Какие виды систем заземления существуют и что такое защитное заземление?

Что такое зануление: принцип работы и устройство

Зануление монтируется по другому принципу. Но чтобы с этим разобраться разберем, что такое глухозаземленная нейтраль. На ТП (трансформаторную подстанцию) по ЛЭП приходит 3 фазы. Собственное заземление, смонтированное вокруг, и является глухозаземленной нейтралью, которая идет на жилые дома от подстанции, вместе с фазными проводами.

Зануление производится так. В распределительном щите делается разводка, приходящая с ТП глухозаземленная нейтрель (PEN) разбивается перед вводным автоматом на ноль (N), идущий в квартиру, и то, что можно считать землей (PE). На самом деле по сути это и останется глухозаземленная нейтраль, которая будет использоваться для зануления. От рабочего N занулять оборудование запрещается – это опасно для жизни. Если все сделано правильно, то при соприкосновении корпуса включенного устройства с токоведущим оголенным проводом происходит короткое замыкание, после чего срабатывает автомат.

Простейшая схема зануления квартирной электросети

Мнение эксперта
Игорь Мармазов
Инженер-проектировщик ЭС, ЭМ, ЭО (электроснабжение, электрооборудование, внутреннее освещение) ООО «АСП Северо-Запад»

“Защитное зануление – это система, которая монтируется для мгновенного срабатывания автоматики при появлении напряжения на корпусе устройства и полного отключения электроэнергии.”

Только полное понимание того, что такое заземление и зануление, в чем их особенности, позволит выполнить в квартире или доме тот вид защиты, который будет эффективным и безопасным.

Молниезащита или особенности монтажа заземления

В отличие от искусственного электричества заземление при молниезащите имеет совершенно другие особенности. Однако, можно выделить и одно общее сходство среди всех систем заземления, и это—использованные материалы и детали.

Устройство контура заземления

Конструкция защитного заземления может состоять из разного вида металлических деталей, однако, к ним есть отдельное требование такое же важное, как и нормативы относительно правил установки. Например, очень важно, чтобы элементы заземления были использованы нужного размера, как указывается в нормах и ПУЭ, прутья должны иметь гладкую структуру с диаметром не менее 5 мм

Сам металл и основа сооружения должны быть устойчивыми к воздействиям окружающей среды, то есть лучше, если электродами будут стальные элементы ведь от этого зависит долговечность защитного заземления. Известно, что сталь практически не поддается коррозии и отлично проводит электрический ток к грунту. При установке контура, следует использовать метод кольцевого, фундаментального или глубинного монтажа.

Важно! Каждый из способов монтажа защитного заземления для молниезащиты имеет индивидуальные правила. Не применяйте одинаковую тактику установки ко всем нижеперечисленным вариантам

Кольцевой способ представляет собой крепление металла в виде замкнутого кольца, которое обустраивается вокруг всего здания, подвергающегося заземлению.
Фундаментальный тип используется еще в начале строительства, поэтому планировку подобного заземления продумывают заранее

Важно чтобы в дальнейшем из постройки выступали элементы, предназначенные для крепления к ним токоотводящих металлических проводников.
Глубинный метод не предусматривает строгих параметров при установке, однако приходиться руководствоваться типом почвы и ее структурой, отсюда и высчитывать оптимальную глубину залегания электродов. Доступность и простота монтажа—это большой плюс подобного способа.

Линейные размеры при монтаже системы заземления

В нашей статье мы подробно разобрали для каких целей применяется защитное заземление и что из себя представляет назначение защитного заземления, следовательно, в заключение нужно выделить, что без подобного устройства в современных условиях нельзя обойтись.

Виды заземления и их назначение

Рассмотрим виды заземления в электроустановках с их основными чертами в таблице.

