Подключение мощных мосфетов к микроконтроллеру

Примеры применения

Активная нагрузка

Предположим, что есть некий регулируемый источник питания на 2 А/600 В, который должен быть протестирован на активной нагрузке, собранной из нескольких MOSFET, работающих в параллель. В этом случае MOSFET должен иметь максимальное напряжение не ниже 1000 В и иметь способность рассеивать максимальную мощность источника, плюс некий запас на проверку работоспособности защиты от превышения тока.

Транзистор IXTK22N100L имеет максимальное напряжение 1000 В и максимальную рассеиваемую мощность 700 Вт в ключевом режиме. Но эта мощность не может быть использована при тепловом расчете в линейном режиме. Для линейного режима необходимо оперировать областью безопасной работы SOA с максимальной рассеиваемой мощностью 240 Вт при напряжении 800 В, I = 0,3 A, Tc = +90 °C. Выберем запас 20% что означает максимальную рассеиваемую мощность 192 Вт.

Максимальная выходная мощность источника питания равна 1200 Вт. При запасе на проверку защиты от короткого замыкания в 20%, мощность сборки из параллельно включенных MOSFET должна составить не менее 1440 Вт. Количество параллельно включенных MOSFET составит 1440/192 = 8 шт. Типовая схема включения показана на рис. 4.

Рис. 4. Схема для проверки источника питания 2 А/600 В с помощью активной нагрузки

Резисторы Rs1–Rs8 служат для контролирования тока стока каждого MOSFET. Разброс их сопротивления будет определять точность распараллеливания токов в параллельно работающих транзисторах. Напряжение с измерительных резисторов Rs1–Rs8 подается на инвертирующий вход операционного усилителя, включенного в затвор MOSFET. Неинвертирующий вход операционного усилителя соединен с общим входом управления током стока .

Управление двигателем

На рис. 5 показана схема управления электродвигателем, в котором питающее напряжение от батареи подается через два параллельно включенных MOSFET, установленных на одном радиаторе.

Рис. 5. Схема линейного управления электродвигателем

Ток стока силового MOSFET, работающего в линейном режиме, определяется напряжением «затвор–исток». Напряжение на электродвигателе равно разнице напряжения батареи минус напряжение «исток–сток». Управление осуществляется с помощью драйвера, который отслеживает ток через транзисторы и выставляет нужное напряжение на затворе.

Линейный регулятор

Рис. 6 иллюстрирует типовой линейный регулятор, в котором выходные параметры устанавливаются с помощью изменения падения напряжения на проходном транзисторе. Проходной транзистор работает в линейном режиме, и его поведение похоже на переменный резистор. Данная схема требует рассеивания большой мощности и расширенной области безопасной работы FBSOA. N-канальные силовые MOSFET, приведенные в таблице, могут быть применены в данных приложениях для обеспечения большой выходной мощности.

Рис. 6. Типовая схема линейного регулятора

Тиристоры и симисторы

Тиристор
— это полупроводниковый прибор, который может находится в двух
состояниях:

  • открытом — пропускает ток, но только в одном направлении,
  • закрытом — не пропускает ток.

Так как тиристор пропускает ток только в одном направлении, для
включения и выключения нагрузки он подходит не очень хорошо. Половину
времени на каждый период переменного тока прибор простаивает. Тем не
менее, тиристор можно использовать в диммере. Там он может применяться
для управления мощностью, отсекая от волны питания кусочек требуемой
мощности.

Симистор — это, фактически двунаправленный тиристор. А значит он
позволяет пропускать не полуволны, а полную волну напряжения питания
нагрузки.

Открыть симистор (или тиристор) можно двумя способами:

  • подать (хотя бы кратковременно) отпирающий ток на управляющий электрод;
  • подать достаточно высокое напряжение на его «рабочие» электроды.

Второй способ нам не подходит, так как напряжение питания у нас будет
постоянной амплитуды.

После того, как симистор открылся, его можно закрыть поменяв
полярность или снизив ток через него то величины, меньшей чем так
называемый ток удержания. Но так как питание организовано переменным
током, это автоматически произойдёт по окончании полупериода.

