Оглавление
- Содержание
- Кварцевые предохранители
- Как определить номинал предохранителя по корпусу и на плате
- Токоограничивающий предохранитель
- ВЫБОР ПЛАВКИХ ПРЕДОХРАНИТЕЛЕЙ, АВТОМАТОВ И СЕЧЕНИЯ ПРОВОДОВ И КАБЕЛЕЙ ПО ДОПУСТИМОМУ НАГРЕВУ
- Как отремонтировать предохранитель.
- Справочные данные по предохранителям
- Согласование с вышестоящими защитами.
- Принцип работы предохранителя на видеоролике
- Что же делать в случае поломки предохранителя?
- Предохранители (Плавкие вставки) — классификация, маркировка и характеристики
- Номиналы предохранителей ориентировочные
- Калькулятор расчета диаметра провода для плавких вставок предохранителей
- Выбор плавкого предохранителя для защиты двигателей
Содержание
- 1 Плавкие предохранители 1.1 Принципы работы плавкого предохранителя
- 1.2 Конструкции плавких предохранителей и их держатели
- 1.3 Разновидности предохранителей
- 1.4 Одноразовые предохранители 1.4.1 Конструкция плавкого предохранителя
- 1.4.2 Исполнительный механизм плавкого предохранителя
- 1.4.3 Защита в лампах накаливания
2 Автоматический предохранитель
- 2.1 Конструкция автоматического предохранителя
3 Расчёт необходимого предела срабатывания
4 Техника безопасности
- 4.1 Замена предохранителей
4.2 Использование предохранителя в качестве коммутационного аппарата
4.3 Выбор предохранителей
4.4 «Жучок»
5 См. также
6 Примечания
7 Литература
Кварцевые предохранители
Кварцевые предохранители изготовляют для напряжений 6, 10 и 35 кВ для внутренней и наружной установки. Они относятся к группе токоограничивающих предохранителей. Патрон предохранителя типа ПКТ для напряжений 3-35 кВ (рис.4) представляет собой фарфоровую или стеклянную трубку 1, плотно закрытую металлическими колпачками 2. Внутри трубки помещена плавкая вставка 3 в виде одной или нескольких параллельно включенных тонких медных проволок. В нижнем колпачке предусмотрен указатель срабатывания предохранителя 4. Патрон заполнен мелким кварцевым песком.
Длина проволок и, следовательно, длина патрона определяются номинальным напряжением. Поскольку градиент восстанавливающейся электрической прочности промежутка в кварцевом песке относительно невелик, длина проволоки должна быть велика. Чтобы поместить ее в патроне, приходится навивать проволоку винтообразно.
Характеристики тугоплавких вставок из меди (температура плавления 1080°С) могут быть улучшены напайкой капель олова или свинца, температура плавления которых значительно ниже (соответственно 200 и 327°С). При расплавлении металла напайки он растворяет в себе медь, вследствие чего вставка быстро разрушается при температуре значительно более низкой, чем температура плавления основного материала вставки.
Свойства материала, наполняющего патрон токоограничивающего предохранителя, существенно влияет на работу последнего. Наполнитель должен удовлетворять следующим требованиям:
- отводить тепло от плавкой вставки в нормальном рабочем режиме;
- не выделять газа под действием высокой температуры дуги;
- обладать достаточной электрической прочностью после разрыва цепи.
Как показал опыт, этим требованиям в наибольшей мере отвечает кварцевый песок. Процесс отключения цепи токоограничивающим предохранителем при КЗ протекает следующим образом. При большом токе тонкая проволока плавится и испаряется в течение долей полупериода почти одновременно по всей длине. Зажигается дуга. Вследствие высокой температуры газа в канале дуги образуется местное давление (давление в патроне практически не повышается). Ионизованные частички металла выбрасываются в радиальном направлении в зазоры между песчинками кварца. Здесь они быстро охлаждаются и деионизуются.
Как видно из осциллограммы, напряжение у зажимов предохранителя превышает напряжение сети вследствие появления ЭДС самоиндукции, направленной согласно с напряжением сети. Коммутационные перенапряжения, возникающие при отключении цепи плавкими предохранителями, не должны превышать следующих значений:
Номинальное напряжение, кВ……3..6..10..20..35
Наибольшее допустимое перенапряжение по отношению к земле, кВ……16..26..40..82..126
Плавкие предохранители с корпусом из стекла и керамики
Для ограничения перенапряжения принимают различные меры: применяют вставки ступенчатого сечения по длине, что затягивает процесс их плавления и удлинения дуги; параллельно основным рабочим вставкам включают вспомогательные вставки с искровым промежутком. В последнем случае при расплавлении рабочих вставок и резком повышении напряжения пробивается искровой промежуток вспомогательной вставки, которая также сгорает. Максимальное напряжение при этом уменьшается.
