В чем разница между биполярным и полевым транзистором

Транзистор Дарлингтона

Если нагрузка очень мощная, то ток через неё может достигать
нескольких ампер. Для мощных транзисторов коэффициент $\beta$ может
быть недостаточным. (Тем более, как видно из таблицы, для мощных
транзисторов он и так невелик.)

В этом случае можно применять каскад из двух транзисторов. Первый
транзистор управляет током, который открывает второй транзистор. Такая
схема включения называется схемой Дарлингтона.

В этой схеме коэффициенты $\beta$ двух транзисторов умножаются, что
позволяет получить очень большой коэффициент передачи тока.

Для повышения скорости выключения транзисторов можно у каждого соединить
эмиттер и базу резистором.

Сопротивления должны быть достаточно большими, чтобы не влиять на ток
база — эмиттер. Типичные значения — 5…10 кОм для напряжений 5…12 В.

Выпускаются транзисторы Дарлингтона в виде отдельного прибора. Примеры
таких транзисторов приведены в таблице.

В остальном работа ключа остаётся такой же.

Ключ на полевом транзисторе

В дальнейшем полевым транзистором мы будет называть конкретно MOSFET,
то есть полевые транзисторы с изолированным
затвором
(они же МОП, они же МДП). Они удобны тем, что управляются
исключительно напряжением: если напряжение на затворе больше
порогового, то транзистор открывается. При этом управляющий ток через
транзистор пока он открыт или закрыт не течёт. Это значительное
преимущество перед биполярными транзисторами, у которых ток течёт всё
время, пока открыт транзистор.

Также в дальнейшем мы будем использовать только n-канальные MOSFET
(даже для двухтактных схем). Это связано с тем, что n-канальные
транзисторы дешевле и имеют лучшие характеристики.

Простейшая схема ключа на MOSFET приведена ниже.

Опять же, нагрузка подключена «сверху», к стоку. Если подключить её
«снизу», то схема не будет работать. Дело в том, что тразистор
открывается, если напряжение между затвором и истоком превышает
пороговое. При подключении «снизу» нагрузка будет давать
дополнительное падение напряжения, и транзистор может не открыться или
открыться не полностью.

При управлении типа push-pull схема разряда конденсатора образует,
фактически, RC-цепочку, в которой максимальный ток разряда будет равен

где $V$ — напряжение, которым управляется транзистор.

Таким образом, достаточно будет поставить резистор на 100 Ом, чтобы
ограничить ток заряда — разряда до 10 мА. Но чем больше сопротивление
резистора, тем медленнее он будет открываться и закрываться, так как
постоянная времени $\tau = RC$ увеличится

Это важно, если транзистор
часто переключается. Например, в ШИМ-регуляторе

Основные параметры, на которые следует обращать внимание — это
пороговое напряжение $V_{th}$, максимальный ток через сток $I_D$ и
сопротивление сток — исток $R_{DS}$ у открытого транзистора. Ниже приведена таблица с примерами характеристик МОП-транзисторов

Ниже приведена таблица с примерами характеристик МОП-транзисторов.

Модель $V_{th}$ $\max\ I_D$ $\max\ R_{DS}$
2N7000 3 В 200 мА 5 Ом
IRFZ44N 4 В 35 А 0,0175 Ом
IRF630 4 В 9 А 0,4 Ом
IRL2505 2 В 74 А 0,008 Ом

Для $V_{th}$ приведены максимальные значения. Дело в том, что у разных
транзисторов даже из одной партии этот параметр может сильно
отличаться. Но если максимальное значение равно, скажем, 3 В, то этот
транзистор гарантированно можно использовать в цифровых схемах с
напряжением питания 3,3 В или 5 В.

Сопротивление сток — исток у приведённых моделей транзисторов
достаточно маленькое, но следует помнить, что при больших напряжениях
управляемой нагрузки даже оно может привести к выделению значительной
мощности в виде тепла.