При выборе симистора важно учесть величину тока удержания
(). Если взять мощный симистор с большим током удержания, ток
через нагрузку может оказаться слишком маленьким, и симистор просто не
откроется

Характеристики слива

Характеристики стока МОП-транзистора отображаются между током стока I D

и напряжением источника стокаV DS . Характеристическая кривая, как показано ниже для разных значений входов.

Фактически, когда V DS

увеличивается, ток стокаI D должен увеличиваться, но из-за приложенногоV GS ток стока контролируется на определенном уровне. Следовательно, ток затвора контролирует выходной ток стока.

Характеристики передачи

Передаточные характеристики определяют изменение значения V DS

при измененииI D иV GS в режимах истощения и улучшения. Ниже приведена кривая передаточной характеристики для тока стока в зависимости от напряжения на затворе.

Основные характеристики и параметры транзисторов

Классификация транзисторов. Проводимость, усиление, параметры, определяющие мощность, допустимое напряжение, частотные и шумовые свойства транзистора.

Транзистор, в общем понимании этого слова – это полупроводниковый прибор, как правило, с тремя выводами, способный усиливать поступающий на него сигнал. Выполняя функции усиления, преобразования, генерирования, а также коммутации сигналов в электрических цепях, в данный момент транзистор является основой подавляющего большинства электронных устройств и интегральных микросхем.

На принципиальных схемах транзистор обычно обозначается латинскими буквами «VT» или «Q» с добавлением позиционного номера (например, VT12 или Q12).

В отечественной документации прошлого века применялись обозначения «Т», «ПП» или «ПТ». Преобладающее применение в промышленных и радиолюбительских конструкциях находят два типа транзисторов – биполярные и полевые. Какими они бывают?

ОСНОВНАЯ КЛАССИФИКАЦИЯ, ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ ТРАНЗИСТОРОВ.

Основная классификация, определяющая область применения транзисторов, ведётся по: исходному материалу, на основе которого они сделаны, структуре проводимости, максимально допустимому напряжению, максимальной мощности, рассеиваемой на коллекторе, частотным свойствам, шумовым характеристикам, крутизне передаточной характеристики (для полевых) или статическому коэффициенту передачи тока (для биполярных транзисторов) . Рассмотрим перечисленные пункты классификации более детально.

По исходному полупроводниковому материалу транзисторы классифицируются на: — германиевые (в настоящее время не производятся); — кремниевые (наиболее широко представленный класс); — из арсенида галлия (в основном СВЧ транзисторы) и др.

По структуре транзисторы классифицируются на: — p-n-p структуры – биполярные транзисторы «прямой проводимости»; — n-p-n структуры – биполярные транзисторы «обратной проводимости»; — p-типа – полевые транзисторы с «p-типом проводимости»; — n-типа – полевые транзисторы с «n-типом проводимости». В свою очередь, полевые транзисторы подразделяются на приборы с управляющим p-n-переходом (JFET-транзисторы) и транзисторы с изолированным затвором (МДП или МОП-транзисторы).

По параметру мощности транзисторы делятся на: — транзисторы малой мощности (условно Рmах — транзисторы средней мощности (0,3 — мощные транзисторы (Рmах >1,5 Вт). Также косвенным показателем мощности транзистора является параметр максимально допустимого тока коллектора (Iк_max).

По параметру максимально допустимого напряжения Uкэ или Uси транзисторы делятся на: — транзисторы общего применения (условно Uкэ_mах — высоковольтные транзисторы (Uкэ_mах > 100 В). У современных биполярных и полевых транзисторов параметр Uкэ_mах (Uси_mах) может достигать нескольких тысяч вольт!

По частотным характеристикам транзисторы делятся на: — низкочастотные транзисторы (условно Fгр — среднечастотные транзисторы (3 — высокочастотные транзисторы (30 — сверхвысокочастотные транзисторы (Fгр > 300 МГц); Основным параметром, характеризующим быстродействия транзистора, является граничная частота коэффициента передачи тока (Fгр). Косвенным – входная и выходная ёмкости. Для транзисторов, разработанных для использования в ключевых схемах, также может указываться параметр задержки переключения (tr и ts).

По шумовым характеристикам транзисторы делятся на: — транзисторы с ненормированным коэффициентом шума; — транзисторы с нормированным коэффициентом шума (Кш).