Как определить номинал предохранителя по корпусу и на плате
Прежде чем поменять что-то испортившееся, необходимо понять, что же все-таки испортилось. В нашем случае перегорело. Надеяться здесь стоит только на надписи на самой плате или на предохранителе, ибо другие методы узнать какой же это был номинал предохранителя весьма зыбки и безосновательны. Ведь исправный предохранитель ничего и не покажет как нулевое сопротивление, а неисправный обрыв. При этом не отдавать же его на анализ в лабораторию, дабы узнать какой это был материал. Смотрим примеры обозначения предохранителей на плате и SMD элементов. Кстати, иногда вместо предохранителя могут использовать даже резистор.
Токоограничивающий предохранитель
Те устройства, которые способны резко понизить силу тока в цепи, если происходит короткое замыкание, получили название токоограничивающих. Во время того, как через данную плавкую вставку начинает проходить слишком высокий ток, который возникает только во время короткого замыкания, или же происходит длительная перегрузка повышенным током, она начинает плавиться. Сначала она переходит в жидкое, а после уже в газообразное состояние. В момент плавки данной металлической вставки у предохранителя высоковольтного на 10 кВ будет образовываться дуга, впрочем как и в любом другом схожем устройстве.
Длительность горения данной дуги, а также время, требуемое на ее гашение внутри предохранителя, будут зависеть от конструкции самого устройства, а также от типа плавкой вставки. Только после того, как дуга полностью погаснет, произойдет окончательный разрыв цепи.
ВЫБОР ПЛАВКИХ ПРЕДОХРАНИТЕЛЕЙ, АВТОМАТОВ И СЕЧЕНИЯ ПРОВОДОВ И КАБЕЛЕЙ ПО ДОПУСТИМОМУ НАГРЕВУ
При коротком замыкании или значительной перегрузке электрическая проводка должна быть автоматически отключена, в противном случае может воспламениться изоляция проводов, что приведет к пожару. Для автоматического отключения проводки при превышении установленных значений силы тока предназначены аппараты защиты. В сельском хозяйстве для этой цели часто применяют плавкие предохранители, устройство которых чрезвычайно просто (см. гл. 9). В фарфоровом корпусе помещены проводники небольшого сечения — плавкие вставки, включаемые последовательно в каждый фазный провод линии. Если ток линии возрастает сверх допустимого, то плавкая вставка перегорит, отключив цепь раньше, чем температура защищаемых ею проводов станет недопустимо высокой. В сельских сетях низкого напряжения для внутренней установки применяют предохранители двух типов: пробочные и трубчатые. Их номинальные токи в амперах нормированы по следующей шкале: 4, 6, 15, 20, 25, 35, 50, 60, 80, 100, 125, 160, 200, 225, 260, 300.
Предохранители устанавливают во всех местах, где сечение проводника по направлению к местам потребления энергии уменьшается, а также на вводах в здания и головных участках сети. Чтобы при аварии перегорел только ближайший к месту повреждения предохранитель, номинальный ток плавкой вставки каждого последующего от источника питания предохранителя должен быть по крайней мере на одну ступень меньше, чем предыдущего.
Плавкий предохранитель обычного типа представляет собой весьма несовершенный аппарат. Продолжительность перегорания его плавкой вставки зависит от тока перегрузки. При токах, в 2,5 раза превышающих номинальный, новая плавкая вставка перегорает сравнительно быстро (через 8. 10 с). Токи, большие номинального в 1,5 раза, вставка выдерживает не менее 1 ч, а в 1,2. 1,3 раза — неопределенно продолжительное время. Уменьшить эти величины и выполнить новую плавкую вставку так, чтобы она перегорела при меньших перегрузках, нельзя. Дело в том, что со временем плавкая вставка окисляется, стареет и перегорает при токах, меньших, чем новая, и может перегореть при номинальном токе или даже при значениях тока, меньших номинального.
Пусковой ток короткозамкнутых асинхронных двигателей, применяющихся для привода сельскохозяйственных потребителей, в 5. 7 раз превышает номинальный. Продолжительность пуска таких двигателей достигает 5. 10 с и более. Если выбрать плавкую вставку по номинальному току двигателя, то при пуске она мгновенно перегорит. Поэтому приходится превышать номинальный ток плавкой вставки, что приводит к увеличению сечения соответствующих ей проводов.
При защите проводов и кабелей плавкими предохранителями (кроме кабелей, проложенных в земле) расчет электрической сети начинают с выбора плавкой вставки. Ее выбирают по следующим правилам.
Для предохранителей обычного типа, защищающих ответвления к короткозамкнутым асинхронным двигателям с нормальными условиями работы (редкие пуски, продолжительность разбега 5. 10с), а = 2,5. При защите двигателей с тяжелыми условиями работы (частые пуски, продолжительность разбега до 40 с) а = 1,6. 2,0.
Максимальный ток в цепи с одним двигателем равен его пусковому току. В каталогах обычно приводят кратность пускового тока двигателя к. Тогда максимальный ток в цепи
Очевидно, что для потребителей с небольшими пусковыми токами (асинхронные двигатели с фазным ротором) почти всегда большее значение тока плавкой вставки можно получить по правилу 1 из выражения (5.25).
