Осциллограф на ардуино для компьютера

Оглавление

Применение в быту

В процессе эксплуатации следует использовать перечисленные ниже рекомендации:

  • компьютер вместе с приставкой заземляют перед выполнением измерительных операций;
  • используют диапазон, подходящий для определенной амплитуды сигнала;
  • прекращают работу при повреждении электрической изоляции, выявлении других опасных неисправностей.

Представленные осциллографы для ПК при правильной сборке и настройке обеспечивают достаточно высокую точность. Впрочем, надо не забывать, что даже специализированные приборы этой категории предназначены скорее для изучения формы сигналов. Такие задачи вполне можно решать с применением рассмотренного в публикации оборудования.

Общие принципы работы проекта

Наш проект состоит из двух основных частей:

Осциллограф, по своей сути, должен формировать визуальное отображение аналогового сигнала, поданного на его вход. Для осуществления этого мы сначала должны преобразовать сигнал из аналоговой в цифровую форму и затем построить его график. Для этого мы будем использовать один из имеющихся в плате Arduino аналогово-цифровых преобразователей (АЦП). После проведения преобразования в цифровую форму сигнал передается через последовательный порт связи в компьютер, где специальное программное обеспечение, написанное на языке Python, будет строить его график на экране компьютера.

Исходный код программы (скетча)

Код программы для Python

Комментарии к коду программы переведены выше в статье.

Python

import time
import matplotlib.pyplot as plt
from drawnow import *
import serial
val =
cnt = 0
#create the serial port object
port = serial.Serial(‘COM4’, 115200, timeout=0.5)
plt.ion()
#create the figure function
def makeFig():
plt.ylim(-1023,1023)
plt.title(‘Osciloscope’)
plt.grid(True)
plt.ylabel(‘data’)
plt.plot(val, ‘ro-‘, label=’Channel 0′)
plt.legend(loc=’lower right’)
while (True):
port.write(b’s’) #handshake with Arduino
if (port.inWaiting()):# if the arduino replies
value = port.readline()# read the reply
print(value)#print so we can monitor it
number = int(value) #convert received data to integer
print(‘Channel 0: {0}’.format(number))
# Sleep for half a second.
time.sleep(0.01)
val.append(int(number))
drawnow(makeFig)#update plot to reflect new data input
plt.pause(.000001)
cnt = cnt+1
if(cnt>50):
val.pop(0)#keep the plot fresh by deleting the data at position 0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

importtime

importmatplotlib.pyplot asplt

fromdrawnow import*

importserial

val=

cnt=

#create the serial port object

port=serial.Serial(‘COM4’,115200,timeout=0.5)

plt.ion()

#create the figure function

defmakeFig()

plt.ylim(-1023,1023)

plt.title(‘Osciloscope’)

plt.grid(True)

plt.ylabel(‘data’)

plt.plot(val,’ro-‘,label=’Channel 0’)

plt.legend(loc=’lower right’)

while(True)

port.write(b’s’)#handshake with Arduino

if(port.inWaiting())# if the arduino replies

value=port.readline()# read the reply

print(value)#print so we can monitor it

number=int(value)#convert received data to integer

print(‘Channel 0: {0}’.format(number))

# Sleep for half a second.

time.sleep(0.01)

val.append(int(number))

drawnow(makeFig)#update plot to reflect new data input

plt.pause(.000001)

cnt=cnt+1

if(cnt>50)

val.pop()#keep the plot fresh by deleting the data at position 0

Код программы для Arduino

Arduino

int sensorpin = A0;
void setup() {
// initialize serial communication at 115200 bits per second to match that of the python script:
Serial.begin(115200);
}
void loop() {
// read the input on analog pin 0:########################################################
float sensorValue = analogRead(sensorpin);
byte data = Serial.read();
if (data == ‘s’)
{
Serial.println(sensorValue);
delay(10); // delay in between reads for stability
}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

intsensorpin=A0;

voidsetup(){

// initialize serial communication at 115200 bits per second to match that of the python script:

Serial.begin(115200);

}

voidloop(){

// read the input on analog pin 0:########################################################

floatsensorValue=analogRead(sensorpin);

bytedata=Serial.read();

if(data==’s’)

