Катушка индуктивности. описание, характеристики, формула расчета

Определение и принцип работы

В наших уроках об электромагнетизме мы увидели, что когда электрический ток протекает через проводник, вокруг проводника возникает магнитный поток. Это создает взаимосвязь между направлением магнитного потока, который циркулирует вокруг проводника, и направлением тока, протекающего через тот же проводник, что приводит к хорошо известной взаимосвязи между током и направлением магнитного потока, называемой «Правило правой руки Флеминга».

Но есть и другое важное свойство, относящееся к намотанной катушке, которая также существует, а именно то, что вторичное напряжение индуцируется в ту же катушку движением магнитного потока, поскольку оно противостоит любым изменениям электрического тока, протекающего по нему. Типичный индуктор

Типичный индуктор

В своей основной форме Индуктор — это не что иное, как катушка проволоки, намотанная вокруг центрального сердечника. Для большинства катушек токI, протекающий через катушку, создает магнитный поток NΦ вокруг нее, который пропорционален этому потоку электрического тока.

Индуктор, называемый также дросселем, является еще одним типом пассивного электрического компонента, который является простой катушкой провода предназначенного, чтобы воспользоваться этой взаимосвязью путем индукции магнитного поля, сам по себе, или в активной зоне в результате тока, проходящем через катушки. Это приводит к гораздо более сильному магнитному полю, чем то, которое создавалось бы простой катушкой из проволоки.

Индукторы образованы проволокой, плотно обернутой вокруг сплошного центрального сердечника, который может представлять собой либо прямой цилиндрический стержень, либо непрерывную петлю или кольцо для концентрации их магнитного потока.

Схематическое обозначение индуктора — это катушка с проводом, поэтому катушку с проводом можно также назвать индуктором. Индукторы обычно классифицируются в соответствии с типом внутреннего сердечника, вокруг которого они намотаны, например, полый сердечник, твердый железный сердечник или мягкий ферритовый сердечник, причем различные типы сердечников различаются путем добавления непрерывных или пунктирных параллельных линий рядом с проволочная катушкой, как показано ниже.

Плагин Ferrite: Расчет индуктивности на ферритовом стержне

В отличии от тороидальной индуктивности на ферритовом кольце, магнитный поток катушки на ферритовом стержне не замкнут целиком внутри феррита и каждая силовая линия проходит и по ферритовому стержню и по воздуху, поэтому расчет такой катушки представляет довольно сложную задачу. Индуктивность зависит от:

  • магнитной проницаемости ферритового стержня и его размеров;
  • размеров самой катушки;
  • взаимного соотношения размеров катушки и стержня;
  • положения катушки относительно центра стержня.

Расчет индуктивности катушки на ферритовом стержне основан на определении относительной эффективной проницаемости стержня. Другими словами, нам нужно определить насколько возрастет индуктивность катушки с “воздушным сердечником” если внутрь нее вставить ферритовый стержень. Основная формула выглядит вот так:

,где Lf / Lair – отношение индуктивности катушки с ферритом к индуктивности той же катушки без феррита, а коэффициенты x, k и μfe вычисляются по следующему алгоритму:

  1. l’ = lc + 0.45 dc;
  2. φ_φmax ≈ 1 / [ 1 + { ( ( lf – lc ) / df )1.4 } / ( 5 μ ) ];
  3. Canf = 0.5 π ε ( lf – lc ) / [ ln { 2 ( lf + df) / df } – 1 ];
  4. k = [ (φ_φmax Canf / ε ) + 2 df ] / 2 dc
  5. x = 5.1 [ l’ / dc ] / [1+ 2.8 ( dc / l’ )];
  6. μfe = ( μ -1) ( df /dc)2 +1;

где ε = 8,8542*10-12 Ф/м – электрическая постоянная, μ – начальная магнитная проницаемость материала стержня. Основные размеры в метрах, обозначения понятны из рисунка:

Немного теории обосновывающей этот алгоритм.