Для потребителей, пусковой ток которых практически равен рабочему (осветительные установки, тепловые потребители), ток плавкой вставки, определенный по правилу 1, также всегда больше тока, найденного по правилу 2.
Определив номинальный ток плавкой вставки, выбирают соответствующее ему сечение провода в зависимости от того, будет он защищен плавкой вставкой только от коротких замыканий или также и от перегрузок. По правилам устройства электроустановок от перегрузок нужно защищать осветительные сети в жилых и общественных зданиях, торговых и служебно-бытовых помещениях промышленных предприятий, а также в пожаро- и взрывоопасных зонах. Сети любого назначения, выполненные проводами с горючей оболочкой, при открытой прокладке необходимо также защищать от перегрузок. Это относится к сетям любого типа во взрывоопасных помещениях. В перечисленных случаях необходимо выбрать такое сечение, чтобы было соблюдено следующее соотношение:
Выбрав сечение провода, его также проверяют по формуле (5.31).
Как отремонтировать предохранитель.
При промышленном изготовлении предохранителей используются проволоки из различных материалов (медь, алюминий, олово, свинец, никель, серебро и т.д.) — все зависит от величины тока и требований к скорости реакции устройства при превышении номинала.
При ремонте вставки возможен только один вариант — использование проволочки из красной меди. Найти такую проволочку совсем не сложно — наверняка, у любого мастера имеются небольшие отрезки проводов, оставшиеся после прокладки или ремонта электропроводки.
Главная задача — правильно определить диаметр проволоки, исходя их номинала предохранителя. Если этот параметр определить по самому элементу не удается (например, цифра стала нечитаемой), за основу берется мощность прибора
При этом необходимо соблюдать одно важное правило — предельно допустимый ток вставки должен быть больше тока, требующегося прибору при работе в максимальном режиме. Например, если изделие рассчитано на максимальный ток в 1 ампер, то выбирается защитный элемент на 2 ампера. После того как вы определитесь с номиналом предохранителя, следует выбрать диаметр проволоки с помощью следующих данных:
После того как вы определитесь с номиналом предохранителя, следует выбрать диаметр проволоки с помощью следующих данных:
- для предохранителя на ток 0,25 А требуется проволока диаметром 0,02 мм;
- предохранитель 0,5 А — диаметр проволоки 0,03 мм;
- 1 А — 0,05 мм;
- 2 А — 0,09 мм;
- 3 А — 0,11 мм;
- 5 А — 0,16 мм;
- 7 А — 0,20 мм;
- 10 А — 0,25 мм;
- 15 А — 0,33 мм;
- 20 А — 0,40 мм;
- 25 А — 0,46 мм;
- 30 А — 0,52 мм;
- 35 А — 0,58 мм;
- 40 А — 0,63 мм;
- 45 А — 0,68 мм;
- 50 А — 0,73 мм;
- 60 А — 0,83 мм;
- 70 А — 0,91 мм.
Следующим этапом надо определить диаметр имеющейся у вас проволоки. Для этого существует специальный инструмент — микрометр. Но назвать его очень распространенным сложно. Как правило, имеется он только у мастеров, занимающихся такой работой профессионально. Определить диаметр проволоки можно и с помощью обычной линейки. Для этого на линейку надо плотно намотать несколько витков проволоки (она должна занимать не меньше 1 см), а потом разделить количество закрытых миллиметров на количество витков. В результате получится диаметр проволоки. Если длина имеющегося отрезка не позволяет сделать намотку прямо на линейку, воспользуйтесь любым другим предметом — например, карандашом или спичкой.
После этого можно приступать непосредственно к ремонту предохранителя. Самым простым способом является зачистка проволоки и намотка ее на металлические колпачки трубчатой вставки. Требуется сделать несколько витков, чтобы проволока держалась прочно. Правда, этот способ сложно назвать очень надежным, и чаще всего им пользуются, когда хотят проверить, исправен ли сам прибор. Если после установки такого элемента в цепь проволока перегорит, значит, прибор требует ремонта.
Более сложный, но и более надежный способ ремонта вставки заключается в следующем:
- прогреваем металлические колпачки с помощью газовой конфорки или обычной зажигалки и снимаем их со стеклянной колбы, придерживая ее аккуратно через ткань;
- если внутри колпачков остался клей, его надо удалить — это поможет сделать контакт более плотным;
- проволоку зачищаем и по диагонали пропускаем через колбу;
- надеваем колпачки.
Для того чтобы более надежно зафиксировать проволоку в колпачках, ее можно припаять, попустив через отверстия в торцах колпачков. В этом случае отремонтированный предохранитель не будет абсолютно ничем отличаться от заводского.
Каждый предохранитель выполняет функцию защиты электрических цепей и оборудования от перегревания при прохождении тока с показателями, значительно превышающими номинальные. Для того, чтобы правильно обеспечить надежную защиту необходимо заранее делать расчет плавких предохранителей. Данные элементы рассчитаны на эксплуатацию в самых различных условиях, поэтому требуется их индивидуальный подбор для каждого конкретного случая.