{

Serial.println(sensorValue);

delay(10);// delay in between reads for stability

}

}

Лучшие программы осциллографы для ПК с ОС Windows

Winscope

Чтобы начать анализ сигнала после подключения входного сигнала, нажмите кнопку Play на интерфейсе Winscope. Вы начнете просматривать спектр сигнала прямо на главном окне, где вы также найдете различные опции для анализа входного сигнала:

Visual Analyzer

Visual Analyzer — еще одно хорошая программа осциллографа для Windows 10. Данная утилита имеет анализатор спектра сигналов. Кроме того, вы найдете множество инструментов для просмотра связанных с сигналом данных, определения значений различных параметров, измерения частоты, применения фильтров и многого другого. На этом осциллографе есть два экрана для спектров сигнала; один отображает обычные спектры сигналы, а другой отображает БПФ сигнала.

В левой части интерфейса вы найдете кнопки для изменения параметров просмотра спектров. Вы можете изменить коэффициент масштабирования, значение ms / d, положения графиков X и Y и т. д. Можно найти некоторые значения, такие как: частота, среднее значение, коэффициент амплитуды, пиковое напряжение, ZRLC, фаза, каналы и т. д. Опции для захвата области или спектра также доступны.

Лучшая вещь в этом инструменте — это то, что это осциллограф с фильтрами для Windows. Вы можете применять различные фильтры к входному сигналу, затем измерять значения и просматривать спектры.

Это обширное программное обеспечение осциллографа с инструментами для тщательного анализа сигналов.

Soundcard Oscilloscope

Soundcard Oscilloscope — это многофункциональное программное обеспечение для осциллографов, которое бесплатно только для личного использования. Это приложение обладает генератором сигналов и различными другими инструментами. Входной сигнал отображается в интерфейсе программы на графику. Вы можете изменить параметры графика спектров для тщательного просмотра и анализа спектров сигналов в реальном времени. Установите разные амплитуды каналов или синхронизируйте каналы для общей амплитуды. Установите шкалу времени от 1 минуты до 10 секунд. Вы также можете установить разные режимы канала: одиночный, CH1 — CH2, CH1 + CH2 или CH1 x CH2.

Конструкция и применение

Осциллограф — сложный электрический прибор. Понять принцип его работы поможет блок-схема.

Имеются два луча развертки: по вертикали — Y и по горизонтали — X. По оси X откладывается значения времени, по Y отображается амплитуда сигнала.

На Y подается сигнал с устройства. Далее он проходит через аттенюатор, который изменяет чувствительность контура. Потом, пройдя предварительный усилитель, попадает в линию задержки, которая «придерживает» сигнал пока не сработает генератор развертки. Оконечный усилитель выводит сигнал на экран осциллоскопа. Чем больше входное напряжение, тем больше амплитуда сигнала.

На X подается пилообразное напряжение с генератора развертки, благодаря чему сигнал на осциллографе получается «растянутым» по времени. Меняя размерность генератора, можно получить изображение с разверткой до тысячных долей секунды.

Чтобы развертка запустилась одновременно с поступлением сигнала, в устройстве предусмотрена система синхронизации. Есть 3 возможных источника синхроимпульсов:

Осциллограф визуализирует форму сигнала, что помогает понять причину неисправности. С помощью устройства снимается АЧХ прибора, есть возможность узнать скорость нарастания импульса в цифровых устройствах.

Используются осциллографы при настройке, ремонте электронных девайсов, будь то бытовая техника, ремонт автотранспорта или орбитальная станция.

Настройка изделий

После сборки USB-осциллографа, на последнем этапе нужно прошить чип памяти EEPROM flash 24LC64. Для этого:

Перед запуском осциллоскопа на основе внешнего аудиоадаптера проделать следующие действия:

Устройство готово к работе.

Калибровка необходима устройству, работающему через аттенюатор и внутреннюю звуковую карту. Для этого подать на гаджет сигнал с известными амплитудой и частотой. Добившись устойчивой развертки, включить измерительную сетку. Согласовывая действия подстроечного резистора с регулировками на панели управления, привести значения сетки к исходным величинам.

Если не получится корректно отобразить значения, то можно отъюстировать сетку при помощи регулировок звука на компьютере. Открыть для этого регулятор громкости, расположенный на панели задач и, двигая ползунок, получить нужный уровень сигнала.