Что такое полевой транзистор

Полевой транзистор представляет собой полупроводниковый прибор, в котором управление током между двумя электродами, образованным направленным движением носителей заряда дырок или электронов, осуществляется электрическим полем, создаваемым напряжением на третьем электроде. Электроды, между которыми протекает управляемый ток, носят название истока и стока, причем истоком считают тот электрод, из которого выходят (истекают) носители заряда. 

Третий, управляющий, электрод называют затвором. Токопроводящий участок полупроводникового материала между истоком и стоком принято называть каналом, отсюда еще одно название этих транзисторов — канальные. Под действием напряжения на затворе» относительно истока меняется сопротивление канала» а значит, и ток через него.

В зависимости от типа носителей заряда различают транзисторы с n-каналом или р-каналом. В n-канальных ток канала обусловлен направленным движением электронов, а р-канальных — дырок. В связи с этой особенностью полевых транзисторов их иногда называют также униполярными.

Это название подчеркивает, что ток в них образуют носители только одного знака, что и отличает полевые транзисторы от биполярных. Для изготовления полевых транзисторов используют главным образом кремний, что связано с особенностями технологии их производства.

Основные параметры полевых транзисторов

Крутизна входной характеристики S или проводимость прямой передачи тока Y21 указывает, на сколько миллиампер изменяется ток канала при изменении входного напряжения между затвором и истоком на 1 В. Поэтому значение крутизны входной характеристики определяется в мА/В, так же как и крутизна характеристики радиоламп. Современные полевые транзисторы имеют крутизну от десятых долей до десятков и даже сотен миллиампер на вольт. Очевидно, что чем больше крутизна, тем большее усиление может дать полевой транзистор. Но большим значениям крутизны соответствует большой ток канала. 

Поэтому-на практике обычно выбирают такой ток канала, при котором, о одной стороны, достигается требуемое усиление, а с другой — обеспечивается необходимая экономичность в расходе тока. Частотные свойства полевого транзистора, так же как и биполярного, характеризуются значением предельной частоты.

Полевые транзисторы тоже делят на низкочастотные, среднечастотные и высокочастотные, и также для получения большого усиления максимальная частота сигнала должна быть по крайней мере в 10…20 раз меньше предельной частоты транзистора. Максимальная допустимая постоянная рассеиваемая мощность полевого транзистора определяется точно так же, как и для биполярного. Промышленность выпускает полевые транзисторы малой, средней и большой мощности.

Транзисторы в заводской упаковке.

Схема ускоренного включения

Как уже было сказано, если напряжение на затворе относительно истока
превышает пороговое напряжение, то транзистор открывается и
сопротивление сток — исток мало. Однако, напряжение при включении не
может резко скакнуть до порогового. А при меньших значениях транзистор
работает как сопротивление, рассеивая тепло. Если нагрузку приходится
включать часто (например, в ШИМ-контроллере), то желательно как можно
быстрее переводить транзистор из закрытого состояния в открытое и
обратно.

Ещё раз обратите внимание на расположение нагрузки для n-канального
транзистора — она расположена «сверху». Если расположить её между
транзистором и землёй, из-за падения напряжения на нагрузке напряжение
затвор — исток может оказаться меньше порогового, транзистор откроется
не полностью и может перегреться и выйти из строя

Параметры, характеризующие полевой транзистор

  1. Ширина канала – расстояние между p-n-переходами W.
  2. Напряжение отсечки — напряжение на затворе при исчезновении каналов.
  3. Напряжение насыщения – с него начинается формирование пологой части ВАХ.
  4. Стоко-затворная ВАХ (вольт-амперная характеристика).

Рис. №1. Стоко-затворная ВАХ n-канального транзистора с

Ic= Icmax (I – Uзи / U)2 , здесь Icmax стока.

  1. Крутизна определяется по формуле S = dIc / dUзи(мА/В),что является следствием увеличенияU рабочего стока, при этом крутизна полевого транзистора становится меньше.
  2. Внутреннее сопротивление транзистора (дифференциальное сопротивление) rcсоставляет в пологой части характеристики несколько МОм.
  3. Лавинный пробой p-n-переходов возможен после повышения напряжения области стока и истока, что считается причиной ограничения применения полевого транзистора относительноUc.
  4. Коэффициент усиления относительно напряжения µu= srспри уменьшении величины тока стока коэффициент µuповышается.
  5. Инерционность полевого транзистора обуславливается временем,отводимым на заряд барьерной емкости переходов затвора.
  6. Полевой транзистор обладает граничной частотой для улучшения своих качественных частотных свойств.

