Схема намотки якоря коллекторного двигателя 16 пазов

Оглавление

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими

  • Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно)

К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Особенности работы асинхронного двигателя болгарки

Практически во всех электроприборах, использующихся в быту, применяется асинхронный электрический двигатель. Важным преимуществом этого типа мотора является то, что при изменении нагрузки на него, частота оборотов не меняется. Это означает, что если, к примеру, долго и без остановки резать камень бытовой болгаркой, никаких внешних признаков перегрузки двигателя заметно не будет. Скорость вращения диска будет постоянная, звук однотонным. Изменится только температура, но этого можно и не заметить, если руки одеты в перчатки.

При невнимательном отношении, преимущество может превратиться в недостаток. Асинхронные двигатели очень чувствительны к перегреву, значительное превышение рабочей температуры влечёт за собой оплавление изоляции на обмотках ротора. Вначале мотор будет работать с перебоями, а потом — когда произойдёт межвитковое короткое замыкание — двигатель остановится совсем. Стоит несколько раз сильно перегреть двигатель болгарки и, наиболее вероятно, что якорь оплавится. Кроме того, от высокой температуры отпаиваются контакты, соединяющие провода первичной обмотки с коллектором, что ведёт к прерыванию подачи электрического тока.

Перемотка электродвигателей своими руками

Несмотря на то, что электродвигатели – это очень надежное оборудование, их выход из строя не редкость. Учитывая их немалую стоимость, гораздо выгоднее выполнить ремонт, чем покупать новый агрегат. Некоторые умельцы при помощи несложных приспособлений делают это даже в домашних условиях. Однако стоить отметить, что перемотка электродвигателей требует специальных знаний и навыков. Предлагаем рассмотреть основные операции, которые необходимо проделывать при выполнении этих работ.

ВНИМАНИЕ! Электромонтажные работы следует проводить только с полным следованием правилам техники безопасности. Ремонт промышленных электродвигателей осуществляется в специальных мастерских или цехах

Как правило, на каждом предприятии есть специальные службы, выполняющие эти работы. Учитывая, что вес промышленных э/двигателей нередко достигает сотен и даже тысяч килограммов, при их ремонте не обойтись без специального оборудования. Поэтому речь пойдет не о них, а о компактных промышленных и бытовых моделях, ремонт которых можно выполнить своими руками

Ремонт промышленных электродвигателей осуществляется в специальных мастерских или цехах. Как правило, на каждом предприятии есть специальные службы, выполняющие эти работы. Учитывая, что вес промышленных э/двигателей нередко достигает сотен и даже тысяч килограммов, при их ремонте не обойтись без специального оборудования. Поэтому речь пойдет не о них, а о компактных промышленных и бытовых моделях, ремонт которых можно выполнить своими руками.

Обмоточные данные электродвигателя

Это очень важные параметры, влияющие на рабочие характеристики агрегата. Самый простой способ их получить – обратиться к соответствующим источникам, самый надежный из которых — паспорт изделия. Найти эту информацию можно и по маркировке двигателя с открытых источниках.

Паспортные данные электродвигателя должны включать следующее:

  • Тип двигателя
  • Количество фаз
  • Частота (Гц)
  • Номинальная мощность (Вт или кВт)
  • Напряжение питания (В)
  • Потребляемый ток (А)
  • Число оборотов (об/мин)
  • КПД двигателя
  • Коэффициент мощности cosφ
  • Степень защиты
  • Класс изоляции

Количество катушек можно определить визуально, после разборки двигателя. Диаметр необходимого для перемотки эмальпровода замеряют штангенциркулем. А количество витков эмалированного провода можно определить во время снятия старой. Для этого обмотки проводов одной из катушек аккуратно разрезают и производят пересчет.