Типы и подтипы заземления Особенности
TN популярнейший тип заземляющей системы, являющий собой комплекс из штырей, вертикально вбитых в землю до водоносного горизонта на глубину свыше 2,5 м; штыри объединены кабелем (полосой) в общий заземляющий контур для жилого здания; альтернативное название — глухозаземленная нейтраль, т. е. ноль совмещен с землей по всей длине
TN-C дешевый, но устаревший вариант с высоким риском опасности: рабочий нуль N одновременно является защитным проводом PE, поэтому при обрыве N-проводника весь потенциал перейдет на электрическое оборудование, что может привести к возгоранию или поражению током
TN-S в новых строительных проектах принимают эту подсистему, поскольку она наиболее надежная, и в тоже время дорогая (требует дополнительного проводника от подстанции к энергопотребителю); конструктивно в TN-S входят отдельный фазный провод, нейтраль N и защитный проводник PE (последние два проводника — отдельные компоненты, начиная с подстанции с глухозаземленной нейтралью)
TN-C-S это комплекс плюсов описанных выше подсистем; очень просто реализуется при реконструкции старых видов заземления нейтрали; конструктивно состоит из системы TN-C (до главного распределительного щита), а дальше нейтральный провод PEN расходится на N-проводник и защитный PE; и уже дальше организовывается подсистема TN-S; минус — образуется полное напряжение в системе при обрыве PEN-шины, проблема решается установкой защитных реле напряжения
TT электропитание идет по фазным проводам от источников с глухозаземленной нейтралью, заземление обустраивается прямо у потребителя; в обязательном порядке требуется подключение УЗО
IT IT-система не использует глухозаземленную нейтраль, нуль источника подключается через спецустройство с большим внутренним сопротивлением, у потребителя при этом устанавливается дополнительно устройство ноля и защитного заземления (см. главу 1.7 ПУЭ); метод заземления IT создает минимальные помехи

Кратко резюмируем виды заземления и их назначение:

IT-система снабжения подходит для специальных лабораторий;
TT-система актуальна для подключения временных объектов или мобильных сооружений, к примеру, на стройке;
подсистема TN-C-S чаще всего выбирается при реконструкции старых зданий;
TN-S — при проектировании новых строительных объектов;
TN-C обнаруживается преимущественно в старом жилом фонде и в настоящее время не используется ввиду высоких рисков пожарной опасности и удара электрическим током;
TN-система оптимально пригодна для жилых домов (обращайте внимание на современные подсистемы из этой категории).

Что такое заземление и зачем оно нужно?

Заземляющие устройства представляют собой преднамеренное соединение проводниками электрического типа различных точек электросети.

Назначение заземления заключается в предотвращении воздействия электрического тока на человека. Ещё одно назначение защитного заземления – отведение напряжения с корпуса электроустановки через устройство заземления на землю.

Основная цель применения заземления – снижение уровня потенциала между точкой, которая заземляется и землёй. Тем самым понижается сила тока до наименьшего уровня и уменьшается количество поражающих факторов при соприкосновении с деталями электрических приборов и установок, в которых произошел пробой на корпус.

Типы систем заземления

Для частного дома и квартиры подходят следующие типы заземления:

  • TN;
  • IT;
  • TT.

У первой и самой распространенной системы TN есть подтипы — S и C S. Вообще, для расшифровки аббревиатур нужно понять несколько моментов.

  1. По умолчанию, первая буква t говорит о принципе функционирования питающего источника.
  2. Вторая буква — N, T или I — указывает на принцип заземления и защиту открытых элементов отводов. T прописывают, если контур заземлен, N — если зануление осуществляется подключением к нейтрали, а I — когда электрическое оборудование не имеет электрических контактов, то есть отвод изолирован. На картинке ниже вы увидите обозначение заземления и соответствующую схему.
  3. В нынешних Госстандартах есть понятие нулевого заземляющего проводника. Он актуален для систем с напряжение до 1 кВ. Выделяют землю (PE), нулевой заземляющий проводник (N) и объединение земли с нулем (PEN).

Для воздушных линий электропередач

Относительно заземлений переносных для воздушных линий (ВЛ) нужно отметить следующее. Они состоят из специальных заземлителей и так называемых «спусков», соединяющих их с элементами временно обустраиваемого защитного контура. Функцию таких спусков для ж/б опор ЛЭП с рабочими напряжениями 6-10 кВ выполняют элементы напряженной арматуры стоек, которые напрямую соединены с заземлителем. В ситуациях, когда опоры закреплены фиксирующими оттяжками – их также допускается использовать в качестве заземляющих проводников (в дополнение к уже имеющимся отводам).