Готовые изделия перед включением обязательно заземлить

Соблюдать осторожность при подаче сигнала на порт звукового адаптера

Источник

Как можно получить осциллограф

Оборудование можно заполучить несколькими способами и все зависит исключительно от размера денежных средств, которые можно потратить на приобретение оборудования или деталей.

Можно:

  • Купить готовый прибор в специализированном магазине или заказать его по сети;
  • Купить конструктор, например, широкой популярностью сейчас пользуются наборы радиодеталей, корпусов, которые продаются на китайских сайтах;
  • Самостоятельно собрать полноценный портативный прибор;
  • Смонтировать только приставку и щуп, а подключение организовать к персональному компьютеру.

Эти варианты приведены в порядке снижения затрат на оборудование. Покупка готового осциллографа будет стоить дороже всего, так как это уже доставленный и работающий блок со всеми необходимыми функциями и настройками, а в случае некорректной работы можно обратиться в центр продажи.

В конструктор входит схема простого осциллографа своими руками, а цена снижается за счет оплаты только себестоимости радиодеталей. В этой категории также необходимо различать более дорогие и простые по комплектации и функционалу модели.

Сборка прибора самому по имеющимся схемам и приобретенных в разных точках радиодеталях не всегда может оказаться дешевле, чем приобретение конструктора, поэтому необходимо предварительно оценивать стоимость затеи, ее оправданность.

Наиболее дешевым способом заполучить осциллограф станет спаять только приставку к нему. Для экрана использовать монитор компьютера, а программы для снятия и трансформации получаемых сигналов можно скачать с разных источников.

Преобразование компьютера в осциллограф

Осциллограф своими руками

После уточнения исходных данных компьютера и личных потребностей приступают к выбору электрической схемы.

Для ознакомления с профессиональными решениями можно изучить конструкции серийных измерительных приборов

Схема приставки

Для качественного воспроизведения без богатого практического опыта лучше выбирать относительно простые конструкции. Впрочем, представленная ниже электрическая схема вполне способна обеспечить минимальное искажение сигналов одновременно с выполнением защитных функций.

Эту схему адаптера можно создать быстро без лишних затруднений

Описание:

  • резисторы приставки оценивают в совокупности с Rвх компьютера, чтобы правильно рассчитать параметры делителя;
  • конденсаторами выравнивают АЧХ;
  • стабилитроны, установленные показанным на рисунке образом, предотвращают повреждение звукового входа компьютера при подаче сигнала с большой амплитудой (положение переключателя «1:1»);
  • дополнительно защиту по току обеспечивает R1.

Вряд ли можно рассчитывать на полные паспортные данные, особенно при наличии старой компьютерной техники. Скорее всего, придется измерить импеданс на входе звуковой карты. Для этого на выходе этого же блока создают образцовый сигнал (50 Гц, синусоида) с применением специальной программы «Виртуальный генератор». Следующий расчет выполняют по формуле:

Rx=R1*(U1/(U2-U1)).

Пример:

60*(120/(520-120))= 18 кОм.

Зная входное сопротивление, создают делитель напряжения по одной из представленных схем

Сбор приставки

Чтобы исключить паразитное влияние внешнего электромагнитного излучения, приставку размещают в металлическом корпусе. Создать его можно из подходящего дюралюминиевого листа толщиной 1,5-2 мм. На входе закрепляют разъем типа СР-50, чтобы подключать без проблем типовые щупы. Выход – гибкий кабель с вилкой Jack, которая соответствует входному гнезду аудиокарты компьютера. Для сборки простой электрической схемы вполне подойдет технология навесного монтажа.

Конструкция и детали.

Элементы схемы адаптера размещены в прямоугольном дюралюминиевом корпусе.

Переключение коэффициента деления аттенюатора осуществляется тумблером со средним положением.

В качестве входного гнезда применён стандартный разъём СР-50, что позволяет использовать стандартные кабели и щупы. Вместо него можно применить обычное аудио гнездо типа Джек (Jack) 3,5мм.

Выходной разъём – стандартное аудио гнездо 3,5мм. Адаптер соединяется с линейным входом аудиокарты при помощи кабеля с двумя Джеками 3,5мм на концах.

