Закон ома для однородного участка цепи

Закон Ома для полной цепи

Если замкнутая цепь состоит из сопротивления цепи, равного R, и источника тока с электродвижущей силой Eэдс и внутренним сопротивлением r, то в этом случае ток цепи I будет равен:

$ I = {E_{эдс} \over R + r} $ (6).

Выражение (6) называется законом Ома для полной цепи: сила тока в полной цепи равна ЭДС источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Проводники, в точности соответствующие закону Ома, называются линейными, так как график зависимости тока I от напряжения U изображается прямой линией. Следует отметить, что существуют много материалов, которые не подчиняются закону Ома, например, полупроводники или газоразрядные лампы. У металлических проводников отклонения от линейной зависимости появляются при больших токах, так как сопротивление металлов возрастает с ростом температуры.

Рис. 3. График зависимости сопротивления металлических проводников от температуры.

Закон Ома для участка цепи и полной цепи формулы и определения

В данной статье расскажем про закон Ома, формулы для полной цепи (замкнутой), участка цепи, неоднородного участка цепи, в дифференциальной и интегральной форме, переменного тока, а также для магнитной цепи. Вы узнаете какие материалы соответствуют и не соответствуют закону Ома, а также где он встречается.

Закон Ома:

постоянный ток , протекающий через проводник, прямо пропорционален напряжению , приложенному к его концам и обратно пропорционален сопротивлению .

Закон Ома был сформулирован немецким физиком и математиком Георгом Омом в 1825-26 годах на основе опыта. Это экспериментальный закон, а не универсальный — он применим к некоторым материалам и условиям.

Закон Ома является частным случаем более позднего и более общего — второго закона Кирхгофа.

Формула закона Ома для участка цепи

Интенсивность постоянного тока, протекающего через проводник, пропорциональна напряжению, приложенному к его концам. В интернете часто называют данную формулу первым законом Ома:

  1. U — напряжение
  2. I — сила (интенсивность) тока
  3. R — Сопротивление

Электрическое сопротивление:

Коэффициент пропорциональности R называется электрическим сопротивлением или сопротивлением.

Отношение напряжения к току для данного проводника является постоянным:

Резистор имеет сопротивление 1, если приложенное напряжение 1 вольт и сила тока составляет 1 ампер.

Сопротивление проводящей секции с постоянным поперечным сечением R прямо пропорционально длине этого сегмента li, обратно пропорциональному площади поперечного сечения S:

  1. R— электрическое сопротивление
  2. ρ — удельное сопротивление
  3. I — длина направляющей
  4. S — площадь поперечного сечения

Эта зависимость была подтверждена экспериментально британским физиком Хамфри Ди в 1822 году до разработки закона Ома.

Закон Ома для замкнутой (полной) цепи

Закон Ома для полной цепи — это значение силы (интенсивности) тока в настоящей цепи, который зависит от сопротивления нагрузки и от источника тока (E), также его называют вторым законом Ома.

Электрическая лампочка является потребителем источника тока, подключив их вместе, они создают полную электро-цепь. На картинке выше, вы можете увидеть полную электрическую цепь, состоящую из аккумулятора и лампы накаливания.

Электричество, проходит через лампу накаливания и через сам аккумулятор. Следовательно, ток проходя через лампу, в дальнейшем пройдет и через аккумулятор, то есть сопротивление лампочки складывается со сопротивлением аккумулятора.

Параллельное и последовательное соединение

В электрике элементы соединяются либо последовательно — один за другим, либо параллельно — это когда к одной точке подключены несколько входов, к другой — выходы от тех же элементов.

Закон Ома для параллельного и последовательного соединения

Последовательное соединение

Как работает закон Ома для этих случаев? При последовательном соединении сила тока, протекающая через цепочку элементов, будет одинаковой. Напряжение участка цепи с последовательно подключенными элементами считается как сумма напряжений на каждом участке. Как можно это объяснить? Протекание тока через элемент — это перенос части заряда с одной его части в другую. То есть, это определенная работа. Величина этой работы и есть напряжение. Это физический смысл напряжения. Если с этим понятно, двигаемся дальше.