Справочные данные по предохранителям
Одним из элементов слаботочной защиты в выходных цепях источников питания и устройствах управления являются предохранители. При повышении уровня тока или напряжения в нагрузке выше предусмотренного, предохранители срабатывают, размыкая цепь питания «в обрыв» или представляя в этой цепи очень большое сопротивление току. Как элементы электронных конструкций эти приборы появились тогда же, когда «родились» все пассивные радиоэлементы. Сегодня плавкие вставки предохранителей представляют собой сверхбыстродействующие конструкции для защиты от короткого замыкания силовых полупроводников, в частности тиристоров, GТО и диодов. Благодаря своим конструктивным особенностям эти элементы устойчивы к переменным нагрузкам. При соблюдении постоянного времени в цепи короткого замыкания плавкие вставки предохранителей применяются в цепях постоянного и переменного тока.
Разные производители (в основном зарубежные) выпускают сегодня широкий спектр приборов-предохранителей на основе плавких вставок, что называется, «на любой вкус и цвет». Благодаря характеристике сверхбыстродействия некоторые серии плавких предохранителей, например фирмы Sitron (3NЕ3.2, 3NЕ3.3, 3NЕ4.1, 3NЕ8.0, 3NЕ8.7 ), обладают классом защиты аR (защита полупроводников при токах определенной кратности). Серия 3NЕ1-3NЕ0 на номинальные токи 16-630 А имеет класс защиты gR (защита полупроводников при токах любой кратности).
Такие предохранители применимы как для защиты проводов (защиты от перегрузки и короткого замыкания), так и для защиты полупроводниковых элементов, микросхем стабилизаторов, усилителей радиопередатчиков. Их перегрузочная характеристика согласируется условиями работы промежуточных звеньев преобразователей напряжения (U- преобразователей).
Ни один электронный узел, будь то силовой агрегат или источник питания, не обходится без предохранителя-элемента защиты от пожара и удара электрическим током. Характеристики некоторых популярных типов предохранителей, представленные в табл. П.1-П.7., помогут легко подобрать аналоговые замены предохранителей в случае ремонта и окажут практическую помощь в конструировании радиоэлектронной техники.
Приборы отечественного производства
Таблица П.1. Предохранители с плавкими вставками отечественного производства до 10А
Наименование | Предельный ток, А | Наименование | Предельный ток, А |
ВП1-1 | 0,25-5 | ВПБ6-38 | 4 |
ВП1-2 | 0,25-5 | ВПБ6-39 | 5 |
ВП2Б-1В | 0,25-8 | ВПБ6-40 | 6,3 |
ВП3Б-1В | 1-8 | ВПБ6-41 | 8 |
ВП3Т-2Ш | 3,15-10 | ВПБ6-42 | 10 |
ВП4-1 | 0,5 | ВПБ6-5 | 0,5 |
ВП4-2 | 0,75 | ВПБ6-7 | 1 |
ВП4-3 | 1 | ВПМ2-М1 | 0,1-0,5 |
ВП4-4 | 2 | ВТФ-6 | 6 |
ВП4-5 | 3,15 | ВТФ-10 | 10 |
ВП4-6 | 3,5 | ПК-30 | 0,15-2 |
ВП4-7 | 4 | ПК-45 | 0,15-5 |
ВП4-8 | 0,1 | ПЦ-30 | 1-5 |
ВП4-9 | 0,16 | ВПТ6-1 | 0,16 |
ВП4-10 | 0,2 | ВПТ6-2 | 0,25 |
ВП4-11 | 0,25 | ВПТ6-3 | 0,315 |
ВП4-12 | 0,315 | ВПТ6-4 | 0,4 |
ВП4-13 | 0,4 | ВПТ6-5 | 0,5 |
ВП4-14 | 1,25 | ВПТ6-6 | 0,63 |
ВП4-15 | 1,6 | ВПТ6-7 | 1 |
ВП4-16 | 5 | ВПТ6-8 | 1,25 |
ВП4-17 | 0,63 | ВПТ6-9 | 1,6 |
ВП4-18 | 2,5 | ВПТ6-10 | 2 |
ВПБ6-1 | 0,16 | ВПТ6-11 | 3,5 |
ВПБ6-2 | 0,25 | ВПТ6-13 | 5 |
ВПБ6-10 | 2 | ВПТ6-15 | 0,25 |
ВПБ6-11 | 3,15 | ВПТ6-18 | 0,5 |
ВПБ6-12 | 4 | ВПТ6-19 | 2 |
ВПБ6-13 | 5 | ВПТ6-20 | 1 |
ВПБ6-23 | 2 | ВПТ6-26 | 5 |
ВПБ6-24 | 3,15 | ВПТ6-28 | 0,25 |
ВПБ6-25 | 4 | ВПТ6-31 | 0,5 |
ВПБ6-26 | 5 | ВПТ6-33 | 1 |
ВПБ6-36 | 2 | ПВД-1 | 4/6,3 |
ВПБ6-37 | 3,15 |
Таблица П.2. Предохранители отечественного производства, рассчитанные на рабочий ток свыше 15А
Наименование | Предельный ток, А |
ПВД-2 | 16/25 |
ППН-35 | 35 |
ДВП4-2 | 12/16 |
ДВП4-2В | 25 |
ПН2-100 | 31,5/40/50/63/80/100 |
ПН2-250 | 80/100/125/160/200/250 |
ПН2-400 | 250/315/355/400 |
ПН2-630 | 315/500/630 |
ПНБ-5М 380/400 | 250 |
ПР-2/220В | 60 |
ПРС-25-10 | 10 |
ПРС-25-16 | 16 |
ПРС-25-20 | 25 |
Приборы зарубежного производства
Кроме плавких предохранителей, принцип действия которых основан на перегорании легкосплавного проводника при превышении расчетного тока, различают термопредохранители, которые разрывают электрическую цепь при превышении температуры нагрева их корпуса (пропорционально прохождению в цепи тока). По сравнению с плавкими, термопредохранители еще более инертны и их применение в электронных приборах весьма специфично, однако некоторые типы термопредохранителей могут конкурировать по эффективности с плавкими вставками (особенно при большом значении тока в цепи).