Ремонт и перемотка электродвигателей своими руками — последовательность действий

  • Отключение от питающей сети
  • Демонтаж с места установки
  • Демонтаж защитного кожуха охлаждающего вентилятора
  • Демонтаж крыльчатки вентилятора
  • Разборка электродвигателя
  • Демонтаж ротора
  • Демонтаж обмотки
  • Очистка ротора и статора от грязи, нагара и остатков пропитки
  • Укладка катушек в пазы
  • Пропитка обмотки
  • Сушка электродвигателя
  • Проверка катушек омметром
  • Сборка электродвигателя
  • Пробный запуск

Перемотка статора

В качестве примера – перемотка асинхронного двигателя. Перед началом разборки корпус двигателя обычно протирают влажной ветошью и хорошенько высушивают. Намотка катушечных групп производится либо на специальном станке, либо вручную с использованием шаблонов. После того как катушки уложены в специальные пазы, их необходимо обвязать и соединить в единую цепь. После перемотки электродвигатель необходимо пропитать специальной пропиткой. Для этого корпус нагревают до температуры +40-+50°С и опускают в емкость с пропиточным лаком. После полного высыхания производится замер сопротивления катушек статора (полученные значения должны быть одинаковыми), а так же «прозвонка» катушек и корпуса на предмет пробоя. Затем двигатель собирают и производят пробный пуск.

Перемотка якоря

Процесс перемотки коллекторных двигателей почти не отличается от статорных за исключением некоторых нюансов. Как правило, в них чаще всего проблемы возникают в обмотке ротора. Соответственно, на перемотку чаще всего отправляют якорь. Кроме того, сам якорь после перемотки необходимо отбалансировать. Для этого понадобятся специальные станки и приспособления.

Ремонт и перемотка электродвигателей – достаточно непростой и трудоемкий процесс. Возможно ли делать перемотку электродвигателей в домашних условиях? Возможно, но для этого необходима соответствующая квалификация и оборудованная всем необходимым мастерская. Выполнять такую работу «на коленке» — пустая трата времени.

Оригинал статьи размещен на нашем сайте cable.ru .

Причины и признаки поломки статора

Ручные шлифовальные машины, называемые в народе «болгарками» могут выйти из строя по разным причинам. Самая частая проблема – обрывание витков статора, происходящая из-за чересчур сильной нагрузки на аппарат. Сейчас такую неисправность можно исправить самостоятельно – правильно перемотать статор.

Нередки случаи, когда причиной поломки становится выход из строя электрической части устройства. К этому приводят различные факторы:

  • попадание воды на поверхность, по которой проходит ток;
  • скачки напряжения;
  • резкое выдергивание вилки из розетки;
  • высокие перегрузки и, как следствие, перегрев.

Существует мнение, что перемотать статор самостоятельно невозможно. На самом деле, достаточно разобраться в конструкции устройства. Если есть опыт подобной работы и необходимые знания, ремонт трехфазного устройства запуска провести можно и дома. Учитывая подготовительные работы, процесс может занять несколько часов.

Схема намотки провода.

Нередко двигатель выходит из строя из-за обрыва магнитопровода, нарушения обмотки или якорного коллектора. При повышении напряжения отмечается скачкообразное увеличение силы искры. Обычно это наблюдается только на одной щетке. Такое явление приводит к разрушению изоляции проводов на статорной катушке. Если при включении диск очень быстро разгоняется и набирает обороты, это говорит о витковом коротком замыкании статора.

Искры, возникающие при работе коллектора, сигнализируют о возникновении нарушений в балансировке якоря. Проверку работы коллектора можно осуществить таким образом: при включении звук должен усиливаться постепенно с увеличением напряжения. При этом не должно возникать вибраций. Если наблюдается резонанс, электродвигатель болгарки требует ремонта.

Схема соединения обмоток электродвигателя

Обмотки электродвигателя могут подключаться к сети одним из двух способов – «звезда» и «треугольник». И выбирать подходящий стоит исходя не из удобства или простоты конструкции, а из величины питающего напряжения.

Для ЭД высокой мощности целесообразно использовать комбинированную систему «треугольник-звезда». Она снижает пусковые токи и делает старт более плавным.

Схема соединения обмоток электродвигателя «треугольником»

При использовании схемы «треугольник» обмотки ЭД подключаются последовательно, соединяясь концами и началами друг с другом. Точки их соединения также подключаются к фазам. Выглядит это следующим образом:

Главное достоинство схемы подключения «треугольник» – ЭД, присоединённый к сети таким образом, способен развивать полную мощность. То есть ту, которая указана в паспорте как номинальная.