Сборка произведена методом навесного монтажа.

Для использования осциллографа понадобится ещё кабель со щупом на конце.

Как его изготовить подробно написано здесь.

Вернуться наверх к меню.

Защита от «дурака».

Чтобы обезопасить линейный вход аудиокарты от случайного попадания высокого напряжения, параллельно входу установлены стабилитроны VD1 и VD2.

Резистор R1 ограничивает ток стабилитронов до 1мА, при напряжении 1000 Вольт на входе 1:1.

Если Вы, действительно, собираетесь использовать осциллограф для измерения напряжения до 1000 Вольт, то в качестве резистора R1 можно установить МЛТ-2 (двухваттный) или два МЛТ-1 (одноваттных) резистора последовательно, так как резисторы различаются не только по мощности, но и по максимально-допустимому напряжению.

Конденсатор С1 также должен иметь максимальное допустимое напряжение 1000 Вольт.

Небольшое пояснение вышесказанного. Иногда требуется взглянуть на переменную составляющую сравнительно небольшой амплитуды, которая, тем не менее, имеет большую постоянную составляющую. В таких случаях нужно иметь в виду, что на экране осциллографа с закрытым входом можно увидеть только переменную составляющую напряжения.

На картинке видно, что при постоянной составляющей 1000 Вольт и размахе переменной составляющей 500 Вольт, максимальное напряжение, приложенное к входу, будет 1500 Вольт. Хотя, на экране осциллографа мы увидим только синусоиду амплитудой 500 Вольт.

Вернуться наверх к меню.

цифровая электроника вычислительная техника встраиваемые системы

Простой осциллограф на Arduino своими руками

Характеристики и особенности самодельного осциллографа на Arduino:

Компоненты для осциллографа:

Также дополнительно для делителей напряжения (если вы хотите измерять напряжение выше 5 В) потребуется:

Если вам нужно измерять только напряжение до 5 В, то можете не подключать делители напряжения, а контакты щупов подключить непосредственно на землю и на аналоговый порт A1 на плате Arduino. Тогда вам придется немного изменить код. В коде для Arduino поменяйте:

В коде для processing поменяйте:

Скетч для Arduino и код на processing:

Схема осциллографа на Arduino с делителями напряжения:

В левой стороне схемы расположен делитель напряжения с коэффициентом 1:4. То есть к нему можно подключать напряжение да 20 В.

Справа расположен делитель напряжения, переключающийся между линиями 5 В и опорного напряжения (Aref). Вы можете использовать переключатели для установки диапазона измерения: 5В, 6.64В, 10В или 20В. Второй контакт каждого переключателя соединяется с цифровым входом Arduino (D3 и D4). Это работает следующим образом. Если программа настроена на работу с опорным напряжением, АЦП сравнивает напряжение аналоговых входов с Aref вместо 5В. Например, мы измеряем 5 В, тогда напряжение на A1 будет 5В/4=1.25 В. Если оба переключателя разомкнуты, то напряжение на Aref будет 5В, АЦП прочитает 1.25/5=25%. Если первый переключатель разомкнут, а второй замкнут, напряжение на Aref будет 2.5В, АЦП прочитает 1.25/2.5=50%. Если первый переключатель замкнут, а второй разомкнут, напряжение на Aref будет 1.66В, АЦП прочитает 1.25/1.66=75%. Если оба переключателя замкнуты, напряжение на Aref будет 1.25В, АЦП прочитает 1.25/1.25=100%.

Дополнительными элементами в схеме являются конденсатор между линией щупа и землей и Стабилитрон 5.1V. Конденсатор позволяет уменьшить шумы измеряемых сигналов, а стабилитрон защищает Arduino от перенапряжения.

Если аналоговое опорное напряжение выбрано внутреннее (по умолчанию), и вы подводите напряжение питания к AREF, то это может вывести из строя Arduino.

Аналоговые входы не могут работать с отрицательным напряжением.

Не превышайте напряжения 5 В непосредственно на выводах Arduino.

Функциональные особенности

Осциллограф — понятие и конструкция прибора

Основой оборудования способен стать даже маломощный компьютер. В некоторых ситуациях предпочтительны ноутбуки. Переносные модели можно использовать для поиска неисправностей в автомобилях.