  • Можно считать что воздушная катушка имеет магнитную цепь состоящую из двух частей. Снаружи катушки и внутри нее. Они отличаются плотностью силовых линий и . Если магнитное сопротивление внутренней части магнитной цепи выше, чем наружной части (а это так, поскольку ее площадь поперечного сечения намного меньше), тогда применение феррита уменьшает это сопротивление и имеет эффект увеличения индуктивности. Это отношение двух частей магнитных сопротивлений магнитной цепи воздушной катушки обозначено в основной формуле как x и вычисляется на 5-ом шагу алгоритма.
  • Параметр μfe учитывает случай, когда обмотка не плотно прилегает к стержню, т.е. между стержнем и обмоткой существует радиальный зазор.
  • Параметр Canf учитывает влияние частей стержня, которые выступают за пределы катушки. Эти части уменьшают магнитное сопротивление внешней части магнитной цепи и также увеличивают индуктивность.
  • Параметр φ_φmax учитывает конечное магнитное сопротивление феррита. Этот параметр, наряду с параметром Canf используется для расчета коэффициента k из основного уравнения

При смещении катушки относительно стержня индуктивность катушки уменьшается, это обстоятельство учитывается с помощью поправочного коэффициента K:

,где

sh – относительное смещение = смещение s деленное на половину длины сердечника [sh = s / ( lf / 2 )].

Эта формула получена методом регрессионного анализа и справедлива при s = 0,05 – 0,75

В итоге индуктивность катушки на ферритовом стержне определяется по следующей формуле:

Индуктивность катушки  “воздушным” сердечником Lair рассчитывается по алгоритму расчета однослойной катушки с учетом шага намотки. Длину намотки можно определить по следующей формуле:

,где

  • N – число витков.
  • dw – диаметр провода.
  • p – шаг намотки.

Алгоритм имеет следующие ограничения в расчетах:

  • шаг намотки не может превышать удвоенного диаметра провода;
  • диаметр катушки не может быть больше удвоенного диаметра стержня;
  • длина намотки должна быть меньше 3/4 длины стержня;
  • длина стержня должна быть не менее чем в 12 раз больше его диаметра;
  • при смещении катушки она не должна доходить до края стержня на 1/8 его длины;
  • начальная магнитная проницаемость стержня должна быть больше 100;

Также как и в дросселе на ферритовом кольце с немагнитным зазором, при больших значениях начальной магнитной проницаемости стержня его эффективная магнитная проницаемость слабо зависит от начальной и составляет величину не более нескольких десятков.

Кроме того, вы можете воспользоваться онлайн-калькулятором катушки на ферритовом стержне.

Особая благодарность за конструктивную помощь и соавторство в разработке методики расчета.

Применение катушек индуктивности — Меандр — занимательная электроника

Читать все новости ➔

Катушки индуктивности позволяют запасать электрическую энергию в магнитном поле. Типичными областями их применения являются сглаживающие фильтры и различные селективные цепи.

Электрические характеристики катушек индуктивности определяются их конструкцией, свойствами материала магнитопровода и его конфигурацией, числом витков обмотки.

Ниже приведены основные факторы, которые следует учитывать при выборе катушки индуктивности:

  • требуемое значение индуктивности (Гн, мГн, мкГн, нГн),
  • максимальный ток катушки. Большой ток очень опасен из-за слишком сильного нагрева, при котором повреждается изоляция обмоток. Кроме того, при слишком большом токе может произойти насыщение магнитопровода магнитным потоком, что приведет к значительному уменьшению индуктивности,
  • точность выполнения индуктивности,
  • температурный коэффициент индуктивности,
  • стабильность, определяемая зависимостью индуктивности от внешних факторов,
  • активное сопротивление провода обмотки,
  • добротность катушки. Она обычно определяется на рабочей частоте как отношение индуктивною и активного сопротивлений,
  • частотный диапазон катушки.

В настоящее время выпускаются радиочастотные катушки индуктивности на фиксированные значения частоты с индуктивностями от 1 мкГн до 10 мГн. Для подстройки резонансных контуров желательно иметь катушки с регулируемой индуктивностью.

Однослойные с незамкнутым магнитопроводом катушки индуктивности применяются в цепях настройки приборов.

Многослойные с не замкнутым магнитопроводом катушки используются в фильтрах и высокочастотных трансформаторах. Многослойные катушки индуктивности броневого типа с сердечником из феррита применяются в фильтрах низких и средних частот и трансформаторах, а аналогичные катушки, но со стальным сердечником используются в сглаживающих дросселях и низкочастотных фильтрах.