Коэффициент передачи тока (h21 – для биполярного транзистора) и крутизна передаточной характеристики (S – для полевого) являются одними из основных параметров полупроводника. От него зависят как качественные показатели транзисторного усилительного каскада, так и требования, предъявляемые к предыдущим и последующим каскадам.

Однако давайте будем считать эту статью вводной, а углубляться и подробно рассуждать о влиянии тех или иных параметров на работу и поведение биполярного или полевого транзистора будем на следующих страницах. Полный перечень статей, посвящённых описанию работы транзистора, а также расчётам каскадов на полевых и биполярных полупроводниках, приведён в рубрике «Это тоже может быть интересно».

Характеристики IRF3205

  • Постоянный максимальный ток на коллектора при 10В и 25C – 110А
  • Постоянный максимальный ток на коллекторе при 10В и 100C – 80А
  • Максимальный ток при импульсном режиме – 390А
  • Максимальное напряжение на канале сток-исток – 55В
  • Напряжение для открытия – 2-4В
  • Максимальное напряжение на затворе – ±20В
  • Сопротивление канала сток-исток – 8 мОм
  • Емкость затвора – ±3200 пФ
  • Время открытия – ±14 нс
  • Время закрытия – ±50 нс
  • Максимальная мощность рассеивания – 200 Вт
  • Диапазон рабочих температур – -55-175C
  • Температура пайки (до 10 секунд) – 300C

Отдельное замечание по поводу максимального тока на коллекторе. Официально указанные 110 Ампер – это действительно максимальная сила тока для кристалла, но к нему он идет по тонкой проволочке от контакта истока. Она может выдержать максимум 75А. Это ограничение носит название “Максимальный ток корпуса”.

Если Вам необходимы полные характеристики и графики зависимости, то найти Вы их сможете в официальном datasheet.

Возможно, вам также будет интересно

Управление SiC, общие положения В общем случае оптимальные токовые характеристики карбидокремниевых ключей обеспечиваются при напряжении на затворе VGS = 18…20 В, что подтверждается кривыми, показанными на рис. 1 и 2. Как видно из рисунков, у карбида кремния намного выше модулирующий эффект напряжения управления. Это справедливо для режимов, где SiC-прибор ведет себя, как управляемое напряжением сопротивление

Управление изолированным затвором: основные положения В общем случае процесс перезаряда емкостей затвора может контролироваться сопротивлением, напряжением и током (рис. 1) . На практике чаще всего используется самый простой вариант (рис. 1а) с двумя раздельными резисторами для режимов включения и выключения, при этом одним из наиболее важных параметров является уровень «Плато Миллера», соответствующий плоской части характеристики затвора (рис. 2). Скорость и время коммутации

В работе проведено сопоставление импульсно-модуляционных способов регулирования выходных параметров последовательного резонансного инвертора, а именно исследована и аналитически описана частотно-широтно-импульсная модуляция. Получены регулировочные и коммутационные характеристики, показаны преимущества применения схем инверторов с неполной глубиной модуляции, что позволяет существенно снизить величину коммутируемого тока.

Полевые транзисторы с изолированным затвором (МДП-транзисторы)

Термин «МДП-транзистор» используется для обозначения полевых транзисторов, в которых управляющий электрод – затвор – отделен от активной области полевого транзистора диэлектрической прослойкой – изолятором. Основным элементом для этих транзисторов является структура металл-диэлектрик-полупроводник (М-Д-П).

Технология МДП-транзистора с встроенным затвором приведена на рисунке:

Исходный полупроводник, на котором изготовлен МДП-транзистор, называется подложкой (вывод П). Две сильнолегированные области n+ называется истоком (И) и стоком (С). Область подложки под затвором (З) называется встроенным каналом (n-канал).

Физической основой работы полевого транзистора со структурой металл-диэлектрик-полупроводник является эффект поля. Эффект поля состоит в том, что под действием внешнего электрического поля изменяется концентрация свободных носителей заряда в приповерхностной области полупроводника. В полевых приборах со структурой МДП внешнее поле обусловлено приложенным напряжением на металлический электрод-затвор. В зависимости от знака и величины приложенного напряжения могут быть два состояния области пространственного заряда (ОПЗ) в канале – обогащение, обеднение.