Проводимость транзистора

Существует две разновидности проводимости – электронная и дырочная, это означает, что в основе работы лежит использование электронов и дырок. Транзистор с электронной проводимостью относится к n-канальным устройствам, p-канальные транзисторы обладают дырочной проводимостью.

Небольшие габаритные размеры МОП-транзисторах позволяет занимать очень малую площадь в конструкции интегральной схемы, в противоположность биполярным аналогам. Благодаря этому достигается значительно уплотненная компоновка элементов в интегральных схемах. Технология производства интегральной схемы на МОП-транзисторах затрачивает намного меньшее количество операций, чем технология производства ИС с применением биполярного транзистора.

Где база, коллектор, эмиттер

Определяем базовую ножку (режим тот же — «2000 Ом»): «+» тестера касаемся левого контакта, «−» — остальных поочередно.

Ножки левая/средняя «1», левая/правая — 816 Ом. Пока это малоинформативно. Щупом «+» — на средний контакт, «−» — на остальные.

Результат схожий. Следующий этап: «+» на правую ножку, «−» — на среднюю и затем на левую.

Получаем по «1», то есть сопр. одинаковое на этих участках и оно идет к бесконечности. Выходит, что мы замерили обратную эту величину на обоих p-n сегментах. Итак, база — это правая ножка. Но полная процедура как проверить исправность предполагает нахождение колл. и эмит. замерами прямого сопр. Минусом касаемся базового вывода, «+» — остальных.

Ножка слева — 816 Ом, это эмит., средняя — 807 Ом, это коллект., там значение всегда ниже.

Итог такой:

  • имеющийся тип — p-n-p;
  • база справа, эмит. — слева; колл. — посередине.

Устройство и принцип работы тиристора (тринистора)

Тринистор является управляемым прибором. Он содержит управляющий электрод (УЭ), подключаемый к полупроводнику р-типа или полупроводнику n-типа среднего перехода 2.

Структура, УГО и ВАХ тринистора (обычно называют тиристором) приведены на рисунке:

Напряжение Uвыкл, при котором начинается лавинообразное нарастание тока, может быть снижено введением неосновных носителей заряда в любой из слоев, прилегающих к переходу 2. В какой мере снижается Uвкл показано на ВАХ. Важным параметром является отпирающий ток управления Iу.от, который обеспечивает переключение тиристора в открытое состояние при напряжениях, меньших напряжения Uвкл. На рисунке показаны три значения напряжение включения UIвкл < Unвкл < Umвкл соответствует трем значениям управляющего тока UIу.от > Unу.от > Umу.от.

Рассмотрим простейшую схему с тиристором, нагруженным на резисторную нагрузку Rн

Iа – ток анода (силовой ток в цепи анод-катод тиристора ); Uак – напряжение между анодом и катодом; Iу – ток управляющего электрода ( в реальных схемах используют импульсы тока ); Uук – напряжение между управляющим электродом и катодом; Uпит – напряжение питания.
Для перевода тиристора в открытое состояние не управляющий электрод подается от схемы формирования импульсов кратковременный (порядка нескольких микросекунд) управляющий импульс.

Характерной особенностью рассматриваемого незапираемого тиристора, который очень широко используется на практике, является то, что его нельзя выключить с помощью тока управления.

Для выключения тиристора на практике на него подают обратное напряжение Uак < 0 и поддерживают это напряжение в течении времени, большего так называемого времени выключения tвыкл. Оно обычно составляет единицы или десятки микросекунд.

Сравним составной транзистор и двухтактный

Рассмотрим предыдущую схему, в которой используется составной транзистор. Если на базу подать ток 1 мА, то эта схема усилит его в 1000 раз, и в итоге на коллектор придет ток в 1000 мА. Отмечу, что вместо электродвигателя мы можем подключить и реле, и лампочку, например, а с помощью них уже можно коммутировать большие нагрузки.