Применение катушек индуктивности

  1. Применявшаяся в качестве реактивного сопротивления для люминесцентных ламп катушка индуктивности.
  2. Катушки индуктивности (совместно с конденсаторами и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п..
  3. Катушки индуктивности используются в импульсных стабилизаторах как элемент, накапливающий энергию и преобразующий уровни напряжения.
  4. Две и более индуктивно связанные катушки образуют трансформатор.
  5. Катушка индуктивности, питаемая импульсным током от транзисторного ключа, иногда применяется в качестве источника высокого напряжения небольшой мощности в слаботочных схемах, когда создание отдельного высокого питающего напряжения в блоке питания невозможно или экономически нецелесообразно. В этом случае на катушке из-за самоиндукции возникают выбросы высокого напряжения, которые можно использовать в схеме, например, выпрямив и сгладив.

Катушки используются также в качестве электромагнитов. Катушки применяются в качестве источника энергии для возбуждения индуктивно-связанной плазмы. Для радиосвязи — излучение и приём электромагнитных волн (магнитная антенна, кольцевая антенна). Рамочная антенна, DDRR, Индукционная петля. Для разогрева электропроводящих материалов в индукционных печах. Как датчик перемещения: изменение индуктивности катушки может изменяться в широких пределах перемещением (вытаскиванием) сердечника.

Устройство катушки

Катушку изготавливают путем наматывания на цилиндрический или тороидальный каркас провода в изоляции. Изоляция — обязательный атрибут, без нее из-за межвиткового замыкания, катушка превратится в обычный проводник.

На концах намотанного провода устанавливают контакты. С их помощью катушка индукции подключается в цепь последовательно с нагрузкой. Внутрь каркаса может помещаться металлический сердечник.

 При изготовлении катушки провод наматывают двумя способами:

  1. в один слой: такую обмотку называют «рядовой с шагом»;
  2. в несколько слоев: способ обозначают терминами «внавал» или «универсал».

Расстояние, на которое витки провода отстоят друг от друга, называется шагом. При намотке некоторых катушек шаг постепенно увеличивают (прогрессивный шаг), чем добиваются снижения паразитной емкости.

От чего зависит индуктивное сопротивление

Прежде чем ответить на поставленный вопрос, следует отметить, чем отличается активное и индуктивное сопротивление. При включении в постоянную цепь активного сопротивления произойдет изменение величины тока на этом участке.

На самом сопротивлении появится некое напряжение, свидетельствующее о наличии ограничения тока. Такое положение вещей будет сохраняться при включении и выключении питания.

Совсем иначе происходит при замене резистора на катушку индуктивности. При включении питания на катушке будет наблюдаться падение напряжения, свидетельствующее о затруднительном проходе тока. Через какое-то время падение напряжения снизится практически до нуля, что говорит о беспрепятственном проходе тока.

Ограничение может быть связано только с некоторым активным сопротивлением провода катушки. Такое состояние будет продолжаться до тех пор, пока питание не отключат. На катушке вновь появится напряжение, но обратное напряжению питания. Причем это напряжение может значительно превышать питающее напряжение.

Первое, от чего зависит индуктивное сопротивление, — частота изменения величины или направления тока. Второе – величина индуктивности самой катушки.

Отличие между индуктивным сопротивлением и обычным активным (омическим) заключается в том что при прохождении через катушку переменного тока в ней не происходит потеря мощности. Для постоянного тока индуктивное сопротивление равно нулю.

Вокруг точечного заряда всегда присутствует электромагнитное поле. При движении заряда, поле также перемещается. Причем это поле имеет свою инерционность, заставляя заряд двигаться прямолинейно. Чем больше зарядов скапливается, тем большую силу обретает поле. Так в одиночном проводнике сила поля будет одна, а скрученном в катушку проводе это электромагнитное поле будет намного сильнее.

Что такое индуктивное сопротивление

Само понятие индуктивного сопротивления встречается в полном сопротивлении переменной сети. Объясняется тем, что как такового индуктивного сопротивления в природе не существует. Есть индуктивность, которая никак не связана с резистивным сопротивлением. Вот в это нужно разобраться.

Индуктивность – это электрическая инертность, возникающая в замкнутой цепи при прохождении электрического тока. Для примера, чтобы машина, идущая на какой-то скорости, могла остановиться, ей нужно время и место для тормозов. Что-то подобное происходит с индуктивностью.

