Напряженность электрического поля конденсатора формула

Оглавление

Емкость конденсатора

Электрические заряды

Как вы знаете, существует два типа зарядов: положительный заряд и отрицательный заряд. Ну и все как обычно, одноименные заряды отталкивается, а разноименные  – притягиваются. Физика седьмой класс).

Давайте еще раз рассмотрим простую модель конденсатора.

Если мы соединим наш конденсатор с каким-нибудь источником питания постоянного тока, то мы его зарядим. В этот момент положительные заряды, которые идут от плюса источника питания, осядут на одной пластине, а отрицательные заряды с минуса источника питания – на другой.

Самое интересное то, что количество положительных зарядов будет равняться количеству отрицательных зарядов.

Даже если мы отсоединим источник питания постоянного тока, то у нас конденсатор так и останется заряженным.

Почему так происходит?

Во-первых, заряду некуда течь. Хотя с течением времени он все равно будет разряжаться. Это  зависит от материала диэлектрика.

Во-вторых, происходит взаимодействие зарядов. Положительные заряды притягиваются к отрицательным, но они не могут соединиться с друг другом, так как им мешает диэлектрик, который, как вы знаете, не пропускает электрический ток. В это время между обкладками конденсатора возникает электрическое поле, которое как раз и запасает энергию конденсатора.

Когда конденсатор заряжается, электрическое поле между обкладками становится сильнее. Соответственно, когда конденсатор разряжается, электрическое поле слабеет. Но как много заряда мы можем “впихнуть” в конденсатор? Вот здесь и применяется такое понятие, как емкость конденсатора.

Что такое емкость

Емкость конденсатора – это его способность накапливать заряд на своих пластинах в виде электрического поля.

Но ведь емкость может быть не только у конденсатора. Например, емкость бутылки 1 литр, или емкость бензобака – 100 литров и так далее. Мы ведь не можем впихнуть в бутылку емкость в 1 литр больше, чем рассчитана эта бутылка, так ведь? Иначе остатки жидкости просто не влезут в бутылку и будут выливаться из нее. Точно такие же дела и обстоят с конденсатором. Мы не сможем впихнуть в него заряда больше, если он не рассчитан на это. Поэтому, емкость конденсатора выражается формулой:

где

С – это емкость, Фарад

Q – количество заряда на одной из обкладок конденсатора, Кулоны

U – напряжение между пластинами, Вольты

Получается, 1 Фарад – это когда на обкладках конденсатора хранится заряд в 1 Кулон и напряжение между пластинами 1 Вольт. Емкость может принимать только положительные значения.

Значение в 1 Фарад – это слишком много. На практике в основном пользуются значениями микрофарады, нанофарады и пикофарады. Хочу вам напомнить, что приставка “микро” – это 10-6 , “нано” – это 10-9 , пико – это 10-12 .

Какой тип использовать

Требования к конденсаторам для запуска электродвигателей простые:

  • величина ёмкости достаточная для запуска мотора;
  • номинальное напряжение подбирают на 10-15% выше, чем подключаемое;
  • двухполюсник обязан работать с приложенным видом тока.

Есть небольшие нюансы для электрических машин, различающихся по принципу работы.

Для работы с трехфазным электродвигателем

В этом случае деталь осуществляет сдвиг фазы у обмотки асинхронной машины, и ее ёмкость должна быть высокой. Создание пускового момента и дальнейшая работа под нагрузкой требуют более точного подбора этой характеристики элемента.

Включение с однофазным электродвигателем

Пусковые конденсаторы здесь применяются для присоединения дополнительной обмотки. Она предназначена для запуска мотора и может быть включена как постоянно, через двухполюсник, так и кратковременно без него.

Особенности выбора детали

Выбранные конденсаторы пусковые соответствуют подаваемому напряжению. Величина их ёмкости не должна позволять двигателю перегреваться во время работы и легко запускать его в момент включения. Особых сложностей с подбором элементов не возникает.

Энергия заряженного конденсатора

Как и любая система заряжен­ных тел, конденсатор обладает энер­гией. Вычислить энергию заряжен­ного плоского конденсатора с одно­родным полем внутри него не­сложно.

Энергия заряженного конденса­тора.Для того чтобы зарядить конденсатор, нужно совершить рабо­ту по разделению положительных и отрицательных зарядов. Согласно закону сохранения энергии эта ра­бота равна энергии конденсатора.