Тем не менее, пусковые токи для подключённого электродвигателя очень высокие – они превышают номинальные примерно в 7 раз. И вследствие этого «плавность» работы машины также страдает

Это очень важно учесть при проектировании электропитания устройства и определении сферы практического использования

Схема соединения обмоток электродвигателя «звезда»

Подключение по типу «звезда» подразумевает соединение концов обмоток статора в одной точке. Другими своими концами они подключаются к фазам электропитания. Выглядит это следующим образом:

Подключение по схеме «звезда» гарантирует плавность и «мягкость» работы электродвигателя. Кроме того, для старта машины не требуется относительно высоких пусковых токов. Но недостатком этой методики подключения является сниженная мощность работы устройства.

Тем не менее, важно учесть, что рассчитанные на рабочее напряжении 220/380 Вольт ЭД можно подключать к сети с линейным напряжением 380 В исключительно с использованием схемы «звезда»

Комбинированная схема запуска электродвигателя «звезда-треугольник»

Обе вышеприведённые схемы соединения обмоток асинхронных электродвигателей обладают как достоинствами, так и недостатками. «Треугольник» позволяет машине достичь полной мощности, но требует высоких значений пускового тока для старта. «Звезда» не нуждается в высоком пусковом токе и гарантирует плавную работу устройства, но не даёт ЭД достичь номинальной мощности.

Для решения этой проблемы применяется комбинированная схема подключения «звезда-треугольник». Она применяется в первую очередь для электродвигателей, имеющих высокую мощность (от 5 кВт). Комбинированная схема подразумевает оснащение мотора специальным реле, которое и переключает способ соединения обмоток прямо во время работы.

Так, при запуске ЭД с комбинированным подключением работает по схеме «звезда». Это снижает пусковые токи до их номинальных значений. Но как только ротор раскручивается до высоких оборотов, реле переключает схему соединения на «треугольник». Именно поэтому мотор может достигнуть своей номинальной мощности.

При переключении наблюдается резкий скачок тока. Из-за этого разогнавшийся ротор сначала теряет обороты, но затем постепенно ускоряется.

Стоит отметить, что комбинированное подключение поддерживают только электродвигатели со специальной маркировкой (Y/Δ).

Принцип работы

Рассмотрим асинхронный двигатель принцип работы и устройство. Для корректного подключения агрегата к сети, обмотки соединяются по схеме «звезда» или «треугольник». Действие механизма основано на использовании вращающегося магнитного поля статора. Частота вращения многофазной обмотки переменного поля (n1) определяется по формуле:

Здесь:

  • f – частота сети в Герцах;
  • p – Количество пар полюсов (как правило, 1-4 пары, поскольку чем их больше, тем ниже мощность и КПД, использование полюсов даёт возможность не применять редуктор, при низкой частоте вращения).

Магнитное поле, пронизывающее статор с обмоткой пронизывает и обмотку ротора. За счёт этого индуцируется электродвижущая сила. Электродвижущая сила самоиндукции в обмотке статора (Е1) направлена навстречу приложенному напряжению сети, ограничивая величину тока в статоре. Поскольку обмотка ротора замкнута, или идёт через сопротивление (короткозамкнутый ротор в первом случае, фазный ротор во втором случае), то под действием электродвижущей силы ротора (Е2) в ней образуется ток. Взаимодействие индуцируемого тока в обмотке ротора и магнитного поля статора создаёт электромагнитную силу (Fэл). Направление силы определяется по правилу левой руки.

Согласно правилу: левая рука устанавливается таким образом, что бы магнитно силовые линии входили в ладонь, а вытянутые четыре пальца направлялись вдоль движения тока в обмотке. Тогда отведённый большой палец покажет направление действия электромагнитной силы для конкретного проводника с током.