Другие функциональные особенности, заслуживающие внимания:

  • в стандартной входной цепи аудиокарты установлен разделительный конденсатор, поэтому без разборки с внесением изменений в схему получится вывести на экран только переменную компоненту сигнала;
  • минимальная амплитуда 0,5-2 мВ (определена техническими характеристиками звукового тракта);
  • максимум входного сигнала выбирают практически без ограничений, так как для нескольких десятков или сотен вольт понадобится всего лишь создать соответствующий делитель напряжения;
  • частотный диапазон также определен базовыми ТХ компьютера, как правило, от 10 Гц до 22 кГц.

Как выровнять амплитудно-частотную характеристику адаптера?

Линейный вход аудиокарты, да и сами цепи адаптера обладают некоторой входной ёмкостью. Реактивное сопротивление этой ёмкости изменяет коэффициент деления делителя на высоких частотах.

Чтобы выровнять частотную характеристику адаптера в диапазоне 1:1, нужно подобрать ёмкость конденсатора C1 так, чтобы амплитуда сигнала на частоте 50 Гц была равна амплитуде сигнала частотой 18-20 кГц.

Резисторы R2 и R3 снижают влияние входной ёмкости и создают подъём частотной характеристики в области высоких частот. Компенсировать этот подъём можно путём подбора конденсаторов С2 и С3 в соответствующих диапазонах 1:20 и 1:100.

У подобрал следующие ёмкости: C1 – 39pF, C2 – 10nF, C3 – 0,1nF.

Теперь, когда канал Y верикального отклонения осциллографа откалиброван и линеаризован, можно увидеть, как выглядят те или иные периодические, и не только, сигналы. В «AudioTester-e» есть «ждущая синхронизация развёртки».

Вернуться наверх к меню.

Mixed Signal Oscilloscopes (MSO)

The mixed signal oscilloscope (MSO) combines the performance of a DPO with the basic functionality of a 16-channel logic analyzer, including parallel/serial bus protocol decoding and triggering. The MSO’s digital channels view a digital signal as either a logic high or logic low, just like a digital circuit views the signal. This means as long as ringing, overshoot and ground bounce do not cause logic transitions, these analog characteristics are not of concern to the MSO. Just like a logic analyzer, a MSO uses a threshold voltage to determine if the signal is logic high or logic low. The MSO is the tool of choice for quickly debugging digital circuits using its powerful digital triggering, high-resolution acquisition capability, and analysis tools. The root cause of many digital problems is quicker to pinpoint by analyzing both the analog and digital representations of the signal, as shown in Figure 17, making an MSO ideal for verifying and debugging digital circuits.

Figure 17: The MSO provides 16 integrated digital channels, enabling the ability to view and analyze time-correlated analog and digital signals.

Объяснение кода программы

Для построения графика анализируемого сигнала мы, как уже указывалось ранее, будем использовать скрипт на языке python, который будет принимать данные от платы Arduino через последовательный порт связи (UART) и на их основе строить график на экране компьютера. Программа (скетч) же для Arduino будет считывать данные с выхода АЦП своего аналогового порта и передавать их скрипту на python.

Объяснение программы для Python

Для нашего проекта мы будем использовать следующие библиотеки Python: drawnow, Matplotlib и Pyserial. Библиотека Pyserial позволяет нам считывать данные из последовательного порта связи, Matplotlib обеспечивает нам возможность построения графиков, а drawnow дает нам возможность рисовать эти графики в режиме реального времени. Более подробно об использовании языка Python вместе с Arduino вы можете прочитать в следующей статье.

Существует несколько способов установки этих библиотек, самый простой из них – это через pip. Pip может быть установлен из командной строки в windows или linux. PIP поставляется вместе с пакетом python3 поэтому при установке вам просто нужно отметить галочкой нужную опцию чтобы он установился.

После того как pip будет установлен можно начинать установку всех других необходимых нам библиотек. Если у вас windows, то откройте командную строку, в linux’е откройте терминал и введите там следующую команду:

Осциллограф на Ардуино — описание, возможности устройства

Создав своими руками осциллограф на базе Ардуино можно наблюдать быстро изменяющиеся показатели сигналов. Полученный прибор будет:

  • имитировать двухлучевой осциллограф;
  • диапазон входного сигнала будет в промежутке 0-5В;
  • частота достигнет своего наибольшего значения в 1 кГц.