Согласование с вышестоящими защитами.
Предположим наша ТП питается от вышестоящей РП 6 кВ через фидер 1 (см. Рис. 2). На фидере 1 установлена защита с независимой характеристикой.
Рис. 2
Ориентировочные уставки защиты фидера 1:
Так как фидер питает одну ТП, то максимальный рабочий ток фидера можно принять равным максимальному рабочему току трансформатора.
Помним, что такая же уставка МТЗ будет у вводного автомата 0,4 кВ потому, что она тоже отстраивается от максимального рабочего тока трансформатора. Для согласования чувствительности защит примем ток защиты фидера на 10% больше.
Стандартное время МТЗ защиты фидера на городских ТП примерно 1 с.
Теперь, используя Гридис-КС, построим карту селективности защиты фидера и нашего предохранителя
Рис. 3
Как видно из карты защитные кривые пересекаются, причем при минимальных токах КЗ на стороне 0,4 кВ защита фидера будет работать быстрее, неселективно отключая ТП. Изменить эту ситуацию не получится потому, что для этого нужно двигать кривую защиты фидера «вверх и вправо». Вверх нельзя потому, что там уже стоит защита СВ 6 кВ РП со своими выдержками времени, и их менять нельзя. А вправо не получится потому, что мы перестанем резервировать КЗ за трансформатором (минимальный Кч.рез.=1,2)
Если даже попытаться подобрать зависимую характеристику на фидере, то придется многим пожертвовать. Например, защитой от перегрузки фидера. Она просто исчезнет из-за увеличения начального тока характеристики.
Рис. 4
Например, на Рис. 4 подобрана нормально инверсная характеристика с начальным током 240 А, вместо 85,1 А, иначе полной селективности добиться сложно. Можно конечно попробовать подобрать другой наклон и начальный ток кривой, но из графика видно, что оптимально все равно не получиться.
Есть и еще одна проблема. Как только вы примете на фидере зависимую характеристику защиты, то она перестанет согласовываться с независимой характеристикой СВ и ввода РП.
В итоге получаем, что при использовании предохранителя 6 кВ на практике невозможно добиться полной селективности с вышестоящими защитами. Это тоже не очень хорошо
Принцип работы предохранителя на видеоролике
При прохождении электрического тока меньше предельно допустимого, калиброванная проволока, соединяющая контакты предохранителя, нагревается до температуры около 70˚С. В случае превышения тока номинала предохранителя, проволока начинает нагреваться сильнее и при достижении температуры плавления металла, из которого она сделана – расплавляется, электрическая цепь разрывается, и течение тока прекращается.
Поэтому предохранитель и назвали плавким или плавкой вставкой. Видеоролик представлен в замедленном виде, для того, чтобы было хорошо видно, как происходит перегорание провода в предохранителе. В реальных условиях провод в предохранителе перегорает практически мгновенно.
Всего просмотров:
201815
Предохранитель защищает от превышения тока в цепи и, не имеет значения напряжение питающей сети, в которой он установлен, это может быть батарейка на 1,5 В, и автомобильный аккумулятор на 12 В или 24 В, сеть переменного напряжения 220 В, трехфазная сеть на 380 В. То есть Вы можете установить один и тот же предохранитель, например номиналом 1 А и в колодке предохранителей автомобиля, и в фонарике и в распределительном щите 380 В. Все типы плавких предохранителей отличаются только внешним видом и конструкцией, а работают по одному принципу – при превышении заданного тока в цепи, в предохранителе из-за нагрева расплавляется проволока.