Последовательное соединение и параметры этого участка цепи

При последовательном соединении приходится переносить заряд по очереди через каждый элемент. И на каждом элементе это определенный «объем» работы. А чтобы найти объем работы на всем участке цепи, надо работу на каждом элементе сложить. Вот и получается, что общее напряжение — это сумма напряжений на каждом из элементов.

Точно так же — при помощи сложения — находится и общее сопротивление участка цепи. Как можно это себе представить? Ток, протекая по цепочке элементов, последовательно преодолевает все сопротивления. Одно за другим. То есть чтобы найти сопротивление, которое он преодолел, надо сопротивления сложить. Примерно так. Математический вывод более сложен, а так понять механизм действия этого закона проще.

Параллельное соединение

Параллельное соединение — это когда начала проводников/элементов сходятся в одной точке, а в другой — соединены их концы. Постараемся объяснить законы, которые справедливы для соединений этого типа. Начнем с тока. Ток какой-то величины подается в точку соединения элементов. Он разделяется, протекая по всем проводникам. Отсюда делаем вывод, что общий ток на участке равен сумме тока на каждом из элементов: I = I1 + I2 + I3.

Теперь относительно напряжения. Если напряжение — это работа по перемещению заряда, тоо работа, которая необходима на перемещение одного заряда будет одинакова на любом элементе. То есть, напряжение на каждом параллельно подключенном элементе будет одинаковым. U = U1=U2=U3. Не так весело и наглядно, как в случае с объяснением закона Ома для участка цепи, но понять можно.

Законы для параллельного соединения

Для сопротивления все несколько сложнее. Давайте введем понятие проводимости. Это характеристика, которая показывает насколько легко или сложно заряду проходить по этому проводнику. Понятно, что чем меньше сопротивление, тем проще току будет проходить. Поэтому проводимость — G — вычисляется как величина обратная сопротивлению. В формуле это выглядит так: G = 1/R.

Для чего мы говорили о проводимости? Потому что общая проводимость участка с параллельным соединением элементов равна сумме проводимости для каждого из участков. G = G1 + G2 + G3 — понять несложно. Насколько легко току будет преодолеть этот узел из параллельных элементов, зависит от проводимости каждого из элементов. Вот и получается, что их надо складывать.

Теперь можем перейти к сопротивлению. Так как проводимость — обратная к сопротивлению величина, можем получить следующую формулу: 1/R = 1/R1 + 1/R2 + 1/R3.

Что нам дает параллельное и последовательное соединение?

Теоретические знания — это хорошо, но как их применить на практике? Параллельно и последовательно могут соединяться элементы любого типа. Но мы рассматривали только простейшие формулы, описывающие линейные элементы. Линейные элементы — это сопротивления, которые еще называют «резисторы». Итак, вот как можно использовать полученные знания:

Если в наличии нет резистора большого номинала, но есть несколько более «мелких», нужное сопротивление можно получить соединив последовательно несколько резисторов. Как видите, это полезный прием.
Для продления срока жизни батареек, их можно соединять параллельно. Напряжение при этом, согласно закону Ома, останется прежним (можно убедиться, измерив напряжение мультиметром). А «срок жизни» сдвоенного элемента питания будет значительно больше, нежели у двух элементов, которые сменят друг друга

Только обратите внимание: параллельно соединять можно только источники питания с одинаковым потенциалом. То есть, севшую и новую батарейки соединять нельзя

Если все-таки соединить, та батарейка которая имеет больший заряд, будет стремиться зарядить менее заряженную. В результате общий их заряд упадет до низкого значения.

В общем, это наиболее распространенные варианты использования этих соединений.

Напряжение на участке цепи формула

Закон Ома

Со школьного курса физики всем хорошо известна классическая трактовка Закона Ома: Сила тока в проводнике прямо пропорциональна напряжению на концах проводника и обратно пропорциональна его сопротивлению. Это значит, если к концам проводника сопротивлением R = 1 Ом приложено напряжение U = 1 Вольт, тогда величина тока I в проводнике будет равна 1/1 = 1 Ампер. Отсюда следуют ещё два полезных соотношения: Если в проводнике, сопротивлением 1 Ом, протекает ток 1 Ампер, значит на концах проводника напряжение 1 Вольт (падение напряжения). Если на концах есть напряжение 1 Вольт и по нему протекает ток 1 Ампер, значит сопротивление проводника равно 1 Ом.