Известные виды переносных заземлений обеспечивают надежную защиту работающего на ЛЭП оперативного персонала. Однако это не означает отказ от принятия дополнительных защитных мер, которые предусматриваются положениями действующих нормативов (ПУЭ, в частности).

Заземление линий электропередач на столбах

Для повышения безопасности обслуживающего персонала при работе на опорах ВВ электропередач, а также с целью защиты установленной на столбах аппаратуры применяется специальный вид заземлений переносных для воздушных линий. Их конструкция выбирается в соответствии с требованиями ПУЭ, в которых величина переходного сопротивления заземленных элементов строго нормируется. На воздушных линиях электропередач с соединенной с землей нейтральной жилой и рабочими напряжениями более 0,4 кВ на железобетонных опорах также заземляется их арматура (включая крюки и штыри, удерживающие провода). Суммарное сопротивление временного заземляющего устройства в этом случае не должно быть более 50-ти Ом.

Установка переносного заземления на воздушной линии

При обустройстве заземлений переносных для воздушных линий с деревянными опорами для получения надежного контакта, как правило, используется болтовое соединение. При заземлении металлических и железобетонных опор указанное соединение допускается делать как на сварку, так и с использованием болтовых стяжек.

Применение переносных заземлений на высоковольтных линиях передач  на 10 кВ (6кВ) считается обязательным. При этом временному заземлению подлежат:

  • Входящие в конструкцию металлические и железобетонные опоры.
  • Деревянные опорные столбы, на которых устанавливаются устройства защиты от грозы и молний.
  • Силовые или местные измерительные трансформаторы.

Также не следует забывать о заземлении аварийных разъединителей, высоковольтных предохранителей или других элементов защиты используемой аппаратуры.

Нужно ли заземление в частном доме

Нужно ли заземление в частном доме? Обязательно. Суть системы – обеспечить электрическому заряду кратчайший путь для разрядки в грунт. Согласно законам физики, он будет искать проводник, обладающий минимальным сопротивлением. И контур, о котором пойдет речь далее, является именно таким. И даже если «доза» будет настолько велика, что заземлитель не сможет отвести ее полностью, через человеческое тело пройдет лишь малая часть, которая не причинит вреда. Разве что, возможно, вы почувствуете легкую кратковременную дрожь. Отсюда видно, что правильное заземление – гарантия электробезопасности.

Согласно ГОСТ, СНиП и ПУЭ каждое жилое сооружение в обязательном порядке оснащается такой системой защиты от замыкания и блуждающих токов. В нормативных документах в частности говорится, что заземление для дома монтируется, если проектная напряжение в цепи электроснабжения с переменным током от 100 В превышает отметку в 40 Вт. Еще одной задачей, которая решается при помощи заземлителя, является обеспечение пожарной безопасности. В результате замыканий часто происходит возгорание, затем пожар, и тогда затраты на восстановление (если таковое возможно) несоизмеримо больше со стоимостью монтажа контура заземления.

Как правильно сделать заземление в частном доме спрашивают и те, кто столкнулся с проблемой плохого сигнала. Если недалеко находится мощный излучатель, помехи при использовании телефона, телевизора, компьютера, радиоприемника неизбежны. Но если защитить здание, принимаемый сигнал всегда будет отличным. Но только не путайте эту систему с громоотводом. В последнем случае целевое назначение одно – отвод разряда молнии. При замыкании молниеотвод никак не сможет защитить людей от поражения, а приборы от перегорания. Однако общий принцип действия в обоих случаях идентичен.

При монтаже ни в коем случае не соединяют контуры громоотвода в доме с заземлением. Каждая из систем работает независимо. Тогда в случае попадания молнии скачка напряжения не случится. Если же случится эффект индукции, заземлитель «выведет» ток из цепи, чем обеспечит безопасность. Причем у каждой системы безопасности есть подземная часть. Она может быть общей только при достаточном сечении. Разводка всегда обособленная. Наличие одного средства защиты не исключает необходимость установки другой.