В том, что заряженный конденсатор обладает энергией, можно убедиться, если разрядить его через цепь, со­держащую лампу накаливания, рас­считанную на напряжение в не­сколько вольт (рис.4). При раз­рядке конденсатора лампа вспыхи­вает.

Энергия конденсатора пре­вращается в другие формы: тепло­вую, световую.

Выведем формулу для энергии плоского конденсатора.

Напряженность поля, созданного зарядом одной из пластин, равна Е/2, где Е — напряженность поля в конденсаторе. В однородном поле одной пластины находится заряд q, распределенный по поверхности дру­гой пластины (рис.5). Согласно формуле Wp=qEd. для потенциальной энергии заряда в однородном поле энергия конденсатора равна:

(1)

где q — заряд конденсатора, a d — расстояние между пластинами.

(2)

Так как Ed=U, где U — разность потенциалов между обкладка­ми конденсатора, то его энергия равна:

Эта энергия равна работе, ко­торую совершит электрическое поле при сближении пластин вплот­ную.

Заменив в формуле (2) раз­ность потенциалов или заряд с по­мощью выражения для элек­троемкости конденсатора, получим

(3)

Можно доказать, что эти форму­лы справедливы для энергии любого конденсатора, а не только для плос­кого.

Энергия электрического поля.Согласно теории близкодействия вся энергия взаимодействия заряженных тел сконцентрирована в электриче­ском поле этих тел. Значит, энергия может быть выражена через основную характеристику поля — напря­женность.

Совет

Так как напряженность электри­ческого поля прямо пропорциональ­на разности потенциалов

(U = Ed),то согласно формуле

(4)

энергия конденсатора прямо пропор­циональна напряженности электри­ческого поля внутри него: Wp~E2. Детальный расчет дает следующее значение для энергии поля, приходя­щейся на единицу объема, т.е. для плотности энергии:

где ε0 — электрическая постоянная

Постоянный ток. Сила и плотность тока. Закон Ома.

Постоянный электрический ток

Краткие теоретические сведения

1. Сила тока определяется по формуле

Для постоянного тока

где – заряд, прошедшей через поперечное сечение проводника за время .

2.Если ток постоянный, плотность тока во всем сечении однородного проводника не изменяется ,

где – площадь поперечного сечения проводника.

Закон Ома

для однородного участка цепи имеет вид:

где – разность потенциалов (напряжение) на концах участка; – сопротивление.

Для неоднородного участка цепи этот закон записывается так:

где – ЭДС источника тока на этом участке; – внутреннее сопротивление источника;

– внешнее сопротивление цепи; – падение напряжения на участке 1-2.

· Для замкнутой цепи .

4.Сопротивление цилиндрического однородного проводника равно ,

где – удельное сопротивление; – удельная проводимость;

– длина; S – площадь поперечного сечения проводника.

Вектор магнитной индукции.

Вектор магнитной индукции – аналог напряженности электрического поля. Основной силовой характеристикой маг­нитного поля является вектор магнитной индукции.Вектор индукции магнитного поля B⃗направлен от южного полюса S стрелки (свободно вращающейся в магнитном поле) к северному N

Закон Ампера.

Закон Ампера – сила, действующая на проводник с током, помещенный в однородное магнитное поле, пропорциональна длине проводника, вектору магнитной индукции, силе тока и синусу угла между вектором магнитной индукции и проводником.

Магнитный момент витка с током – физическая величина характеризующий магнитные свойства системы в виде кругового витка с током Где, I ток протекающий по витку S площадь витка с током n нормаль к плоскости в которой находится виток

Соединение конденсаторов: формулы

  1. Последовательное соединение
  2. Онлайн калькулятор
  3. Смешанное соединение
  4. Параллельное соединение
  5. Видео

В электронных и радиотехнических схемах широкое распространение получило параллельное и последовательное соединение конденсаторов. В первом случае соединение осуществляется без каких-либо общих узлов, а во втором варианте все элементы объединяются в два узла и не связаны с другими узлами, если это заранее не предусмотрено схемой.