А что, если простого транзистора Дарлингтона мы поставим транзистор инженера Шиклаи? Тогда у нас выйдет что-то вроде двухтактного усилителя. Это так, потому что открытым одновременно может быть только один из двух транзисторов. Составной транзистор схема:

Здесь входное напряжение будет инвертироваться и на выходе будет обратно исходному. Для того, чтобы сделать схему более универсальной, на входе обычно ставят инвертор. Таким образом, ток инвертируется 2 раза.

Разная реакция на нагрев

У биполярных транзисторов температурный коэффициент сопротивления коллектор-эмиттер отрицательный (т. е. с ростом температуры сопротивление уменьшается и ток коллектор — эмиттер растет). У полевых транзисторов все наоборот — температурный коэффициент сток-исток положительный (с ростом температуры сопротивление растет, и ток сток-исток уменьшается).

Важное следствие из этого факта — если биполярные транзисторы нельзя просто так включать параллельно (с целью умощнения), без токовыравнивающих резисторов в цепи эмиттера, то с полевыми все намного проще — благодаря автобалансировке тока сток-исток при изменении нагрузки/нагрева — их можно свободно включать параллельно без выравнивающих резисторов. Это связано с температурными свойствами p-n перехода и простого полупроводника p- или n-типа

По этой причине у полевых транзисторов гораздо реже случается необратимый выходной тепловой пробой, чем у биполярных.

Так для достижения высоких показателей коммутационных токов, можно легко набрать составной ключ из нескольких параллельных полевых транзисторов, что и используется много где на практике, например в инверторах.

А вот биполярные транзисторы нельзя просто так параллелить, им нужны обязательно токовыравнивающие резисторы в цепях эмиттеров. Иначе, из-за разбаланса в мощном составном ключе, у одного из биполярных транзисторов рано или поздно случится необратимый тепловой пробой. Полевым составным ключам названная проблема почти не грозит. Эти характерные тепловые особенности связаны со свойствами простого n- и p-канала и p-n перехода, которые кардинально отличаются.

Схема стабилизации напряжения: как работает

Правило №7: оптимальные условия для работы нагрузки при изменяющихся условиях эксплуатации обеспечивает принцип стабилизации вторичного напряжения.

Самая примитивная схема стабилизации выходного напряжения создается на дополнительной обмотке импульсного трансформатора.

С нее снимается напряжение и подается для корректировки величины сигнала первичной обмотки.

Лучшая стабилизация создается за счет контроля выходного сигнала с вторичной обмотки и отделения его гальванической связи через оптопару.

В ней используется светодиод, через который проходит ток, пропорциональный значению выходного напряжения. Его свечение воспринимается фототранзистором, который посылает соответствующий электрический сигнал на схему управления генератора ключевого каскада.

Повысить качество стабилизации выходного напряжения позволяет последовательное дополнение к оптопаре стабилитрона, как показано на примере микросхемы TL431 на картинке ниже.

Основные параметры

  • Коэффициент передачи по току.
  • Входное сопротивление.
  • Выходная проводимость.
  • Обратный ток коллектор-эмиттер.
  • Время включения.
  • Предельная частота коэффициента передачи тока базы.
  • Обратный ток коллектора.
  • Максимально допустимый ток.
  • Граничная частота коэффициента передачи тока в схеме с общим эмиттером.

Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, независимо от схемы его включения. В качестве основных собственных параметров принимают:

  • коэффициент усиления по току α;
  • сопротивления эмиттера, коллектора и базы переменному току rэ, rк, rб, которые представляют собой:
    • rэ — сумму сопротивлений эмиттерной области и эмиттерного перехода;
    • rк — сумму сопротивлений коллекторной области и коллекторного перехода;
    • rб — поперечное сопротивление базы.

Эквивалентная схема биполярного транзистора с использованием h-параметров.

Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h».

Входное сопротивление — сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.

h11 = Um1/Im1, при Um2 = 0.

Коэффициент обратной связи по напряжению показывает, какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока, и изменение напряжения на входе происходит только в результате изменения выходного напряжения.

h12 = Um1/Um2, при Im1 = 0.