Вышеописанные формулы в таком виде могут быть применимы для переменного тока лишь в том случае, если цепь состоит только из активного сопротивления R .

Напряжение на участке цепи формула

Для широкого класса проводников (в т. ч. металлов) сила тока в проводнике прямо пропорциональна напряжению ( закон Ома ): Коэффициент пропорциональности R называется электрическим сопротивлением и измеряется в омах (Ом). Причиной электрического сопротивления является взаимодействие электронов при их движении по проводнику с ионами кристаллической решетки.

Электрическое сопротивление металлов прямо пропорционально длине проводника и обратно пропорционально площади его поперечного сечения: Коэффициент пропорциональности ρ – удельное сопротивление – зависит только от вида металла. Общее сопротивление R последовательно соединенных проводников R 1 и R 2 равно сумме их сопротивлений: Рис. 4. Расчет сопротивления сложной цепи Для того, чтобы в замкнутой цепи постоянного тока поддерживалась непрерывная циркуляция зарядов (то есть протекал электрический ток) в этой цепи должны действовать силы неэлектростатического происхождения, так как работа электрического поля при перемещении зарядов по замкнутому пути равна нулю.

Закон Ома для участка цепи

Знание этого закона позволит нам беспрепятственно и безошибочно определять значения силы тока, напряжения (разности потенциалов) и сопротивления на участке цепи.

Кто такой Ом? Немного истории Закон Ома открыл всем известный немецкий физик Георг Симон Ом в 1826 году.

Вот так он выглядел.

Всю биографию Георга Ома я рассказывать Вам не буду. Про это Вы можете узнать на других ресурсах более подробно.

Скажу только самое главное. Его именем назван самый основной закон электротехники, который мы активно применяем в сложных расчетах при проектировании, на производстве и в быту.

В этом случае э. д. с.

Е источника в формуле (7) должна быть заменена разностью потенциалов между началом и концом рассматриваемого участка, т. е. напряжением U, а вместо сопротивления всей цепи в формулу должно быть подставлено сопротивление R данного участка.

В этом случае закон Ома формулируется следующим образом. Сила тока I на данном участке электрической цепи равна напряжению U, приложенному к участку, поделенному на сопротивление R этого участка: Рис 14. Прохождение электрического тока по проводникам аналогично прохождению воды по трубам Прохождение электрического тока по проводникам полностью аналогично прохождению воды по трубам (рис.

14). Чем больше разность уровней воды при входе и выходе из трубы (напор) и чем больше поперечное сечение трубы, тем больше воды протекает сквозь трубу в единицу времени.

Глава 21

Чтобы в тек электрический ток, в проводнике должно быть электрическое поле, или, другими словами, потенциалы различных точек проводника должны быть разными.

Но при движении электрических зарядов по проводнику потенциалы различных точек проводника будут выравниваться (см. гл. 19). Поэтому для протекания тока в течение длительного времени на каких-то участках цепи необходимо обеспечить движение зарядов в направлении противоположном полю.

Такое движение может быть обеспечено только силами неэлектрической природы, которые в этом контексте принято называть сторонними.

В гальванических элементах («батарейках») сторонние силы возникают в результате электрохимических превращений на границах электродов и электролита.

Практическое использование

Видео: Закон Ома для участка цепи — практика расчета цепей.

Собственно, к любому участку цепи можно применить этот закон. Пример приведен на рисунке.

Применяем закон к любому участку цепи

Используя такой план, можно вычислить все необходимые характеристики для неразветвленного участка. Рассмотрим более детальные примеры. Находим силу тока Рассмотрим теперь более определенный пример, допустим, возникла необходимость узнать ток, протекающий через лампу накаливания. Условия:

  • Напряжение – 220 В;
  • R нити накала – 500 Ом.

Решение задачи будет выглядеть следующим образом: 220В/500Ом=0,44 А.

Рассмотрим еще одну задачу со следующими условиями:

  • R=0,2 МОм;
  • U=400 В.

В этом случае, в первую очередь, потребуется выполнить преобразование: 0,2 МОм = 200000 Ом,после чего можно приступать к решению: 400 В/200000 Ом=0,002 А (2 мА). Вычисление напряжения Для решения мы также воспользуемся законом, составленным Омом. Итак задача:

  • R=20 кОм;
  • I=10 мА.