Последовательное соединение

При последовательном соединении два и более конденсаторов соединяются в общую цепь таким образом, что каждый предыдущий конденсатор соединяется с последующим лишь в одной общей точке. Ток (i), осуществляющий зарядку последовательной цепи конденсаторов будет иметь одинаковое значение для каждого элемента, поскольку он проходит только по единственно возможному пути. Это положение подтверждается формулой: i = ic1 = ic2 = ic3 = ic4.

В связи с одинаковым значением тока, протекающего через конденсаторы с последовательным соединением, величина заряда, накопленного каждым из них, будет одинаковой, независимо от емкости. Такое становится возможным, поскольку заряд, приходящий с обкладки предыдущего конденсатора, накапливается на обкладке последующего элемента цепи. Поэтому величина заряда у последовательно соединенных конденсаторов будет выглядеть следующим образом: Qобщ= Q1 = Q2 = Q3.

Если рассмотреть три конденсатора С1, С2 и С3, соединенные в последовательную цепь, то выясняется, что средний конденсатор С2 при постоянном токе оказывается электрически изолированным от общей цепи. В конечном итоге величина эффективной площади обкладок будет уменьшена до площади обкладок конденсатора с самыми минимальными размерами. Полное заполнение обкладок электрическим зарядом, делает невозможным дальнейшее прохождение по нему тока. В результате, движение тока прекращается во всей цепи, соответственно прекращается и зарядка всех остальных конденсаторов.

Общее расстояние между обкладками при последовательном соединении представляет собой сумму расстояний между обкладками каждого элемента. В результате соединения в последовательную цепь, формируется единый большой конденсатор, площадь обкладок которого соответствует обкладкам элемента с минимальной емкостью. Расстояние между обкладками оказывается равным сумме всех расстояний, имеющихся в цепи.

Падение напряжения на каждый конденсатор будет разным, в зависимости от емкости. Данное положение определяется формулой: С = Q/V, в которой емкость обратно пропорциональна напряжению. Таким образом, с уменьшением емкости конденсатора на него падает более высокое напряжение. Суммарная емкость всех конденсаторов вычисляется по формуле: 1/Cобщ = 1/C1 + 1/C2 + 1/C3.

Главная особенность такой схемы заключается в прохождении электрической энергии только в одном направлении. Поэтому в каждом конденсаторе значение тока будет одинаковым. Каждый накопитель в последовательной цепи накапливает равное количество энергии, независимо от емкости. То есть емкость может воспроизводиться за счет энергии, присутствующей в соседнем накопителе.

Онлайн калькулятор, для расчета емкости конденсаторов соединенных последовательно в электрической цепи.

Параллельное соединение конденсаторов

Параллельным считается такое соединение, при котором конденсаторы соединяются между собой двумя контактами. Таким образом в одной точке может соединяться сразу несколько элементов.

Данный вид соединения позволяет сформировать единый конденсатор с большими размерами, площадь обкладок которого будет равна сумме площадей обкладок каждого, отдельно взятого конденсатора. В связи с тем, что емкость конденсаторов находится в прямой пропорциональной зависимости с площадью обкладок, общая емкость составить суммарное количество всех емкостей конденсаторов, соединенных параллельно. То есть, Собщ = С1 + С2 + С3.

Поскольку разность потенциалов возникает лишь в двух точках, то на все конденсаторы, соединенные параллельно, будет падать одинаковое напряжение. Сила тока в каждом из них будет отличаться, в зависимости от емкости и значения напряжения. Таким образом, последовательное и параллельное соединение, применяемое в различных схемах, позволяет выполнять регулировку различных параметров на тех или иных участках. За счет этого получаются необходимые результаты работы всей системы в целом.

electric-220.ru

Во всех электронных устройствах используются конденсаторы. При их конструировании или изготовлении своими руками параметры устройств рассчитываются по специальным формулам.

Устройство и принцип работы

В простейшем варианте конструкция состоит из двух электродов в форме проводящих пластин (называемых обкладками), разделённых диэлектриком, толщина которого ничтожно мала по сравнению с размерами обкладок. Практически применяемые радиоэлектронные компоненты содержат много слоёв диэлектрика и электродов. В качестве обозначения конденсатора на схеме используются два параллельных отрезка с пространством между ними. Они символизируют металлические пластины обкладок физического прибора, электрически разделённые между собой.