Виды заземлений

Одним из путей ослабления вредного влияния цепей заземления на системы автоматизации является раздельное выполнение систем заземлений для устройств, имеющих разную чувствительность к помехам или являющихся источниками помех разной мощности. Раздельное исполнение заземляющих проводников позволяет выполнить их соединение с защитной землёй в одной точке. При этом разные системы земель представляют собой лучи звезды, центром которой является контакт к шине защитного заземления здания. Благодаря такой топологии помехи «грязной» земли не протекают по проводникам «чистой» земли. Таким образом, несмотря на то что системы заземления разделены и имеют разные названия, в конечном счёте все они соединены с Землёй через систему защитного заземления. Исключение составляет только «плавающая» земля.

Силовое заземление

В системах автоматизации могут использоваться электромагнитные реле, микромощные серводвигатели, электромагнитные клапаны и другие устройства, ток потребления которых существенно превышает ток потребления модулей ввода/вывода и контроллеров. Цепи питания таких устройств выполняют отдельной парой свитых проводов (для уменьшения излучаемых помех), один из которых соединяется с шиной защитного заземления. Общий провод такой системы (обычно провод, подключённый к отрицательному выводу источника питания) является силовой землёй.

Аналоговая и цифровая земля

Системы промышленной автоматизации являются аналого-цифровыми. Поэтому одним из источников погрешностей аналоговой части является помеха, создаваемая цифровой частью системы. Для исключения прохождения помех через цепи заземления цифровую и аналоговую землю выполняют в виде несвязанных проводников, соединённых вместе только в одной общей точке. Для этого модули ввода/вывода и промышленные контроллеры имеют отдельные выводы аналоговой земли (A.GND) и цифровой (D.GND).

«Плавающая» земля

«Плавающая» земля образуется в случае, когда общий провод небольшой части системы электрически не соединяется с шиной защитного заземления (то есть с Землёй). Типовыми примерами таких систем являются батарейные измерительные приборы, автоматика автомобиля, бортовые системы самолёта или космического корабля. Плавающая земля чаще используется в технике измерений малых сигналов и реже – в системах промышленной автоматизации.

Что такое нейтраль?

Нейтраль – это нулевой защитный проводник, который соединяет между собой нейтрали электроустановок в трехфазных сетях электрического тока. Сфера использования – зануление электроустановок.

Понижающая подстанция, где находится трансформаторная установка, оснащена своим контуром заземления. Этот контур состоит из стальной шины и прутов, закопанных специальным образом в землю. К источникам потребления в электрощиток от подстанции проложен кабель, имеющий 4 жилы. Когда потребителю электроэнергии нужно питание от цепи трехфазного типа, то все 4 жилы должны быть подключены. Когда к жилам подключается разная нагрузка, в системе происходит смещение нейтрали, чтобы предотвратить это смещение, используется нулевой проводник. Он помогает симметрично распределить нагрузку на все фазы.

Проверка заземляющих устройств

Чтобы поддерживать заземляющие устройства в надлежащем техническом состоянии, необходимы регулярные проверки оборудования. В перечень проверочных мероприятий входят следующие действия:

  1. Внешний осмотр наземной части оборудования.
  2. Тестирование наличия электроцепи между заземляющим устройствам и подзащитными компонентами.
  3. Замер сопротивления контура.
  4. Мониторинг пробивных трансформаторных предохранителей.
  5. Тестирование надежности соединений с естественными заземлительными устройствами.
  6. Замеры сопротивления петли фаза–ноль.
  7. Измерение удельного сопротивления земли для опор линий электропередачи, если напряжение превышает 1 кВт.
  8. Вскрытие почвы в отдельных местах для визуального контроля за элементами системы.

Проверка присутствия электроцепи между заземлением и защищаемым электрооборудованием осуществляется для подтверждения непрерывности и надежности системы. В ней недопустимы обрывы или некачественные контакты. В простых сетях (без больших разветвлений) сопротивление переходных контактов замеряют непосредственно между защитным и защищаемым элементом системы. Для сложных сетей используется другая тактика: вначале делается замер между заземлителем и отдельными частями магистрали, а уже затем — между участками и заземленными элементами.