Преобразуем исходные данные:

  • 20 кОм = 20000 Ом;
  • 10 мА=0,01 А.

Решение: 20000 Ом х 0,01 А = 200 В.

Незабываем преобразовывать значения, поскольку довольно часто ток может быть указан в миллиамперах.

Сопротивление.

Несмотря на то, что общий вид способа для расчета параметра «R» напоминает нахождение значения «I», между этими вариантами существуют принципиальные различия. Если ток может меняться в зависимости от двух других параметров, то R (на практике) имеет постоянное значение. То есть по своей сути оно представляется в виде неизменной константы.

Если через два разных участка проходит одинаковый ток (I), в то время как приложенное напряжение (U) различается, то, опираясь на рассматриваемый нами закон, можно с уверенностью сказать, что там где низкое напряжение «R» будет наименьшим.

Рассмотрим случай когда разные токи и одинаковое напряжение на несвязанных между собой участках. Согласно закону, составленному Омом, большая сила тока будет характерна небольшому параметру «R».

Рассмотрим несколько примеров.

Допустим, имеется цепь, к которой подведено напряжение U=50 В, а потребляемый ток I=100 мА. Чтобы найти недостающий параметр, следует 50 В / 0,1 А (100 мА), в итоге решением будет – 500 Ом.

Вольтамперная характеристика позволяет наглядно продемонстрировать пропорциональную (линейную) зависимость закона. На рисунке ниже составлен график для участка с сопротивлением равным одному Ому (почти как математическое представление закона Ома).

Изображение вольт-амперной характеристики, где R=1 Ом

Изображение вольт-амперной характеристики

Вертикальная ось графика отображает ток I (A), горизонтальная – напряжение U(В). Сам график представлен в виде прямой линии, которая наглядно отображает зависимость от сопротивления, которое остается неизменным. Например, при 12 В и 12 А «R» будет равно одному Ому (12 В/12 А).

Обратите внимание, что на приведенной вольтамперной характеристике отображены только положительные значения. Это указывает, что цепь рассчитана на протекание тока в одном направлении

Там где допускается обратное направление, график будет продолжен на отрицательные значения.

Электрический ток и его характеристики

Определение 9

Проводники, которые подчинены закону Ома, получили название линейных.

Для изображения графической зависимости силы тока I от U (графики называют вольт-амперными характеристиками, ВАХ) используется прямая линия, проходящая через начало координат.

Существуют устройства, не подчиняющиеся закону Ома. К ним относят полупроводниковый диод или газоразрядную лампу. Металлические проводники имеют отклонения от закона Ома при токах большой силы. Это связано с ростом температуры.

Определение 10

Участок цепи, содержащий ЭДС, позволяет записывать закон Ома таким образом:

IR=U12=φ1-φ2+δ=∆φ12+δ.

Формула получила название обобщенного закона Ома или закон Ома для неоднородного участка цепи.

Рисунок 1.8.2 показывает замкнутую цепь с постоянным током, причем ток цепи (cd) считается однородным.

Рисунок 1.8.2. Цепь постоянного тока.

Исходя из закона Ома IR=∆φcd, участок (ab) содержит источник тока с ЭДС, равной δ. Тогда для неоднородного участка формула примет вид Ir=∆φab+δ. Сумма обоих равенств дает в результате выражение I(R+r)=∆φcd+∆φab+δ. Но ∆φcd=∆φba=-∆φab, тогда I=δR+r.

Определение 11

Формула I=δR+r выражает закон Ома для полной цепи. Запишем ее, как определение: сила тока в полной цепи равняется электродвижущей силе источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Рисунок 1.8.2 говорит о том, что R неоднородного тела может быть рассмотрено как внутреннее сопротивление источника тока. Тогда (ab) участок будет являться внутренним участком источника.

Определение 12

При замыкании a и b с помощью проводника с малым по сравнению с внутренним сопротивлением источника получим, что в цепи имеется ток короткого замыкания Iкз=δr.