Многие считают Майкла Фарадея автором изобретения, но на самом деле это не так. Но он сделал главное — продемонстрировал первые практические примеры и способы использования этого прибора для хранения электрического заряда в своих экспериментах. Благодаря Фарадею человечество получило способ измерять возможность накапливать заряд. Эта величина называется ёмкостью и измеряется в Фарадах.

https://youtube.com/watch?v=tuVEW69oXuw

Работу конденсатора можно проиллюстрировать на примере событий, проходящих во вспышке цифровой фотокамеры за отрезок времени между нажатием кнопки и тем моментом, когда вспышка погаснет. Основой электронной схемы этого осветительного устройства является конденсатор, в котором происходит следующее:

  • Зарядка. После нажатия кнопки поток электронов приходит в конденсатор и останавливается на одной из его пластин благодаря диэлектрику. Этот поток называется зарядным током.
  • Накопление. Поскольку под действием электродвижущей силы всё больше и больше электронов будут поступать на обкладку и распределяться по ней, отрицательный заряд обкладки может расти до момента, пока накопленный потенциал не будет отталкивать поступающий избыточный поток электронов. Вторая пластина из-за дефицита электронов приобретает положительный заряд, по модулю равный отрицательному на первой. Зарядный ток будет протекать до тех пор, пока напряжение на обеих пластинах не сравняется с приложенным. Сила или скорость тока зарядки будет находиться на максимальном уровне в момент, когда пластины полностью разряжены, и приблизится к нулю в момент, когда напряжение на обкладках и источнике будут равны.
  • Сохранение. Поскольку обкладки заряжены противоположно, ионы и электроны будут притягиваться друг к другу, но не смогут соединиться из-за диэлектрической прослойки, создавая электростатическое поле. Благодаря этому полю конденсатор удерживает и сохраняет заряд.
  • Разряд. Если в цепи появляется возможность для электронов протечь другим путём, то напряжение, накопленное между положительными и отрицательными зарядами обкладок, мгновенно реализуется в электрический ток, импульс которого в лампе вспышки преобразуется в световую энергию.

Советуем изучить — Составление управляющей программы программируемого контроллера

Определение напряженности электрического поля

Для исследования электрического поля используются точечные заряды. Давайте выясним, что это такое.

Точечным зарядом называют такой наэлектризованный объект, размерами которого можно пренебречь, поскольку он слишком мал в сравнении с расстоянием, отделяющим этот объект от других заряженных тел.

Теперь поговорим непосредственно о напряженности, которая является одной из главных характеристик электрического поля. Это векторная физическая величина. В отличие от скалярных она имеет не только значение, но и направление.

Для того, чтобы исследовать электрическую напряженность, нужно в поле заряженного тела q1 поместить еще один точечный заряд q2 (допустим, они оба будут положительными). Со стороны q1 на q2 будет действовать некая сила. Очевидно, что для расчетов нужно иметь в виду как значение данной силы, так и ее направление, то есть вектор.

Напряженность электрического поля — это показатель, равный отношению силы, действующей на заряд в электрическом поле, к величине этого заряда.

Напряженность является силовой характеристикой поля. Она говорит о том, как сильно влияние поля в данной точке не только на другой заряд, но также на живые и неживые объекты.

Напряжение между обкладками

В самом начале переходного периода зарядки, напряжение между обкладками конденсатора равняется нулю. Как только на обкладках начинают появляться заряженные частицы, между разноименными зарядами возникает напряжение. Причиной этому является диэлектрик между пластинами, который «мешает» стремящимся друг к другу зарядам с противоположным знаком перейти на другую сторону конденсатора.

На начальном этапе зарядки, напряжение быстро растет, потому что большой ток очень быстро увеличивает количество заряженных частиц на обкладках. Чем больше заряжается конденсатор, тем меньше ток, и тeм медленнее растет напряжение. В конце переходного периода, напряжение на конденсаторе полностью прекратит рост, и будет равняться напряжению на источнике питания.

Как видно на графике, сила тока конденсатора напрямую зависит от изменения напряжения.

Формула для нахождения тока конденсатора во время переходного периода:

Ic — ток конденсатора

C — Емкость конденсатора

Vc/t – Изменение напряжения на конденсаторе за отрезок времени

Паразитные параметры

Существуют параметры, которые присутствуют в реальных устройствах и которые также подлежат рассмотрению.