Коэффициент передачи тока (коэффициент усиления по току) показывает усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.

h21 = Im2/Im1, при Um2 = 0.

Выходная проводимость — внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.

h22 = Im2/Um2, при Im1 = 0.

Зависимость между переменными токами и напряжениями транзистора выражается уравнениями:

Um1 = h11Im1 + h12Um2;
Im2 = h21Im1 + h22Um2.

В зависимости от схемы включения транзистора к цифровым индексам h-параметров добавляются буквы: «э» — для схемы ОЭ, «б» — для схемы ОБ, «к» — для схемы ОК.

Для схемы ОЭ: Im1 = I, Im2 = I, Um1 = Umб-э, Um2 = Umк-э. Например, для данной схемы:

h21э = I/I = β.

Для схемы ОБ: Im1 = I, Im2 = I, Um1 = Umэ-б, Um2 = Umк-б.

Собственные параметры транзистора связаны с h-параметрами, например для схемы ОЭ:

h11∍=rδ+r∍1−α{\displaystyle h_{11\backepsilon }=r_{\delta }+{\frac {r_{\backepsilon }}{1-\alpha }}};

h12∍≈r∍rκ(1−α){\displaystyle h_{12\backepsilon }\approx {\frac {r_{\backepsilon }}{r_{\kappa }(1-\alpha )}}};

h21∍=β=α1−α{\displaystyle h_{21\backepsilon }=\beta ={\frac {\alpha }{1-\alpha }}};

h22∍≈1rκ(1−α){\displaystyle h_{22\backepsilon }\approx {\frac {1}{r_{\kappa }(1-\alpha )}}}.

С повышением частоты заметное влияние на работу транзистора начинает оказывать ёмкость коллекторного перехода Cк. Его реактивное сопротивление уменьшается, шунтируя нагрузку и, следовательно, уменьшая коэффициенты усиления α и β. Сопротивление эмиттерного перехода Cэ также снижается, однако он шунтируется малым сопротивлением перехода rэ и в большинстве случаев может не учитываться. Кроме того, при повышении частоты происходит дополнительное снижение коэффициента β в результате отставания фазы тока коллектора от фазы тока эмиттера, которое вызвано инерционностью процесса перемещения носителей через базу от эммитерного перехода к коллекторному и инерционностью процессов накопления и рассасывания заряда в базе.
Частоты, на которых происходит снижение коэффициентов α и β на 3 дБ, называются граничными частотами коэффициента передачи тока для схем ОБ и ОЭ соответственно.

В импульсном режиме ток коллектора изменяется с запаздыванием на время задержки τз относительно импульса входного тока, что вызвано конечным временем пробега носителей через базу. По мере накопления носителей в базе ток коллектора нарастает в течение длительности фронта τф. Временем включения транзистора называется τвкл = τз + τф.

Типы транзисторов

Существует два основных типа транзисторов – биполярные и полевые.

Биполярные транзисторы

Проводящая область конструкции состоит из трёх «спаянных» полупроводниковых частей, с чередованием по типу проводимости. Полупроводник с донорной (электронной) проводимостью обозначается как n-тип, с акцепторной (дырочной) – p-тип. Таким образом, мы можем наблюдать только два варианта чередования – p-n-p, либо n-p-n. По этому признаку различают биполярные транзисторы с n-p-n и p-n-p структурой.

Общая часть транзисторного кристалла, контактирующая с двумя другими, называется «база». Две другие – «коллектор» и «эмиттер». Степень насыщенности базы носителями заряда (электронами или электронными вакансиями «дырками») определяет степень проводимости всего кристалла транзистора. Таким образом, осуществляется управление проводимостью переходов транзистора, что позволяет использовать его в качестве элемента усиления мощности сигнала, или ключа.

Полевые транзисторы

Проводящая часть конструкции представляет собой полупроводниковый канал p- или n-типа в металле. Ток нагрузки протекает по каналу через электроды, называемые «стоком» и «истоком». Величина сечения проводящего канала и его сопротивление зависит от обратного напряжения на p-n переходе границы металла и полупроводника канала. Управляющий электрод, соединённый с металлической областью называется «затвор».