Совокупность электромагнитных сил двигателя будет равна общему электромагнитному моменту (М), который приводит в действие вал электродвигателя с частотой (n2). Скорость ротора не равна скорости вращения поля, поэтому эта скорость называется асинхронной скоростью. Вращающий момент в асинхронном двигателе развивается только при асинхронной скорости, когда скорость вращения ротора не равна скорости вращения магнитного поля

Важно, что бы при работе двигателя скорость ротора была меньше скорости поля (n2

Таким образом, частота вращения ротора (обороты) будет равна:

Принцип работы асинхронного электрического двигателя легко объясняется с помощью устройства, называющегося диск Арго – Ленца.

Постоянный магнит закрепляют на оси, которая устанавливается в устройстве, способном обеспечить её вращение. Перед полюсами магнита (N-S) помещают диск, выполненный из меди. Диск так же крепится на оси и свободно вращается вокруг неё.

Если вращать магнит за рукоятку, диск тоже будет вращаться в том же направлении. Эффект объясняется тем, что магнитные линии поля, создаваемые магнитом, замыкаются от северного полюса к южному полюсу, пронизывая диск. Эти линии образуют в диске вихревые токи, которые взаимодействуя с полем, приводят к возникновению силы, вращающей диск. Закон Ленца гласит, что направление всякого индукционного тока противодействует величине, вызвавшей его. Вихревые токи пытаются остановить магнит, но поскольку это не возможно, диск следует за магнитом.

Примечательно, что скорость вращения диска всегда меньше скорости вращения магнита. В асинхронных электродвигателях магнит заменяет вращающееся магнитное поле, созданное токами трёхфазной обмотки статора.

Нагрев и температурные деформации.

С повышением температуры обмотки статора происходит тепловое старение витковой и корпусной изоляции. Она теряет эластичность, становится хрупкой, и вследствие этого срок службы ее сокращается. Объективно степень старения изоляции определяется ее внешним состоянием. Признаками старения изоляции являются вспухание ее в вентиляционных каналах и в местах выхода из лаза. При нажиме пальцами на изоляцию чувствуется немонолитность и ослабленность изоляции.
Местные перегревы чаще всего являются следствием дефектов активной стали или витковых замыканий. Признаком наличия местных перегревов является разница в степени расслоения изоляции в отдельных местах секции, а также следы и подтеки компаунда. Местные нагревы можно выявить при профилактических испытаниях, но перегревы, связанные с замыканием листов активной стали и витковыми замыканиями, быстро прогрессируют и чаще приводят к пробою обмотки статора во время работы двигателя. Местные нагревы могут возникать при некачественных пайках в соединениях обмотки статора. Большое влияние на состояние изоляции оказывают температурные деформации пазовой части секции, обусловленные неодинаковыми коэффициентами линейного расширения меди и стали. Несмотря на кажущуюся малую величину этих деформаций, их систематическое повторение в течение длительного времени приводит к преждевременному износу изоляции.

Перемотка якоря

Процесс замены обмотки коллекторного двигателя несколько похож за исключением небольших нюансов, связанных с особенностью исполнения. Например, на перемотку отправляют якорь, а не корпус, при условии, что проблема возникла не с катушками возбуждения. Помимо этого имеются следующие отличия:

  • Для намотки применяется специальный станок, более сложной конфигурации.
  • Обязательно необходима проточка, балансировка якоря (в финальной части процесса), а также его чистка и шлифовка.
  • При помощи специального фрезерного станка производится нарезка коллектора.

Для перечисленных процессов требует спецоборудование, без него перемотка электродвигателей — пустая трата времени.

Техника часто подвергается перегрузкам и механическим повреждениям. Стоит всего раз уронить или что-нибудь пролить на инструмент, как на обмотке ротора появляется ржавчина, а сам якорь смещается. Последствия плачевны: электродвигатель перегревается, искрит и вибрирует. Работа с таким инструментом опасна.

Если у вас есть навыки ремонта техники и минимальный набор инструментов, то устранить неисправность поможет перемотка якоря в домашних условиях. Дело в том, что именно обмотка принимает на себя первые «удары» неправильной эксплуатации. Жилы проводника разрываются и обгорают. Их замена продлит жизнь техники и увеличит производительность двигателя.