Сила тока короткого замыкания является максимальной, получаемой от источника с ЭДС и внутренним сопротивлением r. Если внутренне сопротивление мало, тогда ток короткого замыкания может вызвать разрушение электрической цепи или источника.

Пример 1

Свинцовые аккумуляторы автомобилей имеют силу тока короткого замыкания в несколько сотен ампер. Особую опасность представляют замыкания в осветительных сетях, которые имеют подпитку от подстанций. Во избежание разрушительных действий предусмотрены предохранители или автоматы для защиты сетей.

Чтобы при превышении допустимых значений силы тока не произошло короткого замыкания, используют внешнее сопротивление. Если сопротивление r равняется сумме внутреннего и внешнего сопротивления источника, сила тока не будет превышать норму.

При наличии разомкнутой цепи разность потенциалов на полюсах разомкнутой батареи равняется ее ЭДС. Когда внешнее R включено и ток I подается через батарею, то разность потенциалов на полюсах запишется, как ∆φba=δ-Ir.

Рисунок 1.8.3 дает точное схематическое изображение источника постоянного тока с ЭДС, равной δ, внутренним r в трех режимах: «холостой ход», работа на нагрузку, режим короткого замыкания. E→ является напряженностью внутри электрического поля внутри батареи, a – силами, действующими на положительные заряды, Fст→– сторонней силой. Исчезновение электрического поля возникает при коротком замыкании.

Рисунок 1.8.3. Схематическое изображение источника постоянного тока: 1 – батарея разомкнута;2 – батарея замкнута на внешнее сопротивление R; 3 – режим короткого замыкания.

Закон Ома для переменного тока

При наличии индуктивности или ёмкости в цепи переменного тока необходимо учитывать их реактивное сопротивление.В таком случае запись Закона Ома будет иметь вид:

I = U/Z

Здесь Z — полное (комплексное) сопротивление цепи — импеданс. В него входит активная R и реактивная X составляющие.Реактивное сопротивление зависит от номиналов реактивных элементов, от частоты и формы тока в цепи.Более подробно ознакомится с комплексным сопротивлением можно на страничке импеданс.

С учётом сдвига фаз φ, созданного реактивными элементами, для синусоидального переменного тока обычно записывают Закон Ома в комплексной форме:— комплексная амплитуда тока. = Iampe jφ— комплексная амплитуда напряжения. = Uampe jφ— комплексное сопротивление. Импеданс.φ — угол сдвига фаз между током и напряжением.e — константа, основание натурального логарифма.j — мнимая единица.Iamp , Uamp — амплитудные значения синусоидального тока и напряжения.

Для ЭДС

Перед тем как рассмотреть закон Ома для полной (замкнутой) цепи приведу правило знаков для ЭДС, которое гласит:Если внутри источника ЭДС ток идет от катода (-) к аноду (+) (направление напряженности поля сторонних сил совпадает с направлением тока в цепи, то ЭДС такого источника считается положительной. В противном случае – ЭДС считается отрицательной.

Практическим применением этого правила является возможность приведения нескольких источников ЭДС в цепи к одному с величиной E=E1+E2+…+En, естественно, с учетом знаков, определяемых по вышеприведенному правилу. Например (рис.3.3) E=E1+E2-E3. При отсутствии встречно включенного источника E3 (на практике так почти никогда не бывает) имеем широко распространенное последовательное включение элементов питания, при котором их напряжения суммируются.

Закон Ома для полной цепи – его еще можно назвать закон ома для замкнутой цепи, имеет вид I=E/(R+r). Приведенная формула закона Ома содержит обозначение r, которое еще не упоминалось. Это внутреннее сопротивление источника ЭДС. Оно достаточно мало, в большинстве случаев при практических расчетах им можно пренебречь (при условии, что R>>r – сопротивление цепи много больше внутреннего сопротивления источника). Однако, когда они соизмеримы, пренебрегать величиной r нельзя.

Как вариант можно рассмотреть случай, при котором R=0 (короткое замыкание). Тогда приведенная формула закона Ома для полной цепи примет вид: I=E/r, то есть величина внутреннего сопротивления будет определять ток короткого замыкания. Такая ситуация вполне может быть реальной. Закон Ома рассмотрен здесь достаточно бегло, но приведенных формул достаточно для проведения большинства расчетов, примеры которых, по мере размещения других материалов я буду приводить.