Почему тогда используют понятие индуктивное сопротивление? При изменении направления или величины тока, магнитное поле, окутывающее проводник, по которому течет ток, своим влиянием мешает производить указанные изменения.

Его действие сопоставимо действию резистивного сопротивления, то есть, в каких-то случаях они могут быть похожи.

Магнитное поле

Это словосочетание знакомо нам со школьной скамьи. Но многие уже забыли о том, что оно означает. Хотя каждый из нас помнит, что магнитное поле способно воздействовать на предметы, притягивая или отталкивая их. Но, помимо этого, у него есть и другие особенности: например, магнитное поле может воздействовать на электрически заряженные объекты, а это значит, что электричество и магнетизм тесно связаны между собой, и одно явление может плавно перетекать в другое. Учёные поняли это достаточно давно и поэтому стали называть все эти процессы вместе одним словом — «электромагнитные явления». На самом деле электромагнетизм — довольно интересная и ещё не до конца изученная область физики. Она очень обширна, и те знания, что мы можем здесь изложить вам, — это очень малая часть того, что известно человечеству о магнетизме сегодня.

А сейчас перейдём непосредственно к предмету нашей статьи. Следующий раздел будет посвящён рассмотрению непосредственно устройства катушки индуктивности.

Катушка индуктивности в цепи переменного тока

В цепи переменного тока в катушке индуктивности происходит следующий процесс:

  1. ток возбуждает в катушке электромагнитное поле. Поскольку он переменный, то и параметры электромагнитного поля во времени меняются, то есть оно тоже переменное;
  2. переменное магнитное поле в соответствии с законом электромагнитной индукции возбуждает в самой катушке ЭДС. Ее так и называют — ЭДС самоиндукции. Она всегда идет против направления изменения силы тока. Следовательно, в первой половине полупериода, когда сила тока возрастает, катушка это нарастание сдерживает. При этом часть энергии электричества накапливается в формируемом катушкой магнитном поле;
  3. во второй половине полупериода, катушка, наоборот, противостоит снижению силы тока, возвращая в цепь накопленную в виде магнитного поля энергию.

Таким образом, катушка индукции оказывает сопротивление источнику переменного тока. Это сопротивление имеет иную природу, нежели активное, преобразующее электрическую энергию в тепло.

Сопротивление катушки энергию не потребляет, а лишь аккумулирует ее и затем снова возвращает в цепь, меняя характер протекания в ней тока. Его называют индуктивным. В противоположность активному, оно, как и емкостное сопротивление конденсатора, является реактивным.

Эффект проявляется тем сильнее, чем выше частота переменного тока, то подтверждается формулой расчета индуктивного сопротивления: XL = w*L = 2 π * f * L, где:

  • XL — индуктивное сопротивление, Ом;
  • W — круговая частота переменного тока, рад/с;
  • F — частота переменного тока, Гц;
  • L — индуктивность катушки, Гн.

Индуктивное сопротивление, несмотря на иной принцип действия, измеряется в тех же единицах, что и активное — Омах. Таким образом, в цепях переменного тока катушка индуктивности выступает ограничителем силы тока и нагрузку, в отличие от цепи постоянного, вводить не требуется.

Зависимость индуктивного сопротивления катушки от частоты тока позволяет использовать данный элемент помимо прочего, для фильтрации высокочастотных помех или сигналов. Например, при установке его в схеме динамика, последний воспроизводит только низкие частоты, то есть играет роль сабвуфера.

На преодоление индуктивного сопротивления источник расходует часть мощности — это реактивная мощность (Wр). Остальное называют активной или полезной мощностью (Wа) — она производит полезную работу. Вместе реактивная и активная мощности образуют полную: Wр + Wа = Wпол.

График происходящих процессов в катушке индуктивности

Доля активной мощности характеризуется параметром cosϕ: cosϕ = Wа / W пол. Полную мощность принято измерять в вольт-амперах (ВА). Именно эти единицы указываются в характеристике источников бесперебойного питания (ИБП) и дизельных электрогенераторов. Активная мощность измеряется в привычных ваттах (Вт).