Основных причин выхода из строя предохранителя две, из-за бросков питающего напряжения или поломки внутри самой радиоаппаратуры. Редко, но встречаются отказы предохранителя и по причине плохого его качества.
Многие думают, что предохранитель ремонту не подлежит. Но это не совсем так. В экстренной ситуации, когда под рукой нет запасного и, например, из-за отказавшегося работать авто в пути или усилителя, и срывается музыкальное сопровождение школьного бала или свадьбы, а все магазины уже закрыты, выбирать не приходится.
При грамотном подходе можно с успехом восстановить для временного использования до замены новым перегоревший предохранитель, сохранив его защитные функции. Зачастую такие проблемы решают банальным замыканием контактов держателя предохранителя любой попавшейся проволокой, а еще хуже, просто вставляют вместо предохранителя гвоздь или кусок толстой проволоки. Такое решение может окончательно все испортить и способствует возникновению пожара.
Что же делать в случае поломки предохранителя?
Бытует мнение о том, что плавкая вставка — это элемент, не подлежащий ремонту. И единственный выход в том случае, если она перегорела — замена
Причем очень важно правильно подобрать новый предохранитель с сохранением его номинала, то есть предельно допустимого тока — иначе перегорит уже не он, а весь прибор. Если определить номинал по сгоревшему изделию не удается, тогда выбирать его надо на основании мощности прибора, которая, как правило, указывается на его корпусе или на этикетке. Для того чтобы рассчитать ток, можно воспользоваться формулой:
Для того чтобы рассчитать ток, можно воспользоваться формулой:
Inom=PmaxU , где
I nom
— номинал предохранителя, измеряемый в амперах (А);
P max
— максимальная мощность прибора, измеряемая в ваттах (Вт);
U
— напряжение в электрической сети, откуда происходит питание, в вольтах (В).
Другой способ определить требуемый номинал вставки — посмотреть его в специальной таблице, где указывается, какой стандартный предохранитель используется для той или иной максимальной мощности прибора:
- 10 Вт — 0,1 А
- 50 Вт — 0,25 А
- 100 Вт — 0,5 А
- 150 Вт — 1 А
- 250 Вт — 2 А
- 500 Вт — 3 А
- 800 Вт — 4 А
- 1000 Вт — 5 А
- 1200 Вт — 6 А
- 1600 Вт — 8 А
- 2000 Вт — 10 А
- 2500 Вт — 12 А
- 3000 Вт — 15 А
- 4000 Вт — 20 А
- 6000 Вт — 30 А
- 8000 Вт — 40 А
- 10000 Вт — 50 А
Но во многих ситуациях заменить предохранитель на новый не получается. Например, когда перегорел плавкий элемент в автомобильной электрике, а вы находитесь далеко от магазинов, где можно купить замену. В этом случае стоит знать, что практически любой вышедший из строя предохранитель можно «реанимировать». Ведь в большинстве случаев единственное, что отличает рабочий элемент от нерабочего — это перегоревшая медная проволока. А ее всегда можно заменить, причем не меняя технических характеристик самого изделия. Главное условие — сохранение диаметра проволоки, тогда прибор будет работать, как прежде.
Предохранители (Плавкие вставки) — классификация, маркировка и характеристики
Предохранители типа D1, D2, D3. Плавкие вставки ПВДНожевые предохранители NV / NH
Цилиндрические предохранителиКрышки и держатели предохранителей
Предохранители типа D01, D02
Одной из важнейших характеристик керамического предохранителя (плавкой вставки) является временная характеристика срабатывания. По временной характеристике срабатывания предохранители (плавкие вставки) выпускаются четырех видов: сверхбыстрые (Ultra rapid), быстрые (Quick acting), стандартные (Standart fuses) и с временной задержкой или замедленные (time-lag, slow acting). .
1.— предохранители (плавкие вставки) с временной задержкой (медленные / time-lag, slow acting) — как правило предназначены для защиты цепей электродвигателей, имеющих большие пусковые токи, маркировка aM, TDZ или стилизованное изображение улитки; |
2.- предохранители (плавкие вставки) без временной задержки (Standart fuses) — маркировка gG/gL, gTr, gF3.- предохранители (плавкие вставки) с уменьшенным временем срабатывания (Quick acting) — маркировка F, flink — применяются как правило в цепях управления ;4.- предохранители (плавкие вставки) с уменьшенным временем срабатывания (Сверхбыстрые / ultra rapid). — маркировка uberflink, silized, FF, gR, aR, gS либо графическое изображение диода — применяются как правило для защиты полупроводниковых приборов и интегральных схем. |
Маркировка gG в общем случае говорит о том, что данное устройство предназначено для применения в области отключающей способности, от англ «General purposes» — общего назначения. Первая букваа илиg означает:a — Предохранители (плавкие вставки) для защиты от токов короткого замыкания (частичный диапазон).g — Предохранители (плавкие вставки) для защиты от токов короткого замыкания и перегрузки (полный диапазон).