Для измерений используют специальный аппарат — омметр (например, М-372). Также применяют измерительные мосты (типы приборов — УМВ, МMB, MBУ) или измерительное устройство типа МC-08. Непосредственно замеры сопротивления заземляющего контура выполняют измерителями М-416б ИСЗ-01, МС-08, М-1103.

Чтобы защитить электросети (до 1 кВт) с отведенной от земли нейтралью от перенапряжений, трансформаторы оснащают пробивными предохранителями. Надежность функционирования предохранителей зависит от правильности сборки и регулярного контроля за их техническим состоянием. В связи с этим проверка предохранителей проводится как при пусковых работах, так и при ремонте оборудования или перестановке данных устройств. Также предохранители проверяются при наличии предположения об их возможном срабатывании.

В случае повреждения участка и если показатель тока однофазного замыкания 1К соответствует следующему ниже условию, сеть отключается.

Чтобы определить ток однофазного замыкания, делают замер полного сопротивления электроцепи однофазного замыкания на корпус устройства или грунт. Самым простым способом измерения считается замер сопротивления петли ноль–фаза. Для этого используют вольтметр и амперметр.
Все устройства, используемые для измерений, должны иметь технический паспорт. В документе указывается схема заземления, результаты последних замеров и проверок состояния системы, данные о действиях, осуществленных при проведении ремонтных работ и внесенных изменениях.

Системы с глухозаземленной нейтралью системы заземления TN

К таким системам относятся:

  • TN-C;
  • TN-S;
  • TNC-S;
  • TT.

Согласно п. 1.7.3 ПУЭ TN-система — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников.

TN включает в себя такие элементы, как:

  • заземлитель средней точки, которая относится к источнику питания;
  • внешние проводящие части устройства;
  • проводник нейтрального типа;
  • совмещенные проводники.

Нейтраль источника глухо заземлена, а внешние проводники установки подключены к глухозаземленной средней точке источника при помощи проводников защитного типа.

Сделать заземляющий контур можно только в электроустановках, мощность которых не превышает 1 кВ.

Система TN-C

В данной системе нулевой защитный и нулевой рабочий проводники, объединены в один PEN проводник. Они совмещены на всем протяжении системы. Полное название — Terre-Neutre-Combine.

Среди преимуществ TN-C можно выделить только легкий монтаж системы, который не требует больших усилий и денежных затрат. Для монтажа не требуется улучшение уже установленных кабельных и воздушных линий электропередачи, у которых есть всего 4 проводящих устройства.

Недостатки:

  • возрастает вероятность получения удара током;
  • возможно появление линейного напряжения на корпусе электрической установки во время обрыва электрической цепи;
  • высокая вероятность потери заземляющей цепи в случае повреждения проводящего устройства;
  • такая система защищает только от короткого замыкания.

Система TN-S

Особенность системы заключается в том, что электричество поставляется к потребителям через 5 проводников в трехфазной сети и через 3 проводника в однофазной сети.

Всего от сети отходит 5 проводящих источников, 3 из которых выполняют функцию силовой фазы, а оставшиеся 2 — это нейтральные проводники, подсоединенные к нулевой точке.

Конструкция:

  1. PN — нейтральный механизм, который задействован в схеме электрического оборудования.
  2. PE — глухозаземленный проводник, выполняющий защитную функцию.

Преимущества:

  • легкость монтажа;
  • низкая стоимость покупки и содержания системы;
  • высокая степень электробезопасности;
  • не требуется создание контура;
  • возможность использовать систему в качестве устройства от защиты утечки тока.

Система TN-C-S

TN-C-S система предполагает разделение проводника PEN на PE и N в каком-то участке цепи. Обычно разделение происходит в щитке в доме, а до этого они совмещены.

Достоинства:

  • простое устройство защитного механизма от попадания молний;
  • наличие защиты от короткого замыкания.