При этом входов может быть не более 6, а аналоговые выводы, которые останутся незадействованными станут выдавать ложное напряжение. Прибор сможет работать в нескольких режимах:

  • непрерывный – когда исключено внешнее воздействие и устройство работает свободно;
  • принудительный – в этом случае устанавливается необходимое значение отбора и осциллограф работает в режиме ожидания появления сигнала. Критерий является выполненным, когда сигнал входного импульса пересекает установленное напряжение.


Корректное соединение всех деталей даст необходимый результат

Важным фактором является то, что время вполне получится установить в миллисекундах, а старт развертки следует указать в момент достижения 5 воль отметки синхронизации. На приборе устанавливается светодиод. Который будет показывать состояние прибора и режим в котором он работает.

Самодельный цифровой осциллограф на Ардуино и микроконтроллере своими руками

Цифровые осциллографы используются любителями электроники и это одна из привычных вещей, находящихся за их рабочими столами. Но покупка готового решения может влететь в копеечку, поэтому я решил, что соберу собственный осциллоскоп своими руками. Этот базовый проект поможет вам повысить свои навыки и в итоге у вас будет свой самодельный неплохой прибор, который облегчит вам жизнь.

Ардуино – замечательная вещь, работающая на 8-битных микроконтроллерах, которые имеют цифровые выходы, SPI, линии I2S, последовательную связь, ADC и т.д. Таким образом, использование в этом проекте Ардуино – хорошая идея.

Сборка осциллографа из планшета

Автомобильный осциллограф: понятие и принципы работы Для стабилизации сигнала и расширения диапазона входного напряжения можно использовать схему осциллографа для планшета. Она долго и успешно используется для сборки устройств для компьютера.

Для этого применяются стабилитроны КС 119 А с резисторами на 10 и 100 кОм. Первый резистор и стабилитроны подключают параллельно. Второй и более мощный резистор подключается на вход электросхемы. Это расширяет максимальный диапазон напряжений. В конечном счёте пропадают дополнительные помехи и повышается напряжение до 12 вольт.

Нужное программное обеспечение для сборки осциллографа на основе планшета и андроида

Чтобы работать с подобной схемой потребуется программа, которая способна нарисовать графики на основе входящего звукового сигнала. Множество таких вариантов легко найти в «Маркете». С помощью них можно выбрать дополнительную калибровку и добиться максимальной точности для профессионального осциллографа из планшета или другого функционального устройства.

Широкодиапазонная частота с помощью отдельного гаджета

Широкий диапазон частот с помощью отдельного гаджета достигается его приставкой с аналогово-цифровым преобразователем, который обеспечивает передачу сигнала в цифровом варианте. За счёт этого достигается более высокая точность измерений. На практике — это портативный дисплей, который аккумулирует информацию с отдельных устройств.

Конструктор осциллографа: модель DSO138

Китайские производители всегда славились умением создавать электронику для профессиональных потребностей с очень ограниченным функционалом и за довольно небольшие деньги.

С одной стороны такие приборы не способны полностью удовлетворить ряд потребностей человека, занимающегося радиоэлектроникой в профессиональном русле, однако начинающим и любителям таких «игрушек» будет более, чем достаточно.

Одной из популярных моделей китайского производства типа конструктор осциллографа считается DSO138. Прежде всего, у этого прибора невысокая стоимость, а поставляется он со всем комплектом необходимых деталей и инструкций, поэтому как правильно сделать осциллограф своими руками, используя имеющуюся в комплекте документацию вопросов возникать не должно.

Перед монтажом нужно ознакомиться с содержимым упаковки: плата, экран, щуп, все нужные радиодетали, инструкция для сборки и принципиальная схема.

Облегчает работу наличие практически на всех деталях и самой плате соответствующей маркировки, что действительно превращает процесс в собирание детского конструктора взрослым. На схемах и инструкции хорошо видно все нужные данные и можно разобраться, даже не владея иностранным языком.