Сопротивление изоляции, утечка и саморазряд

Ток утечки Iут преодолевает диэлектрик по его поверхности по истечении времени. В результате этого происходит саморазряд заряженного двухполюсника. Сопротивление изоляции конденсатора Rd зависит от величины тока утечки и находится в обратной пропорции. Это можно увидеть из формулы:

Rd = U/Iут,

где U – напряжение на элементе.


Эквивалентная схема реального ёмкостного двухполюсника

Эквивалентное последовательное сопротивление (Rs)

Его называют ЭПС (ESR). Это величина, включающая в себя сопротивление пластин, выводов, контактов соединений. Она всегда растёт при повышении частоты проходящего через двухполюсник тока.

К сведению. При подборе деталей по этому качеству используют прибор ESR-метр. С его помощью измеряются неподходящие для нужных целей элементы.

Эквивалентная последовательная индуктивность (Li)

Этот вид индуктивности вызван наличием у выводов и пластин элемента личной индуктивности. Вредная особенность – превращать деталь в систему колебаний. Частоту его резонанса указывают в параметрах.

Тангенс угла диэлектрических потерь

В обкладках конденсатора и диэлектрике происходит утрата энергии. Показателем служит угол потерь δ. Когда δ = 0, то потерь нет. Сдвигаясь вектора тока и напряжения, при пропускании через двухполюсник изменяющегося тока, образуют угол ϕ = π/2 – δ.

Тангенс этого угла находят делением активной на реактивную мощность:

tg δ = Pa/Pp.

Температурный коэффициент ёмкости (ТКЕ)

Этот паразитный фактор определяет изменение ёмкости при перемене окружающей температуры. Его значение вносят в документацию для конденсаторов с линейной температурной зависимостью. ТКЕ определяют по формуле:

ТКЕ = ∆С/С∆Т,

где:

  • ∆С – ёмкостное изменение;
  • ∆Т – температурное колебание.

Учитывается отклонение температуры в 1 С0.

Диэлектрическая абсорбция

От качеств диэлектрика зависит такое явление, как абсорбция. Его наблюдают на полностью разряженном конденсаторе, когда нужно снять разряжающую его нагрузку. Потерявший заряд двухполюсник начнёт выдавать на своих пластинах небольшое напряжение. Оно возникает в результате химической реакции между диэлектриком и пластинами.

Паразитный пьезоэффект

Керамика, используемая при изготовлении изделий, обладает способностью вырабатывать напряжение в результате внешнего механического воздействия. Возникает пьезоэффект, который порождает электрические помехи.

Самовосстановление

Бумажные и плёночные конденсаторы обладают таким свойством. Они могут восстанавливаться после пробоя. Это происходит, благодаря отгоранию места металлизации электрода.

Маркировка конденсаторов

Бывает несколько способов нанесения маркировки на корпус элементов. Количество знаков и цифр зависит от площади поверхности элемента.

Маркировка советских и российских конденсаторов

Определению С конденсатора отечественного производства способствуют нанесённые на корпус численные данные. Рядом могут находиться и другие условные символы.

Старая система обозначений

На элементы 60-х годов выпуска наносились буквенные обозначения. Буквы обозначали следующее:

  • конденсатор – К;
  • обозначение типа диэлектрика;
  • конструктивные отличия.

На некоторых моделях обозначение К не наносилось. Расшифровка производилась, начиная со второй буквы. На некоторых корпусах иногда, а на электролитических – всегда ставилась цифра, означавшая напряжение на конденсаторе.

Новая система обозначений

Буква К – конденсатор, далее идёт цифра, говорящая о диэлектрике. Следующей в ряду наносится буква, указывающая на назначение и номер разработки.

Накопление электрической энергии

Публикации по материалам Д. Джанколи. «Физика в двух томах» 1984 г. Том 2.