Минусы использования:

  • слабый уровень защиты от сгорания нулевого проводника;
  • возможность появления фазного напряжения;
  • высокая стоимость монтажа и содержания;
  • напряжение не может быть отключено автоматикой;
  • отсутствует защита от тока на открытом воздухе.

Система TT

TT разработана для обеспечения высокого уровня безопасности. Устанавливается на электростанциях с низким уровнем технического состояния, например, где используются оголенные провода, электроустановки, которые расположены на открытом воздухе или закреплены на опорах.

TT монтируется по схеме четырех проводников:

  • 3 фазы, подающие напряжение, смещаются под углом 120° между собой;
  • 1 общий ноль выполняет совмещенные функции рабочего и защитного проводника.

Преимущества TT:

  • высокий уровень устойчивости к деформации провода, ведущего к потребителю;
  • защита от КЗ;
  • возможность использования на электроустановках высокого напряжения.

Недостатки:

  • сложное устройство защиты от молний;
  • невозможность отследить фазы короткого замыкания электрической цепи.

Основные характеристики ЗУ

В чем разница: зануление и заземление

Основным показателем эффективности действия любого контура является величина сопротивления защитного заземления (Rз). Она представляет собой сумму переходных сопротивлений всех элементов конструкции ЗУ, включая контакты заземлителя с грунтом и подводящими шинами (проводниками).

Для практического определения величины этого показателя можно воспользоваться известным из школьной программы законом Ома. Согласно ему, Rз вычисляется как отношение напряжения в точке подключения медного отводящего проводника к корпусу защищаемого устройства к протекающему по всей заземляющей цепочке аварийному току.

Из этого определения следует, что для повышения эффективности действия любой заземляющей конструкции необходимо свести к минимуму сопротивление стеканию тока в почву.

Рассматриваемый нами показатель (величина Rз) в значительной мере зависит от следующих параметров:

  • Сопротивление грунта в месте растекания аварийного тока;
  • Конструкция заземлителя и его типоразмер;
  • Характеристики заземляющего устройства, определяемые взаимным расположением его элементов.

Помимо этого, данный показатель непостоянен во времени и изменяет свою величину в зависимости от сезона. Так, наибольшего значения он достигает при сильном промерзании грунта зимой или в засушливую летнюю пору. Нормированная ПУЭ величина переходного сопротивления для большинства промышленных и жилых объектов, включая загородные дома и дачные подсобные строения, не должна превышать 4 Ом (смотрите таблицу ниже).

Нормы по сопротивлению Rз

Дополнительная информация. Для ряда специально оговоренных в ПУЭ случаев максимально допустимые значения этого показателя должны соответствовать приведённым в таблице данным.

Исходя из этого, в технической документации оговаривается допустимое значение для напряжения прикосновения, не превышающее показатель в 40 Вольт.

В заключение – несколько слов о том, как можно снизить сопротивление ЗУ в обычных условиях эксплуатации этих конструкций. Специалисты советуют выбирать под их размещение влажные суглинистые почвы с большим содержанием солей. При невозможности подобрать подходящее для контура место следует искусственно повышать его проводимость за счёт добавлении минеральных солей в жидком растворе.

В каких случаях необходимо заземление?

Так зачем нужно заземление? Для наглядности стоит рассмотреть несколько примеров:

1. К примеру, в квартире установлена посудомоечная машина. Но по какой-то причине в определенный момент на корпусе появилась фаза, и корпус не заземлен. Но нейтраль линии электропередачи, которая ведет к дому и дает электричество — заземлена, также под заземлением краны и батареи.

Если надеты резиновые тапочки, то при соприкосновении никаких неприятных ощущений и даже малейшего удара не будет. Но вот если нет обуви, и при этом человек еще и схватился за кран, а вторая рука расположена на корпусе, то он становится проводником электрического тока, который подается через корпус на человека, и далее в землю на нейтраль, и на подстанцию.

2. Если посудомоечная машина заземлена? Что произойдет в такой ситуации? Если по каким-то причинам на корпусе появится ноль, то ток сразу уйдет в грунт. Хоть человек босой, хоть в тапочках, ничего не произойдет, заземление сработало, никакого поражения электрическим током все целы и невредимы. Один недостаток, посудомоечную машину нужно будет ремонтировать, но все равно это будет дешевле и лучше.