Полноценную цепь составляет уже участок (участки), а также источник ЭДС. То есть, фактически к существующему резистивному компоненту участка цепи добавляется внутреннее сопротивление источника ЭДС. Поэтому логичным является некоторое изменение выше рассмотренной формулы:

I = U / (R + r)

Конечно, значение внутреннего сопротивления ЭДС в законе Ома для полной электрической цепи можно считать ничтожно малым, правда во многом это значение сопротивления зависит от структуры источника ЭДС. Тем не менее, при расчетах сложных электронных схем, электрических цепей с множеством проводников, наличие дополнительного сопротивления является важным фактором.

Как для участка цепи, так и для полной схемы следует учитывать естественный момент – использование тока постоянной или переменной величины. Если отмеченные выше моменты, характерные для закона Ома, рассматривались с точки зрения использования постоянного тока, соответственно с переменным током всё выглядит несколько иначе.

Направление электрического тока в металлах

По металлическим проводам перемещаются отрицательно заряженные электроны, т.е. ток идет от «–» к «+» источника. Направление движения электронов называют действительным. Но исторически в науке принято условное направление тока от «+» источника к «–».

Действия электрического тока (преобразования энергии)

Электрический ток способен вызывать различные действия:

  • Тепловое — электрическая энергия преобразуется в тепло. Такое преобразование обеспечивает электроплита, электрический камин, утюг.
  • Химическое — электролиты под действием постоянного электрического тока подвергаются электролизу. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) — положительные ионы (катионы).
  • Магнитное (электромагнитное) — при наличии электрического тока в любом проводнике вокруг него наблюдается магнитное поле, т.е. проводник с током приобретает магнитные свойства.
  • Световое — электрический ток разогревает металлы до белого каления, и они начинают светиться подобно вольфрамовой спирали внутри лампы накаливания. Другой пример — светодиоды, в которых свет обусловлен излучением фотонов при переходе электрона с одного энергетического уровня на другой.
  • Механическое — параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются.

Неоднородный участок цепи постоянного тока

Определение основных параметров и процессов:

  • перемещение зарядов (q) характеризуется плотностью, которая зависит от площади поперечного сечения (S) и силы тока;
  • при концентрации (n) можно подсчитать количество единичных зарядов (q0), перемещенных за единицу времени;
  • эту величину можно изобразить в виде цилиндрического участка проводника с объемом (V):

q = q0*n*V.

Если подключить клеммы аккумулятора к проводнику, источник питания разрядится. Для длительного поддержания процесса перемещения зарядов можно создать замкнутый в кольцо путь. Однако и в этом случае свободный дрейф электронов ограничивают совместные столкновения, противодействие зарядов молекулярной решетки материала. Чтобы компенсировать сопротивление, необходимо приложение дополнительных «сторонних» сил.

Пример неоднородного участка цепи

Рисунок демонстрирует факторы, которые следует принять во внимание. Для вычисления напряженности в любой точке этой схемы нужно суммировать векторные составляющие Eq и Est (кулоновских и сторонних сил, соответственно). Приведенный закон Ома для неоднородного участка определяет, что сила тока (I12) = напряжение на данном участке (U12) / полное электрическое сопротивление (R)

Приведенный закон Ома для неоднородного участка определяет, что сила тока (I12) = напряжение на данном участке (U12) / полное электрическое сопротивление (R).

Чтобы перенести единичный заряд q из точки «1» в точку «2», необходимо выполнить работу A12. Для этого понадобится создание определенной разницы потенциалов (ϕ1- ϕ2). Источник постоянного тока создает электродвижущую силу (ЭДС), которая способна переместить заряд по цепи. Общее напряжение будет содержать сумму перечисленных сил.

Советуем изучить Кабель греющий

Ниже приведены формулы, характеризующие рассмотренный пример:

  • A12/q = ϕ1 – ϕ2;
  • Ast/q = E12;
  • U = A12/q + Ast/q = ϕ1 – ϕ2 + E12;
  • I = (ϕ1 – ϕ2 + E12)/ R.

Интегральный вариант представления рассматриваемых процессов даст аналогичный результат.