Все сказанное имеет отношение к потребителям с электродвигателями и трансформаторами, поскольку обмотки этих элементов по сути, являются катушками индуктивности. То есть если на шильдике импульсного блока питания компьютера указано, что его мощность составляет 400 Вт и cosϕ = 0,7, то от «бесперебойника» данное устройство потянет мощность Wпол = Wа / cosϕ = 400 0,7 = 571,4 ВА.

При большом количестве подобных потребителей, затраты на реактивную мощность существенно перегружают генераторы электростанций, ввиду чего в энергосетях применяют установки компенсации реактивной мощности (УКРМ).

При включении катушки индуктивности в цепь постоянного тока процесс, описанный в пунктах 1-3, также имеет место, только не все время, а в момент включения/отключения.

Если собрать простейшую цепь из последовательно установленных выключателя, катушки и лампы, можно видеть, что лампочка загорается при замыкании цепи с запаздыванием и также с запаздыванием гаснет после размыкания.

Объясняется это тем, что ток в момент включения меняется от нулевого значения до максимума, также в момент отключения его значение меняется, хоть и очень быстро, от максимума до нуля. В первом случае катушка накапливает в себе часть энергии в виде магнитного поля, во втором — отдает ее лампе, отчего та и горит после размыкания цепи.

Колебательный контур

Емкость и индуктивный элемент, соединенные в цепь, образуют колебательный контур с резко выраженными частотными свойствами и будут являться резонансной системой. В качестве системы используется конденсатор, изменяя емкость которого, можно производить коррекцию частотных свойств.

Последовательный и параллельный колебательные контуры

Если измерить резонансную частоту, используя известный конденсатор, то можно определить индуктивность катушки.

Индуктивность – важнейший элемент в разных областях электротехники. Для правильного применения нужно знать все параметры используемых элементов.

Устройство, которое позволяет определить параметры катушек индуктивности, в том числе добротность, может называться L-метр или Q-метр.

Q-метр для измерения добротности

Колебательные контуры

Простейшей резонансной цепью является последовательный колебательный контур, состоящий из включенных катушек индуктивности и конденсатора, через которые протекает переменный ток. Чтобы определить индуктивность катушки, формула используется следующая:

XL = W х L,

где XL показывает реактивное сопротивление катушки, а W — круговая частота.

Если используется реактивное сопротивление конденсатора, то формула будет выглядеть следующим образом:

Xc = 1 : W х C.


Важными характеристиками колебательного контура являются резонансная частота, волновое сопротивление и добротность контура. Первая характеризует частоту, где сопротивление контура имеет активный характер. Вторая показывает, как проходит реактивное сопротивление на резонансной частоте между такими величинами, как емкость и индуктивность колебательного контура. Третья характеристика определяет амплитуду и ширину амплитудно-частотных характеристик (АЧХ) резонанса и показывает размеры запаса энергии в контуре по сравнению с потерями энергии за один период колебаний. В технике частотные свойства цепей оцениваются при помощи АЧХ. В этом случае цепь рассматривается как четырехполюсник. При изображении графиков используется значение коэффициента передачи цепи по напряжению (К). Эта величина показывает отношение выходного напряжения к входному. Для цепей, которые не содержат источников энергии и различных усилительных элементов, значение коэффициента не больше единицы. Оно стремится к нулю, когда на частотах, отличающихся от резонансной, сопротивление контура имеет высокое значение. Если же величина сопротивления минимальна, то коэффициент близок к единице.

При параллельном колебательном контуре включены два реактивных элемента с разной силой реактивности. Использование такого вида контура подразумевает знание, что при параллельном включении элементов нужно складывать только их проводимости, но не сопротивления. На резонансной частоте суммарная проводимость контура равна нулю, что говорит о бесконечно большом сопротивлении переменному току. Для контура, в котором параллельно включены емкость (C), сопротивление (R) и индуктивность, формула, объединяющая их и добротность (Q), следующая:

Q = R√C : L.

При работе параллельного контура за один период колебаний дважды происходит энергетический обмен между конденсатором и катушкой. В этом случае появляется контурный ток, который значительно больше значения тока во внешней цепи.

Способы расчёта

Существует несколько основных способов определить индуктивность катушки. Все формулы, которые будут использоваться в расчётах, легко можно найти в справочной литературе или интернете. Весь процесс вычисления довольно простой и не составит труда для людей, имеющих элементарные математические и физические знания.