Пошаговая инструкция перемотки электродвигателя своими руками

Необходимо сразу предупредить, что без спецоборудования и навыков работы перемотка катушек будет, скорее всего, бесполезным занятием. С другой стороны отрицательный опыт это тоже опыт. Понимание сложности процесса является лучшим объяснением его стоимости.

Первый этап — демонтаж

Мы приводим алгоритм действий для асинхронных машин, он следующий:

  1. Отключаем привод от сети (380 или 220 В).
  2. Демонтируем электромотор с конструкции, где он был установлен.
  3. Снимаем задний защитный кожух охлаждающего вентилятора.
  4. Демонтируем крыльчатку.
  5. Откручиваем крепление торцевых крышек, после чего снимаем их. Начинать желательно с фронтальной части, после ее демонтажа ротор легко «выйдет» с тыловой крышки.
  6. Вытаскиваем ротор.

Данный процесс можно существенно облегчить, если использовать специальное устройство – съемник. С его помощью легко освободить вал двигателя от шкива или шестерни, в также снять торцевые крышки.


Съемник для демонтажа

Мы не будем приводить инструкцию по разборке коллекторного двигателя, поскольку особо не отличается. Строение электромашины данного типа можно найти на нашем сайте.

Этап второй — снятие обмотки

Очередность действий следующая:

  1. При помощи ножа снимаем бандажный крепеж и изоляционное покрытие с мест соединений проводов. В некоторых инструкциях рекомендуется зафиксировать схему соединений, например, сделав фотоснимок. Делать это особого смысла нет, поскольку это справочная информация и узнать ее по марке двигателя не составляет проблемы.
  2. Используя зубило, сбиваем верхушки проводов с каждого торца статора.
  3. Освобождаем пазы, используя пробойник соответствующего диаметра.
  4. Очищаем статор от грязи, копоти, лака пропитки.


Статор, освобожденный от обмотки

На этом этапе мы рекомендуем остановиться, взять корпус и отвезти его специалистам. Самостоятельный демонтаж позволит снизить стоимость восстановительных работ. Как уже упоминалось выше, без спецоборудования качественно перемотать катушки довольно сложно. Для понимания сложности процесса опишем его технологию, что позволит облегчить выбор.

Перемотка статора (финальная фаза)

Процесс состоит из следующих действий:

  1. Установка изоляторов в каждый паз (гильзование).
  2. Толщина материала и его характеристики подбираются по справочнику.
  3. Определяются обмоточные данные по марке двигателя.
  4. На специальном станке производится намотка необходимого количества витков всыпных катушек. В сети можно найти фото и параметры самодельных ручных станков, но качество их работ довольно сомнительное.

    Станок для намотки всыпной обмотки

  5. Катушечные группы укладываются в пазы, после чего производится их обвязка и соединение. Эти процессы довольно сложные и выполняются вручную.
  6. Осуществляется пропитка. Для этого корпус нагревается до температуры 45°С – 55°С и полностью погружается в емкость с пропиточным лаком. Заливать лаком провода не имеет смысла, поскольку в этом случае все равно останутся пустоты.
  7. После пропитки корпус помещают в специальную камеру, где осуществляется сушка при температуре 130-135°С.
  8. Финальное тестирование катушек омметром.
  9. Сборка и пробный запуск (если в ремонт передавались на только корпус, а и остальные детали и крепления).

Если на восстановление сдавался только корпус, рекомендуем перед тем, как включать мотор, проверить катушки.

Тяжелые условия эксплуатации электродвигателей с перемоткой «Славянка»

Своевременный ремонт электродвигателей и их последующая перемотка на «Славянку», позволяют использовать агрегаты в следующих условиях:

  • частый пуск;
  • затяжной пуск;
  • тяжелый пуск;
  • большие перепады напряжения.

Как правило, асинхронные трехфазные двигатели с совмещенной обмоткой помогают решить проблему запуска при отсутствии частотных регуляторов, а при наличии таковых их рабочие характеристики превосходят аналогичные показатели других двигателей. При этом количество потребляемой электроэнергии снижается до 50%, не только в условиях перепадов напряжения, но и при меняющейся или неноминальной нагрузке.

