепловую, механическую и другие виды энергии. Показатель выражают в Ваттах и вычисляют по формуле U*I;
- реактивную. Эта величина характеризует электрические нагрузки, создаваемые в устройствах колебаниями энергии электромагнитного поля. Показатель выражается как вольт-ампер реактивный и представляет собой произведение напряжения на силу тука и угол сдвига.
Для простоты понимания смысла активной и реактивной мощности, обратимся к нагревательному оборудованию, где электрическая энергия преобразуется в тепловую.
Измерение мощности приборами
Для измерения Р можно воспользоваться специальными приборами. Для этого подойдёт мультиметр, к которому можно подключить токоизмерительные клещи. Как измерить мощность мультиметром? Тестер включается на режим измерения переменного напряжения, клещи должны обхватывать только один проводник, подводимый к нагрузке.
Разделение проводников в кабеле не всегда удобно. К тому же после измерений нужно рассчитывать мощность по формуле.
Измеритель мощности
Для измерения можно использовать специальный прибор – ваттметр. Прибор включается в розетку, в его выходное гнездо включают нагрузку, мощность которой нужно измерять. Результаты проводимого измерения выводятся на дисплей уже в киловаттах.
Измерение мощности с помощью электросчетчика
Используя квартирный счётчик электроэнергии, можно также проверить потребляемую мощность отдельного прибора. Для этого необходимо:
- выключить все потребители энергии, оставив в режиме потребления лишь тестируемый прибор;
- отметить показания на текущий момент и зафиксировать их значения через час;
- произвести вычитания последних значений из предыдущих показаний;
- результат будет измеренной величиной.
Основной недостаток такого блока действий – отключение других необходимых бытовых приборов.
Информация. При использовании этого метода, пользуясь моментом, можно посмотреть, нет ли скрытой утечки тока, и исправность счётчика. При отключении всех приборов электросчётчик должен остановиться.
Как измерить электрическую мощность дома
Знать силовые характеристики бытового оборудования необходимо всегда. Это требуется для расчета сечения проводки, учета расхода электроэнергии или электрофикации дома. До начала монтажных работ такую информацию можно получить только путем сложения показателей мощности каждого отдельного устройства, добавив 10% запаса.
Определить потребляемую нагрузку дома поможет счетчик. Прибор показывает сколько киловатт было потрачено за один час работы оборудования. И для того чтобы убедиться в правильности показаний, владелец квартиры может проверить точность устройства с помощью электронных средств измерения. Сюда относится амперметр, вольтметр или мультиметр.
Также существуют ваттметры и варметры, которые показывают результаты измерений в ваттах.
Ваттметр
Во время снятия показания включенной оставить только активную нагрузку как лампочки и нагреватели. Далее померить токовое напряжение. В конце сверить показания счетчика с полученным результатом вычислений.
Что такое мощность электрического тока
Отличие в том, что сила влияет на физические действия, то есть выполняется работа. Если она проделана за указанное время, то через эти два параметра можно вычислить значение мощности.
В случае с электричеством она бывает двух видов:
- Активная – превращается в энергию тепла, света, механических действий и т. д. Она измеряется в ваттах и вычисляется по формуле 1 Вт = 1 В х 1А. Но на практике этот показатель чаще всего выражен в киловаттах и мегаваттах.
- Реактивная – нагрузка, возникающая из-за колебаний внутри электромагнитного поля. Единица измерения – вольт-амперы (ВА), они вычисляются как Q=U x I x sin угла. Последнее означает изменение фазы между током и снижением напряжения.
На практике отличия обоих видов лучше всего рассмотреть на примере элементов для нагревания и электродвигателей. ТЭНы собраны из материала с высоким сопротивлением, поэтому всю полученную электроэнергию они превращают в тепловую. Электродвигатель же имеет детали, обладающие индуктивностью, то есть часть тока возвращается в сеть и может отрицательно влиять на нее, создавая перегрузки.