Через силу тока

Этот расчёт считается самым простым способом определения индуктивности катушки. Формула через силу тока вытекает из самого термина. Какова индуктивность катушки — можно определить по формуле: L=Ф/I, где:

  • L — индуктивность контура (в генри);
  • Ф — величина магнитного потока, измеряемого в веберах;
  • I — сила тока в катушке (в амперах).

Соленоид конечной длины

Соленоид представляет собой тонкую длинную катушку, где толщина обмотки значительно меньше диаметра. В этом случае расчёты ведутся по той же формуле, что и через силу тока, только величина магнитного потока будет определяться следующим образом: Ф=µ0NS/l, где:

  • µ0 — магнитная проницаемость среды, определяющаяся по справочным таблицам (для воздуха, который принимается по умолчанию в большинстве расчётов, она равна 0,00000126 генри/метр);
  • N — количество витков в катушке;
  • S — площадь поперечного сечения витка, измеряемая в квадратных метрах;
  • l — длина соленоида в метрах.

Коэффициент самоиндукции соленоида можно рассчитать и исходя из способа определения энергии магнитного потока поля. Это более простой вариант, но он требует наличия некоторых величин. Формула для нахождения индуктивности — L=2W/I 2 , где:

  • W — энергия магнитного потока, измеряемая в джоулях;
  • I — сила тока в амперах.

Катушка с тороидальным сердечником

В большинстве случаев тороидальная катушка наматывается на сердечник, изготовленный из материала, обладающего большой магнитной проницаемостью. В этом случае для расчётов индуктивности можно использовать формулу для прямого соленоида бесконечной длины. Она имеет такой вид: L=N µ0 µS/2 πr, где:

  • N — число витков катушки;
  • µ — относительная магнитная проницаемость;
  • µ0 — магнитная постоянная;
  • S — площадь сечения сердечника;
  • π — математическая постоянная, равная 3,14;
  • r — средний радиус тора.

Длинный проводник

Большинство таких квазилинейных проводников имеет круглое сечение. В этом случае величина коэффициента самоиндукции будет определяться по стандартной формуле для приближённых расчётов: L= µ0l (µelnl/r+ µi/4)/2 π. Здесь используются следующие обозначения:

  • l — длина проводника в метрах;
  • r — радиус сечения провода, измеряемый в метрах;
  • µ0 — магнитная постоянная;
  • µi — относительная магнитная проницаемость, характерная для материала, из которого изготовлен проводник;
  • µe — относительная магнитная проницаемость внешней среды (чаще всего принимается значение для вакуума, которое равняется 1);
  • π — число Пи;
  • ln — обозначение логарифма.

Магнитное поле катушки с током

Металлический провод, намотанный кольцами на любой цилиндрический стержень (деревянный, пластмассовый и т.п.) — это и есть электромагнитная катушка. Провод должен быть изолированным, то есть покрыт каким-либо изолятором (лаком или пластиковой оплеткой) во избежание замыкания соседних витков. В результате протекания тока магнитные поля всех витков складываются и получается, что суммарное магнитное поле катушки с током идентично (полностью похоже) магнитному полю постоянного магнита.

Рис. 2. Магнитное поле катушки и постоянного магнита.

Внутри катушки магнитное поле будет однородное, как в постоянном магните. Снаружи магнитные линии поля катушки с током можно обнаружить с помощью мелких металлических опилок. Линии магнитного поля замкнуты. По аналогии с магнитной стрелкой компаса, катушка с током имеет два полюса — южный и северный. Силовые линии выходят из северного полюса и заканчиваются в южном.

Для катушек с током существуют дополнительные, отдельные названия, которые используют в зависимости от области применения:

  • Катушка индуктивности, или просто — индуктивность. Термин используется в радиотехнике;
  • Дроссель (drossel — регулятор, ограничитель). Используется в электротехнике;
  • Соленоид. Это составное слово происходит от двух греческих слов: solen — канал, труба и eidos — подобный). Так называют специальные катушки с сердечниками из специальных магнитных сплавов (ферромагнетиков), которые используют в качестве электромеханических механизмов. Например, в автомобильных стартерах втягивающее реле — это соленоид.

Рис. 3. Катушки индуктивности, дроссель, соленоид