Вторая буква описывает тип защищаемого оборудования: L
— Предохранители (плавкие вставки) для защиты кабелей и распределительных устройств.B — Предохранители (плавкие вставки) для защиты горного оборудования. Имеют повышенные требования по взрывобезопасности. По временным характеристикам примерно соответствуют gG/gL.M — Предохранители (плавкие вставки) для цепей электродвигателей и отключающих устройств.R — Предохранители (плавкие вставки) для защиты полупроводников.Tr — Предохранители (плавкие вставки) для защиты транформаторов.
Например: gG/gL
(gG-gL) — защита линейных цепей от перегрузки и короткого замыкания, общего назначения, наиболее распостраненные.aM — защита цепей электродвигателей от короткого замыкания (замедленные),aR — защита полупроводников только от короткого замыкания (сверхбыстрые).gR — защита полупроводников от короткого замыкания и перегрузки (сверхбыстрые).gS — защита полупроводников от короткого замыкания и перегрузки (сверхбыстрые). Совмещают в себе свойства 2-х последовательно включенных предохранителей с характеристиками aR+gG/gL. Сверхбыстрое срабатывание на короткое замыкание и среднее время срабатывания на перегрузку. Новая разработка, появились только в 2009 году.(По данным ETI Electroelement).gTr — Предохранители (плавкие вставки) для защиты транформаторов. Замедленные. Выдерживают перегрузку в 1,3*Iном в течение 10 часов, в 1,5*Iном в течение 2-х часов. (По данным SIBA).gF (gTF) — защита линейных цепей, расчётный ток короткого замыкания которых невелик. При необходимости могут быть заменены предохранителями с характеристикой gG/gL.
Производители Предохранителей (плавких вставок) |
Предохранители (плавкие вставки) типов D1, D2, D3, D01, D02, NV/NH и цилиндрические выпускают почти все крупные международные концерны, в том числе: — SIEMENS AG, Германия — ABB, Германия, Швеция — SIBA GMBH, Германия. ООО «Нордтех» — официальныйдилер. — ETI Electroelement, Словения, Европа. ООО «Нордтех» — официальныйдилер. — ItalWeber, Италия — LITTELFUSE Ltd.- США, имеет производство в Европе. — Wilhelm PUDENZ GmbH — Германия. — Groupe Carbone Lorraine — Франция. — Ferraz Shawmut — Франция. — Legrand — Франция. и многие другие. Все предохранители соответствуют стандарту IEC 60269-1 и DIN VDE0636. Как правило предохранители разных производителей взаимозаменяемы. являетсяофициальным дилером компаний SIBA и ETI Electoelement и поддерживает на складе в Санкт-Петербурге полный ассортимент подобных предохранителей (плавких вставок). Для уточнения и подбора характеристик предохранителей и по вопросам продажи предохранителей обращайтесь в «Нордтех» . |
ООО «Нордтех» Тел/факс, 600-75-73 (многоканальный) 198035, Санкт-Петербург, набережная Екатерингофки д. 29/31 | Copyright Nordtech Ltd. 2005-2019 |
Номиналы предохранителей ориентировочные
Номинал предохранителя на микроволновке порядка 12 А (2 Квт) Номинал предохранителя в блоке питания компьютера 400 Вт – 2,5 А, 600 Вт-4, 800 Вт – 5 А.
В целом примерно рассчитать предохранитель можно по мощности потребляемого устройства. То есть мощность делим на напряжение и получаем ток. Именно этот ток с небольшим запасом и станет номиналом нашего предохранителя. Надо понимать, что даже предохранитель для защиты имеет небольшой запас по мощности порядка 10 процентов. Это связано с пусковыми индукционными токами при прохождении через индуктивность и при зарядке конденсаторов большой емкости.
Калькулятор расчета диаметра провода для плавких вставок предохранителей
Роль проводника в предохранителе выполняет плавкая вставка, которая при нормальном рабочем токе обеспечивает достаточную проводимость. Но, в случае чрезмерного превышения этого параметра, происходит перегрев с дальнейшим пережогом плавкой вставки.
Подбирается плавкая вставка как по типу защищаемой нагрузки, так и в соответствии с величиной номинального тока. Основным ее параметром является сечение, которое можно рассчитать следующим способом.
Теплота, выделяемая при перегорании проволоки рассчитывается по формуле:
где I – сила тока в проводнике, R – сопротивление, t – время протекания (как правило, выбирается от 0,2 до 2 секунд, в зависимости от защищаемого оборудования).
Также количество теплоты можно выделить через массу проводника, при этом:
где λ – удельная теплота плавления (выбирается из таблицы 1), а m – масса проволоки.