В заряженном конденсаторе накоплена (аккумулирована) электрическая энергия. Эта энергия конденсатора равна работе, необходимой для зарядки конденсатора. Процесс зарядки конденсатора состоит, по сути, в том, что заряд с одной пластины переносится на другую. Именно это совершает источник напряжения, когда его подключают к конденсатору. Сначала, когда конденсатор не заряжен, для переноса первой порции заряда не требуется работы. Но когда на каждой из пластин уже имеется заряд, для пополнения его приходится совершать работу против сил электрического отталкивания. Чем больше накопленный пластинами заряд, тем большую работу, необходимо совершить для его увеличения. Если на пластинах существует разность потенциалов V

, работа по переносу элемента зарядаdq равнаdW = Vdq . ПосколькуV= q/C , гдеС — емкость конденсатора, тогда работа по его заряду составит:

Итак, мы можем сказать, что энергия, запасенная, или аккумулированная, конденсатором, равна

если заряды обкладок конденсатора емкостью С

равны соответственно+Q и-Q . А так какQ = СV , гдеV — разность потенциалов между обкладками, мы можем написать

Пример 25.5

. Конденсатор емкостью 20 мкФ подключен к батарее напряжением 12 В. Какую энергию может запасти конденсатор?

Решение

. Согласно (25.5),

Энергия не является «вещественной субстанцией», поэтому она вовсе не должна быть где-то сосредоточена. Тем не менее принято считать, что она запасена электрическим полем между пластинами. Для примера выразим энергию плоского конденсатора через напряженность электрического поля. Мы показали , что между параллельными пластинами существует приблизительно однородное электрическое поле Е

и его напряженность связана с разностью потенциалов соотношениемV = Ed , гдеd — расстояние между пластинами. Кроме того, согласно (25.2), емкость плоского конденсатора равнаС = s0 A/d . Тогда

Произведение Ad

характеризует объем, занимаемый электрическим полемЕ . Разделив обе части формулы на объем, получим выражение для энергии, запасенной в единице объема, илиплотности энергииu :

Плотность электростатической энергии, запасенной в любой части пространства, пропорциональна квадрату напряженности электрического поля в этой области

Выражение (25.6) получено для частного случая плоского конденсатора. Можно показать, однако, что оно справедливо для любой области пространства, в которой существует электрическое поле.

Продолжение следует. Коротко о следующей публикации:

Диэлектрики

. В конденсаторах между пластинами проложен изолирующий материал (диэлектрик), например слюда или пластмассовая пленка. Этим достигается сразу несколько целей. Во-первых, диэлектрики лучше противостоят электрическому пробою, чем воздух, и к конденсатору можно приложить более высокое напряжение. Во-вторых, при наличии диэлектрика пластины можно расположить ближе друг к другу без опасения, что они могут соприкасаться. В третьих, ёмкость конденсатора увеличится в несколько раз благодаря электрической поляризации диэлектрика.

Альтернативные статьи: Переменный ток, Закон Ома.

Замечания и предложения принимаются и приветствуются!

Особенности и требования к конденсаторам

В зависимости от того, в какой цепи используют конденсаторы, к ним предъявляют и разные требования. Так, конденсатор, работающий в колебательном контуре, должен иметь малые потери на рабочей частоте, высокую стабильность емкости во времени и при изменении температуры, влажности, давления и т. д.

Потери в конденсаторах, определяемые в основном потерями в диэлектрике, возрастают при повышении температуры, влажности и частоты. Наименьшими потерями обладают конденсаторы с диэлектриком из высокочастотной керамики, со слюдяными и пленочными диэлектриками, наибольшими — конденсаторы с бумажным диэлектриком и из сегнетокерамики.

Это обстоятельство необходимо учитывать при замене конденсаторов в радиоаппаратуре. Изменение емкости конденсатора под воздействием окружающей среды (в основном, ее температуры) происходит из-за изменения размеров обкладок, зазоров между ними и свойств диэлектрика.

В зависимости от конструкции и примененного диэлектрика конденсаторы характеризуются различным температурным коэффициентом емкости (ТКЕ), который показывает относительное изменение емкости при изменении температуры на один градус; ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения и цвет окраски корпуса.

Для сохранения настройки колебательных контуров при работе в широком интервале температур часто используют последовательное и параллельное соединение конденсаторов, у которых ТКЕ имеют разные знаки. Благодаря этому при изменении температуры частота настройки такого термокомпенсированного контура остается практически неизменной.

Как и любые проводники, конденсаторы обладают некоторой индуктивностью. Она тем больше, чем длиннее и тоньше выводы конденсатора, чем больше размеры его обкладок и внутренних соединительных проводников.

Наибольшей индуктивностью обладают бумажные конденсаторы, у которых обкладки выполнены в виде длинных лент из фольги, свернутых вместе с диэлектриком в рулон круглой или иной формы. Если не принято специальных мер, такие конденсаторы плохо работают на частотах выше нескольких мегагерц.