Режиму обеднения соответствует отрицательное напряжение Uзи, при котором концентрация электронов в канале уменьшается, что приводит к уменьшению тока стока. Режиму обогащения соответствует положительное напряжение Uзи и увеличение тока стока.

ВАХ представлена на рисунке:

Топология МДП-транзистора с индуцированным (наведенным) каналом р-типа приведена на рисунке:

При Uзи = 0 канал отсутствует и Ic = 0. Транзистор может работать только в режиме обогащения Uзи < 0. Если отрицательное напряжение Uзи превысит пороговое Uзи.пор, то происходит формирование инверсионного канала. Изменяя величину напряжения на затворе Uзи в области выше порогового Uзи.пор, можно менять концентрацию свободных носителей в инверсионном канале и сопротивление канала. Источник напряжения в стоковой цепи Uси вызовет ток стока Iс.

ВАХ представлена на рисунке:

В МДП-транзисторах затвор отделен от полупроводника слоем окисла SiO2. Поэтому входное сопротивление таких транзисторов порядка 1013…1015 Ом.

К основным параметрам полевых транзисторов относятся:

  • Крутизна характеристики при Uсп = const, Uпи = const. Типичные значения параметра (0,1…500) мА/В;
  • Крутизна характеристики по подложке при Uсп = const, Uзи = const. Типичные значения параметра (0.1…1) мА/В;
  • Начальный ток стока Iс.нач. – ток стока при нулевом значении напряжения Uзи. Типичные значения параметра: (0,2…600) мА – для транзисторов с управляющим каналом p-n переходом; (0,1…100) мА – для транзисторов со встроенным каналом; (0,01…0,5) мкА – для транзисторов с индуцированным каналом;
  • Напряжение отсечки Uзи.отс.. Типичные значения (0,2…10) В; пороговое напряжение Uп. Типичные значения (1…6) В;
  • Сопротивление сток-исток в открытом состоянии. Типичные значения (2..300) Ом
  • Дифференциальное сопротивление (внутреннее): при Uзи = const;
  • Статистический коэффициент усиления: μ = S · ri

Работа МДП-транзистора (MOSFET) с индуцированным каналом N-типа.

Подключим напряжение любой полярности между стоком и истоком. В этом случае электрический ток не пойдет,
поскольку между зонами N+ находиться область P, не пропускающая электроны.
Далее, если подать на затвор положительное напряжение относительно истока Uзи, возникнет электрическое поле.
Оно будет выталкивать положительные ионы (дырки) из зоны P в сторону подложки. В результате под затвором
концентрация дырок начнет уменьшаться, и их место займут электроны, притягиваемые положительным
напряжением на затворе.

Когда Uзи достигнет своего порогового значения, концентрация электронов в области затвора превысит концентрацию дырок.
Между стоком и истоком сформируется тонкий канал с электропроводностью N-типа, по которому пойдет ток Iси.
Чем выше напряжение на затворе транзистора Uзи, тем шире канал и, следовательно, больше сила тока.
Такой режим работы полевого транзистора называется режимом обогащения.

Принцип работы МДП-транзистора с каналом P–типа такой же,
только на затвор нужно подавать отрицательное напряжение относительно истока.

Возможно, вам также будет интересно

Известно, что биполярные транзисторы с изолированным затвором (IGBT — Insulated Gate Bipolar Transistor) обладают преимуществами легкого управления полевыми МОП-транзисторами и низкими потерями проводимости, характерными для биполярных транзисторов. На рис. 1 показана эквивалентная схема IGBT-транзистора. Традиционно IGBT используют в тех случаях, где необходимо работать с высокими токами и напряжениями. IGBT-транзисторы в настоящее время выпускают десятки производителей.