Канал полевого транзистора может иметь электрическую связь с металлом затвора – неизолированный затвор, а может быть и отделён от него тонким слоем диэлектрика – изолированный затвор.

История появления транзисторов

На заре прошлых веков конца 19 века ученые физики и практики (Гутри, Браун, Эдисон, Боус, Пикард, Флеминг) разных стран совершили принципиальное открытие и получили патенты на “детектор”, “выпрямитель”  – так тогда называли диод. Вслед за диодом последовало эпохальное открытие транзистора. Перечисление имен ученых разных стран, приложивших голову и руки к открытию транзистора, заняло бы много строк.

Основными теоретиками считаются Шокли, работавший в Bell Telephone Laboratories, а также его коллеги Бардин и Браттейн.

Слева направо: Шокли, Бардин и Браттейн

В итоге их работ, в 1947 году, получен первый образец работающего точечного германиевого транзистора, и на его основе, в том же году, был разработан первый усилитель, имевший коэффициент усиления 20 дБ (в 10 раз) на частоте 10 Мгц.

Серийный выпуск точечных транзисторов фирмой Western Electric начался в 1951 году и достиг около 10 000 штук в месяц в 1952 году. В СССР первый точечный транзистор был создан в 1949 г. Серийный выпуск точечных транзисторов был налажен в 1952 году, а плоскостных  – в 1955 году. Затем последовали следующие открытия в теории и технологиях: транзисторы на выращенных переходах (1950 г.), сплавные транзисторы (1952 г.), диффузные мета-транзисторы (1958 г.), планарные транзисторы (1960 г.), эпитаксиальные транзисторы (1963 г.), многоэмиттерные транзисторы (1965 г.) и т. д.

Как же появился среди них наш герой – транзистор Дарлингтона (далее по тексту ТД)? Дарлингтон (англ. Darlingtone) – город в в Великобритании. Однако и люди могут иметь фамилии по имени городов или наоборот. Таким является сотрудник все той же фирмы Bell – Сидни Дарлингтон

Сидни Дарлингтон

Зачем же потребовалась эта “сладкая парочка”? Дело в том, что первые транзисторы имели весьма посредственные характеристики, если смотреть на сегодняшние успехи. Прежде всего – невысокий коэффициент усиления. Сейчас это кажется странным – подумаешь, каскадное соединение – это элементарно! Но тогда, в 1953 году – это были пионерские работы.

Принцип действия

Полупроводники занимают промежуточное состояние между проводниками и диэлектриками. В обычном состоянии они не проводят электрический ток, но их сопротивление падает с ростом температуры. Чем она выше, тем больше энергии, которую получает вещество.

В атомах полупроводника электроны отрываются от «родительского» атома и улетают к другому, чтобы заполнить там «дырку», которую оставил такой же электрон. Получается, что внутри такого материала одновременно происходят два процесса: полет электронов (n-проводимость, от слова negative – отрицательный), и образование «дырок» (p-проводимость от слова positive – положительный). В обычном куске кремния эти процессы уравновешены: количество дырок равно количеству свободных электронов.

Если два таких материала приложить друг к другу, то в месте их соприкосновения образуется так называемый p-n переход. Дырки и электроны проходят через него, насыщая соседа. То есть там, где был избыток дырок, идет их заполнение электронами и наоборот.

В какой-то момент в месте соприкосновения не останется свободных носителей заряда и наступит равновесие. Это своего рода барьер, который невозможно преодолеть, этакая пустыня. Этот слой принято называть обедненным слоем.

Теперь, если приложить к такому материалу напряжение, то оно поведет себя интересным образом: при прямой его направленности обедненный слой истончится и через него пойдет электроток, а при обратном – наоборот, расширится.

Как говорится, если для чайников, то p-n переход обладает способностью пропускать ток только в одном направлении. Это своего рода «обратный клапан» для электрической сети. На этом их свойстве основана работа всех полупроводниковых приборов.

Существует две основные разновидности транзисторов: полевые (иногда их называют униполярными) и биполярными. Различаются они по устройству и принципу действия.