Поэтому на практике для обеспечения работы блокировочного конденсатора в широком диапазоне частот параллельно бумажному подключают керамический или слюдяной конденсатор небольшой емкости.

Однако существуют бумажные конденсаторы и с малой собственной индуктивностью. В них полосы фольги соединены с выводами не в одном, а во многих местах. Достигается это либо полосками фольги, вкладываемыми в рулон при намотке, либо смещением полос (обкладок) к противоположным концам рулона и пропайкой их (рис. 1).

Общая концепция

Конденсатор состоит из двух проводящих обкладок и диэлектрика между ними. И все, больше ничего. С виду простая радиодеталь, но работает на высоких и низких частотах по-разному.
Обозначается на схеме двумя параллельными линиями.

Принцип работы

Эта радиодеталь хорошо демонстрирует явление электростатической индукции. Разберем на примере.

Если подключить к конденсатору постоянный источник тока, то в начальный момент времени ток начнет скапливаться на обкладках конденсатора. Это происходит за счет электростатической индукции. Сопротивление практически равно нулю.

Электрическое поле за счет электростатической индукции притягивает разноименные заряды на две противоположные обкладки. Это свойство материи называется емкостью. Емкость есть у всех материалов. И даже у диэлектриков, но у проводников она значительно больше. Поэтому обкладки конденсатора выполнены из проводника.

Основное свойство конденсатора — это емкость. Она зависит от площади пластин, расстояния между ними и материала диэлектрика, которым заполняют пространство между обкладками.

По мере накопления зарядов, поле начинает ослабевать, а сопротивление нарастает. Почему так происходит? Места на обкладках все меньше, одноименные заряды на них действуют друг на друга, а напряжение на конденсаторе становится равным источнику тока. Такое сопротивление называется реактивным, или емкостным. Оно зависит от частоты тока, емкости радиодеталей и проводов.

Когда на обкладках не останется места для электрического тока, то и ток в цепи прекратится. Электростатическая индукция пропадает. Теперь остается электрическое поле, которое держит заряды на своих обкладках и не отпускает их. А электрическому току некуда деваться. Напряжение на конденсаторе станет равным ЭДС (напряжению) источнику тока.

А что будет, если повысить ЭДС (напряжение) источника тока? Электрическое поле начнет все сильнее давить на диэлектрик, поскольку места на обкладках уже нет. Но если напряжение на конденсаторе превысит допустимые знания, то диэлектрик пробьет. И конденсатор станет проводником, заряды освободятся, и ток пойдет по цепи. Как тогда использовать конденсатор для высоких напряжений? Можно увеличить размер диэлектрика и расстояние между обкладками, но при этом уменьшается емкость детали.

Между обкладками находится диэлектрик, который препятствует прохождению постоянного тока. Это именно барьер для постоянного тока. Потому, что постоянный ток создает и постоянное напряжение. А постоянное напряжение может создавать электростатическую индукцию только при замыкании цепи, то есть, когда конденсатор заряжается.

Так конденсатор может сохранять энергию до тех пор, пока к нему не подключится потребитель.

Конденсатор и цепь постоянного тока

Добавим в схему лампочку. Она загорится только во время зарядки.
Еще одна важная особенность — когда происходит процесс зарядки током, то напряжение отстает от тока. Напряжение как бы догоняет ток, поскольку сопротивление нарастает плавно, по мере зарядки. Электрические зарядам нужно время, чтобы переместиться к обкладкам конденсатора. Так называется время зарядки. Оно зависит от емкости, частоты и напряжения.

По мере зарядки, лампочка начинает тусклее светиться.

Лампочка затухает при полной зарядке.

Постоянный электрический ток не проходит через конденсатор только после его зарядки.

Цепь с переменным током

А что если поменять полярность на источнике тока? Тогда конденсатор начнет разряжаться, и снова заряжаться, поскольку меняется полярность источника.

Электростатическая индукция возникает постоянно, если электрический ток переменный. Каждый раз, когда ток начинает менять свое направление, начинается процесс зарядки и разрядки.

Поэтому, конденсатор пропускает переменный электрический ток.

Чем выше частота — тем меньше реактивное (емкостное) сопротивление конденсатора.