3. В помещении поломалась стиральная машина, и корпус оборудования находится под напряжением. При соприкосновении с корпусом в таком случае человек получит удар током. Вот зачем нужно заземление, тогда ток уходит в землю и с человеком все хорошо.

Дело в том, что сопротивление человеческой кожи намного выше, чем сопротивление провода, и тогда ток идет по пути наименьшего сопротивления, попадает в землю, и человек остается в целостности. Это один из наиболее простых примеров, который и показывает, зачем нужно заземление в доме или другой постройке. Без такой системы риск получить удар электрическим током возрастает.

Стоит брать в расчет еще один момент, особенно для владельца частного дома это крайне важная информация. Даже если сооружение построено из натурального материала, количество электрической проводки остается тем же что и в многоэтажном жилом здании, но натуральный материал отлично воспламеняется. Именно исходя из этого, система заземления в частном доме может предотвратить возникновение неприятных ситуаций и пагубных последствий.

Наиболее страшным событием, которое может произойти – это пожар, он возникает вследствие короткого замыкания или выхода из строя электрооборудования. То есть если возникает сомнения и вопросы по поводу того, зачем нужно заземление в частном доме, нужно осознавать, что подобная система защищает не только от возгораний, но и предотвращает от удара электрическим током каждого члена семьи.

Ситуации могут быть довольно жуткими, но они являются наглядным примером того, к чему может привести халатность и пренебрежение техникой безопасности. Как видно, иногда последствия могут быть действительно самыми серьезными и пагубными.

Правила для переносных установок

В некоторых ситуациях допускается отказ от местного заземлителя для электрооборудования, оснащенного автономными источниками питания с нейтралью, не вступающей в контакт с грунтом. Обычно переносное заземление используется для защиты установок, не питающих другое оборудование. При этом источники питания должны иметь собственные заземлители, а все элементы установки — стыковаться с корпусом источника электропитания.

Работы по заземлению мобильных электрических установок выполняют в соответствии с требованиями к напряжению или сопротивлению. Показатель сопротивления не должен превышать 25 Ом. Устройства с автономными источниками электропитания и изолированными нейтралями всегда контролируются по уровню сопротивления изоляции. Кроме того, нужно обеспечить постоянный доступ для проведения проверок работоспособности изоляции.

Переносные заземлительные установки монтируются во время перерывов в работе электрооборудования. Установка защиты начинается только после отключения напряжения в электросети. Заземление устанавливается на все отключенные фазы. Причем установка осуществляется со всех сторон, откуда подается напряжение.

К монтажу переносных систем в электрических установках с напряжением свыше 1000 вольт допускаются исключительно специалисты, обладающими группой электробезопасности не меньше четвертой. Для установок с напряжением менее 1000 вольт необходима третья или выше группа электробезопасности.

Требования к защитному заземлению

Чтобы заземляющие установки выполняли свои функции, они должны соответствовать определенным параметрам и указаниям производителя оборудования.

Нюансы, которые влияют на функционал:

  • Сопротивление грунта из-за его физико-химических особенностей. Лучше всего проводит ток влажная глина, графитовая крошка, торф, солончаки или морская вода. Хуже – сухой песок или твердые породы – гранит, щебень, кварц, асфальт, бетон.
  • Площадь контакта заземлителя с почвой. Чем больше площадь, тем более благоприятные условия создаются для перетекания тока, тем быстрее это происходит. Увеличить площадь можно, установив большее количество электродов по контуру здания. В этом случае их соединяют вместе стальной пластиной в единое целое. Если увеличить размер одного электрода, общая площадь также увеличится. Увеличить площадь помогает установка вертикального металлического контура, если нижние слои грунта имеют большее сопротивление, чем поверхностные.

Поскольку добиться идеального сопротивления почвы трудно, устройства создаются исходя из ее характеристик. Для каждой электрической установки существуют свои нормы сопротивления заземлительных устройств. Например, для электрической подстанции с напряжением более 100 кВт сопротивление не должно быть больше 0,5 Ом, а для домашней сети с системой ТТ, а также применением автоматического отключения – до 500 Ом.