Динамические характеристики в технических спецификациях Стандартные спецификации (Datasheet) описывают динамические свойства IGBT и антипараллельных диодов (FWD) в виде таблиц данных и графиков . Типовые значения времен переключения и энергии потерь в заданной рабочей точке указываются в разделе Characteristics (рис. 1). В документации приводятся временные параметры IGBT: время задержки включения и выключения td(on)/td(off), время нарастания

Электромагнитное экранирование — это основной метод обеспечения электромагнитной совместимости (ЭМС) в части устойчивости к воздействию электромагнитным полем, а также к соответствию требованиям к уровню излучаемых помех. Установка экранов на помехоизлучающие элементы обеспечивает разделение сигналов, необходимое для функционирования радиоэлектронной аппаратуры (РЭА), повышает избирательность приемников, помехозащищенность чувствительной аппаратуры, чистоту сигнала генераторов, точность работы приборов. Правильный выбор метода экранирования, материала экрана и его конструкции очень важны именно на начальном этапе проектирования, поскольку он будет определять возможность успешного прохождения испытаний на ЭМС и качественного функционирования разрабатываемой аппаратуры.

Подключение IRF3205

Подключение данного транзистора ничем не отличается от способа подключения остальных n-канальных МОП-транзисторов в корпусе ТО-220. Ниже Вы можете увидеть цоколевку выводов MOSFET’а:

Управление осуществляется затвором (gate). В теории, полевику все равно где у него сток, а где исток. Однако в жизни проблема заключается в том, что ради улучшения характеристик транзистора контакты стока и стока производители делают разными. А на мощных моделях из-за технического процесса образуется паразитный обратный диод.

Подключение к микроконтроллеру

Так как для открытия транзистора на затвор необходимо подать около 20В, то подключить его напрямую к МК, который выйдет максимум 5, не получится. Есть несколько способов решения этой задачи:

  • Регулировать напряжение на затворе менее мощным транзистором, благодаря которому можно управлять напряжением в 5В. В таком случае схема будет простая и все, что придется добавить – это два резистора (подтягивающий на 10 кОм и ограничивающий ток на 100 Ом)
  • Использовать специализированный драйвер. Такая микросхема будет формировать необходимый сигнал управления и выравнивать уровень между контроллером и транзистором. Ниже приведена одна из возможных схем для такого способа.
  • Воспользоваться другим транзистором, у которого вольтаж открытия будет ниже. Вот список наиболее мощных и распространенных транзисторов, которые можно использовать с микроконтроллерами такими, как arduino, например:
    • IRF3704ZPBF
    • IRLB8743PBF
    • IRL2203NPBF
    • IRLB8748PBF
    • IRL8113PBF

Безопасная эксплуатация IRF3205

У всех МОСФЕТ транзисторов одинаковые причины для поломки.

Первое, о чем стоит помнить, так это о характеристиках конкретного экземпляра. Не вздумайте использовать его на недопустимых пределах. А при использовании на больших мощностях всегда нужно иметь под рукой дополнительное охлаждения в виде радиатора и, при необходимости, кулера.

Вторая по распространенности проблема – короткое замыкание между стоком и истоком. При такой ситуации кристалл внутри транзистора может легко расплавиться, что приведет устройство в негодность.

Последнее, о чем стоит помнить, это напряжение на затворе. В случае с этим МОП-транзистором, слой диэлектрика способен разрушиться при превышении 25 Вольт на затворе.

Чтобы выбрать подходящий для любого проекта транзистор, нужно опираться на его запас по мощности. Желательно, чтобы этот запас составлял около 30%: этого должно хватить и на нестабильность питания, и на возможную неисправность других компонентов.

Примеры применения

Может быть, аудиоусилители являются наиболее популярной областью применения p-канальных MOSFET-транзисторов. На рис. 10а n-канальный MOSFET применен в качестве верхнего ключа (HS), а p-канальный — в качестве нижнего (LS). Выход аудиоусилителя как бы является в данном случае схемой истокового повторителя. Если коэффициент усиления по напряжению данной схемы равен 1, схема устойчива. На рис. 10б использован транзистор Дарлингтона в комбинации p-n-p- и n-канального транзисторов, вместо p-канального MOSFET. MOSFET включен по схеме с общим истоком, которая имеет большой коэффициент усиления по напряжению и обратную связь, контролируемую p-n-p-транзистором. То есть эта схема может быть неустойчива. После компенсации частотный диапазон этой схемы не может быть достаточен для передачи аудиосигнала высокого качества.

Рис. 10. Выходной каскад на MOSFET для аудиоусилителя:
а) n-канальный и p-канальный;
б) оба n-канальные