Типы электродвигателей и особенности ремонта

Данные устройства производятся в разных конструктивных исполнениях. Выход из строя обмотки в промышленности ремонтируется отправкой двигателя в ремонтный цех, где двигатели разбирают, чистят, ревизируют.

Потом неисправные обмотки перематывать стараются на специальных намоточных установках. После этого собирают и проверяют двигатели на рабочих оборотах с измерением тока холостого хода и под предполагаемой нагрузкой.

Электродвигатели подразделяются на два типа:

  • с короткозамкнутым ротором моторы представляют собой простоту изготовления, дешевизну и имеют высокий коэффициент полезного;
  • с фазным ротором, используют такое конструктивное решение при недостаточном напряжении питающей сети, если этого питания не хватает для запуска устройства.

Неисправность таких устройств в быту устраняется совместно с сервисной службой или сдачей этого мотора в мастерскую. Но, что же делать если поблизости нет сервиса и нет возможности отдать в ремонт профессионалам?

Единственный вариант попробовать разобрать в домашних условиях и обеспечить перемотку самостоятельными силами. Перематывать обмотки может человек, обладающий минимальными знаниями о способе проведения перемотки.

Разборка электродвигателя

Перед разборкой необходимо обработать мотор влажной чисткой, затем очистить ветошью. Откручиваем крышку вентилятора, снимаем последовательно все болты. После этого спрессовываем вентилятор, предварительно открутив его фиксирующий болт.

Откручиваем крепления подставки и крепление фланцев. Отсоединяем борно электродвигателя с клеммником. Все крепления и болты надо складывать отдельно, чтобы не было проблем в дальнейшем со сборкой. Откручиваем передний фланец вместе с ротором и вытаскиваем.

Разное устройство электродвигателей заставляет предварительно задумываться: «Какая из обмоток вышла из строя роторная или статорная». С помощью приборов омметра и мегоомметра проводим проверку обмоток.

Прозваниваем двигатель омметром между тремя фазными выводами на одинаковость сопротивления. Проверяем омметром каждую фазу на землю, сопротивление должно быть порядка нескольких мегоОм и выше. Затем берём мегоомметр и проверяем сопротивление изоляции каждой обмотки на корпус.

Определились с неисправной обмоткой, в нашем случае неисправна обмотка статора, а ротор имеет неразборную конструкцию. Демонтаж статора не совсем простая задача, как казалось бы на первый взгляд.

Если обмотка оплавилась очень сильно и электродвигатель вышел из строя от перегрева, то выбивать её не понадобится, она достаточно легко снимется со своих мест крепления. Случилось так, что обмотка подгорела немного или она в обрыве, то лак очень хорошо будет держать, и даже попытки сбить зубилом не приведут к полному удалению старых частей.

Как вариант, можно развести костёр и нагреть корпус статора чтобы весь лак внутри выгорел. После таких действий старые отложения высыпятся сами.

Необходимо дать остыть корпусу на воздухе, не прибегая к жидкостному охлаждению, в противном случае корпус не выдержит разности температур и треснет. Зачистка внутренней поверхности требуется до состояния блеска. Не должно остаться окалин от оплавленного лака и меди.

Потребуется подсчёт количества витков и параметры провода. Подбираем для перемотки именно обмоточный провод. Эта проводка имеет особенные свойства. По форме бывают округлые и прямоугольного сечения.

Проводка обладает очень малым сопротивлением изоляции. В мастерских по ремонту имеются механические устройства намотки обмоток, провода берутся с повышенной прочностью изоляции, в маркировке добавляется буква М. Мы проводим перемотку своими руками, поэтому возьмём провод с обычной изоляцией с параметрами соответствующими предыдущей.