Необходимо обязательно обрабатывать сварные швы заземления от коррозии

Заземлители из металла не должны покрываться лакокрасочными материалами. Иногда в качестве заземляющего устройства используется подземная часть здания с металлическими конструкциями – электропроводящий бетон с арматурой внутри. Нельзя использовать газовые металлические трубы для решения проблемы заземления.

Согласно Правилам устройства электроустановок заземлению подлежат:

  • Сети, напряжение которых выше 380 В.
  • Особо опасные и наружные установки.

Части оборудования, подлежащие занулению и заземлению:

  • Корпуса электрического оборудования.
  • Вторичная трансформаторная обмотка.
  • Приводы электрических приборов.
  • Распределительные щиты, каркасы шкафов.
  • Металлические конструкции оборудования.
  • Железная оболочка кабеля.

Общие основы и цели заземления

Защитным заземлением считается устройство, которое соединяется с эквивалентом грунта и состоит из нетоковедущих проводников, однако, есть вероятность попадания их под напряжение. В первую очередь задача подобного устройства состоит в том, чтобы снизить силу пробойного тока до минимальной величины.

Важно! Обустройство защитного заземления—это дополнительный шаг к безопасности в вашем доме. Данный вариант заземляющего устройства выполняется не только для бытовых условий, но еще встречается в промышленности, общественных заведениях также предохраняет помещение от влияния атмосферного электричества

Эта разновидность заземлителя используется для трехфазной и трехпроводной электрической цепи. На данном этапе мы разобрались с понятием, что называется защитным заземлением, перейдем к следующим не менее важным моментам

Данный вариант заземляющего устройства выполняется не только для бытовых условий, но еще встречается в промышленности, общественных заведениях также предохраняет помещение от влияния атмосферного электричества. Эта разновидность заземлителя используется для трехфазной и трехпроводной электрической цепи. На данном этапе мы разобрались с понятием, что называется защитным заземлением, перейдем к следующим не менее важным моментам.

Защитное заземление общие цели и способы монтажа

Рабочее заземление

Предназначено для обеспечения нормальной работы оборудования во всех режимах работы. Это относится и к аварийным ситуациям.

Рабочее или функциональное заземление — это заземление точки или точек токоведущих частей оборудования, предназначенное для обеспечения работоспособности электрооборудования, не в целях электробезопасности.

На рисунке снизу показана схема из учебника рабочего заземления для различных сетей.

Функциональным назначением данной опции является поддержание работоспособности оборудования и защитных аппаратов в штатном и аварийном режимах. Зачастую она используется для срабатывания специальных устройств.

Это могут быть плавкие предохранители, резисторы и т.п. Основным назначениям функции является препятствие сбоям, их локализации и препятствие их распространению.

Правила техники безопасности запрещают совмещать защитное и рабочее заземление. Что связано с тем, что электрические атмосферные помехи, например, от грозозащиты зданий и сооружений, могут совместиться с токами сети.

Это может привести к сбоям оборудования, например, компьютеров, сложной электронной техники и т.п. А так же к выходу оборудования из строя.

Кроме этого, такое совмещение сделает защиту от напряжения не эффективной. А в аварийной ситуации она вообще перестанет функционировать.

В качестве заземлителей применяют металлические стержни. Их должно быть не менее двух, и расстояние между ними составляет 1 м.

При этом необходимо соблюдать следующие правила, определяемые по ПУЭ:

  1. В качестве рабочего заземления запрещается использовать трубопроводы в любой ситуации.
  2. Запрещается выводить кабель наружу и подключать к шине в месте неподготовленном для этого. Так как плохой контакт не обеспечит надежной защиты, а в процессе эксплуатации он ухудшится из-за коррозии металла.
  3. Последовательное подключение оборудование к шине заземления категорически запрещается.
  4. Запрещено к одной контактной площадке на шине заземления подсоединять несколько кабелей от оборудования.

На вышеприведенном рисунке показан пример металлосвязи с электрооборудованием.