На выходе должен получиться прибор с такими характеристиками:

  • Напряжение на входе: DC 9V;
  • Максимальное напряжение на входе: 50 Vpp (1:1 щуп)
  • Потребляемый ток 120 мА;
  • Полоса сигнала: 0-200KHz;
  • Чувствительность: электронное смещение с опцией вертикальной регулировки 10 мВ / дел — 5В / Div (1 — 2 — 5);
  • Дискретная частота: 1 Msps;
  • Сопротивление на входе: 1 MОм;
  • Временной интервал: 10 мкс / Div — 50s / Div (1 — 2 — 5);
  • Точность замеров: 12 бит.

О виртуальных осциллоскопах

Любой персональный компьютер (PC) даже на «медленных» процессорах и с устаревшей операционной системой window xp подходит для совместной работы со специализированными приставками. Однако качественный виртуальный (virtual) осциллоскоп с подключением к стандартному порту usb стоит дорого. Не решает проблему тщательный поиск подходящих моделей техники на зарубежных торговых интернет-площадках. Покупка бывшего в употреблении оборудования сопряжена с повышенными сомнениями и отсутствием реальных гарантий.

Вместе с тем поверхностного изучения темы достаточно для понимания относительной простоты данной проблемы. В каждом ПК есть звуковая карта. Не вызывает чрезмерных сложностей создание регулятора-ограничителя входного сигнала. Измерения можно преобразовать в удобную форму с помощью специальной программы симулятора. Представленные ниже инструкции помогут создать виртуальный осциллограф быстро, без ошибок и лишних затрат.

Сборка осциллографа из планшета

Для стабилизации сигнала и расширения диапазона входного напряжения можно использовать схему осциллографа для планшета. Она долго и успешно используется для сборки устройств для компьютера.

Для этого применяются стабилитроны КС 119 А с резисторами на 10 и 100 кОм. Первый резистор и стабилитроны подключают параллельно. Второй и более мощный резистор подключается на вход электросхемы. Это расширяет максимальный диапазон напряжений. В конечном счёте пропадают дополнительные помехи и повышается напряжение до 12 вольт.

Особенностью осциллографа из планшета является то, что он работает напрямую со звуковыми импульсами и лишние помехи (экранирование) схемы и щупов в этом случае будут нежелательны.

Нужное программное обеспечение для сборки осциллографа на основе планшета и андроида

Чтобы работать с подобной схемой потребуется программа, которая способна нарисовать графики на основе входящего звукового сигнала. Множество таких вариантов легко найти в «Маркете». С помощью них можно выбрать дополнительную калибровку и добиться максимальной точности для профессионального осциллографа из планшета или другого функционального устройства.

Широкодиапазонная частота с помощью отдельного гаджета

Широкий диапазон частот с помощью отдельного гаджета достигается его приставкой с аналогово-цифровым преобразователем, который обеспечивает передачу сигнала в цифровом варианте. За счёт этого достигается более высокая точность измерений. На практике — это портативный дисплей, который аккумулирует информацию с отдельных устройств.

Осциллограф своими руками — инструкция как сделать простейшее устройство в домашних условиях

Осциллограф это прибор, помогающий увидеть динамику колебаний. С его помощью можно диагностировать различные поломки и получать необходимые данные в радиоэлектронике. Раньше применялись осциллографы на транзисторных лампах. Это были весьма громоздкие приборы, которые подключались исключительно к встроенному или разработанному специально для них экрану.

Сегодня приборы для снятия основных частотных, амплитудных характеристик и формы сигнала представляют собой удобные портативные и компактнее устройства. Часто их выполняют как отдельную приставку, подключающуюся к компьютеру. Этот манёвр позволяет убрать из комплектации монитор, существенно снизив стоимость оборудования.

Общие принципы работы проекта

Наш проект состоит из двух основных частей:

  1. Конвертер данных.
  2. Плоттер.

Осциллограф, по своей сути, должен формировать визуальное отображение аналогового сигнала, поданного на его вход. Для осуществления этого мы сначала должны преобразовать сигнал из аналоговой в цифровую форму и затем построить его график. Для этого мы будем использовать один из имеющихся в плате Arduino аналогово-цифровых преобразователей (АЦП). После проведения преобразования в цифровую форму сигнал передается через последовательный порт связи в компьютер, где специальное программное обеспечение, написанное на языке Python, будет строить его график на экране компьютера.