Как ремонтировать асинхронные двигатели

Если в двигателе есть проблемы, то это проблемы или механического, или электрического характера. В первом случае поломка может сопровождаться сильной вибрацией и характерным шумом. Обычно это указывает на проблемы с подшипником – как правило, в торцевой крышке. Не устраните поломку вовремя – и вал может заклинить, а в итоге из строя выйдут обмотки статора. В это же время может не успеть сработать функция тепловой защиты автоматического выключателя.

Практика показывает, что примерно в 90% неисправностей моторов асинхронного типа появляются проблемы в обмотке статора – в виде обрыва, межвиткового замыкания, КЗ на корпус. В это время короткозамкнутый якорь чаще всего продолжает функционировать исправно. Таким образом, если повреждения двигателя имеют механическую причину, электрическую часть обязательно следует проверять.

Чаще всего проблему можно выявить по внешним признакам и характерному запаху (рис. 1). Если поломку не удалось обнаружить эмпирическим способом, тогда прибегаем к диагностированию и делаем прозвонку на обрыв. Если мы ее обнаружили, выполняем разборку мотора (про это детальнее мы поговорим дальше) и тщательно осматриваем соединения. Когда дефекты не обнаружены, можно сказать, что у нас обрыв в какой-нибудь катушке. Поэтому нужно делать перемотку.

Если после прозвонки обрыв не зафиксирован, тогда мы измеряем сопротивление обмоток, при этом учитываем такие нюансы:• необходимо, чтобы сопротивление изоляции катушек на корпус стремилось к бесконечности;• нужно, чтобы у трехфазного привода обмотки показывали одинаковое сопротивление;• требуется, чтобы у однофазных моделей сопротивление пусковых катушек превышало эти параметры рабочих обмоток.

Также нужно помнить о том, что статорные катушки имеют весьма низкое сопротивление. Поэтому, чтобы его измерить, нет смысла пользоваться приборами, которые имеют низкий класс точности – это большая часть мультиметров. Решить вопрос можно, если собрать простую схему на потенциометре, добавив дополнительный источник питания – к примеру, автомобильную аккумуляторную батарею.

Как проводить измерения:• подключаем катушку привода к схеме, которая представлена выше;• с помощью потенциометра устанавливаем ток 1 А;• делаем расчет сопротивления катушке, используя такую формулу: где R К и U ПИТ описаны на рис. 2. R – сопротивление потенциометра, – падение напряжения на катушке измерения (на схеме показывает вольтметр).

Намотка провода

Способов перемотки статора асинхронного электродвигателя существует несколько, но при выборе любого из них обязательно запоминаете каждый шаг при разборке. Это позволит облегчить ремонт, причём, значительно. Для намотки потребуется медный провод в лаковой изоляции, его сечение должно быть таким же, как и на ремонтируемом электродвигателе.

Убедитесь в том, что на корпусе и магнитопроводе электродвигателя отсутствуют повреждения. После этого необходимо изготовить гильзы, установить их в пазы на статоре. Чтобы не заниматься подсчетом количества витков, не определять толщину, прочность и термостойкость материалы для изготовления гильз, можно воспользоваться справочной литературой. Для этого необходимо узнать тип и модель асинхронного мотора.

Все работы в специализированных мастерских производятся на станках. Автоматом производится даже подсчет числа витков. Но как в домашних условиях перемотать электродвигатель, если таких условий нет? Придётся всё считать самостоятельно, либо же брать все данные из сервисной книжки к электродвигателю.

Итог

Сделать Дуюнов мотор-колесо своими руками смог не так давно. Стоит помнить о том, что это комплект сложнейших электрических устройств. Все соединения и детали требуют тщательной и надежной изоляции. Кроме того, необходимо побеспокоиться о защите транспортного средства от песка, грязи, соли и прочих факторов, негативно отражающихся на работе электромотора.

При мощности велосипеда выше 250 Вт нужно обеспечить минимальные зазоры в трущихся подвижных частях. Специальные втулки изготавливаются на токарном станке по размеру. Следует отметить несколько основных плюсов эксплуатации моторного колеса на велосипеде, о которых говорят пользователи. Во-первых, на данное транспортное средство не требуются права. Во-вторых, электрический двигатель позволяет преодолевать значительные расстояния без существенных затрат физических сил.