Металл | Удельная теплота плавления | Металл | Удельная теплота плавления | ||
кДж/кг | кал/г | кДж/кг | кал/г | ||
Алюминий | 393 | 94 | Платина | 113 | 27 |
Вольфрам | 184 | 44 | Ртуть | 12 | 2,8 |
Железо | 270 | 64,5 | Свинец | 24,3 | 5,8 |
Золото | 67 | 16 | Серебро | 87 | 21 |
Магний | 370 | 89 | Сталь | 84 | 20 |
Медь | 213 | 51 | Тантал | 174 | 41 |
Натрий | 113 | 27 | Цинк | 112,2 | 26,8 |
Олово | 59 | 14 | Чугун | 96-140 | 23-33 |
Из этих формул можно вывести равенство:
Массу круглой проволоки можно вычислить по формуле:
где, π – константа, d – диаметр проволоки, l – длина проволоки, ρ – плотность металла
Если подставить значение массы и вывести диаметр, получим следующую формулу:
если принять, что R = ( ρ * l ) / s, где s — это сечение проводника, тогда получим:
Чтобы избежать утомительных расчетов и изнурительной работы с таблицами для вычисления диаметра плавкой вставки, гораздо удобнее воспользоваться онлайн калькулятором. В котором вам необходимо указать материал проволоки и допустимую величину тока.
Выбор плавкого предохранителя для защиты двигателей
Асинхронные двигатели имеют неприятную особенность — их пусковой ток в 5-7 раз превышает номинальный ток двигателя! Предохранители не подбираются по номиналу двигателя!
Данный подбор действителен для „инерционных“ или „gL“-предохранителей (VDE 0636).
Номинальный ток предохранителя ограничивается его нагревательной способностью. При длительном прохождении этого тока через предохранитель корпус предохранителя не перегревается. Номинальный ток предохранителя должен быть не меньше максимального значения номинального тока плавкой вставки, используемой с данным предохранителем.
Номинальные токи предохранителя и плавкой вставки / в не должны быть меньше расчетного тока цепи.
Основным условием, определяющим выбор плавких предохранителей для защиты асинхронных двигателей с короткозамкнутым ротором, является отстройка от пускового тока.
Номинальный ток предохранителя должен быть меньше пускового тока примерно в 2,5 раза или в 1,6 – 2,8 раза больше номинального. Но даже при защите двигателей с фазным ротором, когда предохранитель может быть выбран на ток, близкий к номинальному; такая защита менее чувствительна к небольшим перегрузкам, чем тепловые реле. Поэтому более целесообразно применять тепловые реле для полноценной защиты двигателя.
Выбор плавких вставок от пусковых токов выполняется по времени: пуск электродвигателя должен полностью закончиться раньше, чем вставка расплавится под действием пускового тока.
Опытом эксплуатации установлено правило: для надежной работы вставок пусковой ток не должен превышать половины тока, который может расплавить вставку за время пуска.
Выбор предохранителей для защиты асинхронных электродвигателей:
Все электродвигатели разбиты на две группы по времени и частоте пуска
Двигателями с легким пуском считаются двигатели вентиляторов, насосов, металлорежущих станков и т. п., пуск которых заканчивается за 3…5 с, пускаются эти двигатели редко, менее 15 раз в 1 ч.
К двигателям с тяжелым пуском относятся двигатели подъемных кранов, центрифуг, шаровых мельниц, пуск которых продолжается более 10 с, а также двигатели, которые пускаются очень часто — более 15 раз в 1 ч. К этой категории относят и двигатели с более легкими условиями пуска, но особо ответственные, для которых совершенно недопустимо ложное перегорание вставки при пуске.
Выбор номинального тока плавкой вставки для отстройки от пускового тока производится по выражению: Iвс ≥ Iпд /К (1)
где Iпд — пусковой ток двигателя, определяемый по паспорту, каталогам или непосредственным измерением; К — коэффициент, определяемый условиями пуска и равный для двигателей с легким пуском 2,5, а для двигателей с тяжелым пуском 1,6…2.
Поскольку вставка при пуске двигателя нагревается и окисляется, уменьшается сечение вставки, ухудшается состояние контактов, она может ложно перегореть при нормальной работе двигателя. Вставка, выбранная в соответствие с формулой 1, может сгореть также при затянувшемся по сравнению с расчетным временем пуске или самозапуске двигателя. Поэтому во всех случаях целесообразно измерить напряжение на вводах двигателя в момент пуска и определить время пуска.
Номинальный ток предохранителя, указанный на нем, равен наибольшему из номинальных токов плавких вставок, предназначенных для данной конструкции предохранителя. Номинальный ток предохранителя должен быть больше, чем действующее значение протекающего через него в нормальном рабочем режиме тока.
Для предотвращения сгорания вставок при пуске, что может повлечь за собой работу двигателя на двух фазах и его повреждение, целесообразно во всех случаях, когда это допустимо по чувствительности к токам КЗ, выбирать вставки более грубыми, чем по условию (1).
Каждый двигатель должен защищаться своим отдельным аппаратом защиты. Общий аппарат допускается для защиты нескольких маломощных двигателей только в том случае, если будет обеспечена термическая устойчивость пусковых аппаратов и аппаратов защиты от перегрузки, установленных в цепи каждого двигателя.