К сведению. При выполнении расчетов следует учитывать действительную полярность источника постоянного тока. В зависимости от подключения соответствующая ЭДС будет способствовать или препятствовать перемещению заряда.

Следующий пример демонстрирует решение практической задачи. Необходимо рассчитать ток в цепи, которая составлена из источника питания с ЭДС=40V и проводки с электрическим сопротивлением R=5Ом. На выходе измерены потенциалы:

ϕ1= 20V; ϕ2=10V.

Подставив значения в формулу, можно получить нужный результат:

(20-10+40)/5 = +10А.

Знак «плюс» означает, что ток идет по направлению от точки «1» к «2».

Если рассматривать процесс в дифференциальной форме, можно представить «облако», созданное из определенного количества (N) зарядов. Оно перемещается в проводнике с определенной скоростью дрейфа (Vдр). На него действуют три вида сил:

  • кулоновские – Fкул;
  • сторонние – Fc;
  • сопротивления кристаллической решетки – Fсп.

Последний показатель будет зависеть от особенностей материала. Он может выражаться удельной проводимостью. Вектор плотности тока будет равен сумме векторов ЭДС (кулоновской и сторонней природы), деленной на удельное сопротивление.

Классическая формулировка

Как устроить освещение участка

Для участка цепи без источника ЭДС достаточно использовать классический закон Ома:

I (сила тока) = U (напряжение) /R (электрическое сопротивление).

Данное соотношение было установлено экспериментальным путем в начале 19 века. В названии сохранена фамилия немецкого ученого, который сделал открытие. Напряжение определяют по разнице потенциалов на концах проводника:

U = ϕ1 – ϕ2.

Элементарные вычисления показывают взаимные зависимости перечисленных параметров:

  • I1 = 24/6 = 4А;
  • I2 = 60/6 = 10А.

Увеличив разницу потенциалов, при неизменном сопротивлении получают большую силу тока:

I2 > I1.

Чтобы уменьшить ток до нужного уровня, при работе с определенным источником питания изменяют сопротивление:

  • I1 = 24/4 = 6А;
  • I2 = 24/12 = 2А.

Основные формулы

Для запоминания правил пользуются такой картинкой. Чтобы вычислить определенный параметр, закрывают соответствующий сегмент. Взаимное расположение оставшихся компонентов условно изобразит необходимую формулу.

Ток, напряжение и сопротивление

Эта картинка наглядно демонстрирует взаимное влияние тех основных электрических параметров. С ее помощью можно пояснить особенности практического применения на примере типового проекта домашней сети питания.

В современных жилых объектах часто используют кондиционеры, духовые шкафы, другую технику с большой мощностью потребления. Для нормального функционирования требуется увеличивать ток, потому что напряжение ограничено стандартами. Повышающие трансформаторы в данном случае не пригодятся, так как серийные изделия рассчитаны на подключение к сети 220 (380) V.

При увеличении силы тока понадобятся проводники с достаточно большим поперечным сечением. В противном случае концентрация зарядов на единицу объема повысится до критичной величины. Воздействие на кристаллическую решетку повысит температуру металла вплоть до механического разрушения проводки.

Чтобы исключить проблемы, кроме кабельной продукции, тщательно выбирают защитные автоматы. Для создания проекта электроснабжения и перечня подходящих функциональных компонентов пользуются представленными выше формулами.

Резистор

Все реальные проводники имеют сопротивление, но его стараются сделать незначительным. В задачах вообще используют словосочетание «идеальный проводник», а значит лишают его сопротивления.

Из-за того, что проводник у нас «кругом-бегом-такой-идеальный», чаще всего за сопротивление в цепи отвечает резистор. Это устройство, которое нагружает цепь сопротивлением.

Вот так резистор изображается на схемах:

В школьном курсе физики используют Европейское обозначение, поэтому запоминаем только его. Американское обозначение можно встретить, например, в программе Micro-Cap, в которой инженеры моделируют схемы.

Вот так резистор выглядит в естественной среде обитания:

Полосочки на нем показывают его сопротивление.

На сайте компании Ekits, которая занимается продажей электронных модулей, можно выбрать цвет резистора и узнать значение его сопротивления:

О том, зачем дополнительно нагружать сопротивлением цепь, мы поговорим в этой же статье чуть позже.