Виды транзисторов

Существует несколько видов транзисторов. Их около четырёх. Однако основные из них это:

  • Полевые.
  • Биполярные.

Остальные виды собираются из полевых и биполярных. Рассмотрим более подробно каждый вид.

Полевые

Суть этого прибора заключается в управлении параметрами электрического сигнала с помощью электрического поля. Оно появляется при подаче напряжения к какому-либо из выводов:

  1. Затвор нужен для регулирования параметров сигнала, благодаря подаче напряжения на него.
  2. Сток — вывод, через который из канала уходят носители заряда (дырки и электроны).
  3. Исток — вывод, через который в канал приходят электроны и дырки.

Такой транзистор состоит из полупроводника с определённой проводимостью и двух областей, помещённых в него с противоположной проводимостью. При подаче напряжения на затвор между этими двумя областями появляется пространство, через которое протекает ток. Это пространство называется каналом. Ширина этого канала регулируется напряжением, которое мы подаём на затвор. Соответственно, можно увеличивать и уменьшать ширину канала и управлять протекающим током.

Теперь поговорим о приборе с изолированным затвором. Разница в том, что в первом случае этот переход есть всегда, даже когда на затвор не подавалось напряжение. А при его подаче, переход и токопроводящий канал менялись в зависимости от полярности и амплитуды напряжения. Металлический затвор в таких транзисторах изолирован диэлектриком от полупроводниковой области. Их входное сопротивление гораздо больше.

Существует два вида приборов с изолированным затвором:

  • Со встроенным каналом.
  • С индуцированным каналом.

Встроенный канал позволяет протекать электрическому току с определённой амплитудой. При подаче напряжения с определённой амплитудой и полярностью мы можем менять ширину канала и его проводимость. Этот канал встраивается в транзисторы на производственных предприятиях.

Индуцированный канал появляется между двумя областями, о которых мы говорили выше, только при подаче напряжения определённой полярности на затвор. То есть, когда на затвор напряжение не подаётся, ток в нем не протекает.

Все виды полевых транзисторов отличаются друг от друга по следующим параметрам:

  1. Входное сопротивление.
  2. Амплитуда напряжения, которое необходимо подать на затвор.
  3. Полярность.

Каждый из этих видов полевых транзисторов необходим для сборки определённых электрических и логических схем. Так как для реализации двух разных устройств необходимо разные электрические параметры.

Биполярные

Слово «биполярные» означает две полярности. То есть, такие приборы имеют две полярности, благодаря особенностям своего строения. Особенность их строения заключается в том, что они состоят из трёх полупроводниковых областей. Типы проводимости бывают следующими:

  1. Электронная, далее n.
  2. Дырочная, далее p.

Соответственно, можно сделать вывод, что существует два вида биполярных транзисторов:

  • pnp;
  • npn.

Разница между ними заключается в том, что для корректной работы необходимо подавать напряжение разной полярности. К каждой из трёх полупроводниковых областей подключено по одному выводу. Всего их три:

  1. База — центральный слой. Он является самым тонким. На выводе базы находится управляющий ток с небольшой амплитудой.
  2. Коллектор — один из крайних слоёв. Он является самым широким. На него подаётся ток с большой амплитудой.
  3. Эмиттер — вывод, на который подаётся ток с коллектора. На его выходе амплитуда тока немного больше, чем на входе.

Существует три схемы подключения биполярных транзисторов:

  1. С общим эмиттером — входной сигнал подаётся на базу, а выходной снимается с коллектора.
  2. С общим коллектором — входной сигнал подаётся на базу, а снимается с эмиттера.
  3. С общей базой — входной сигнал подаётся на эмиттер, а снимается с коллектора.

Благодаря нескольким электронно-дырочным переходам, образующимся в биполярном транзисторе, можно управлять параметрами электрического сигнала. Полярность и амплитуда подаваемого напряжения зависят от типа биполярного транзистора.

Символьно — цветовая маркировка транзисторов

Отличительная особенность данной маркировки – отсутствие цифр и букв. Типономинал транзистора обозначается на срезе боковой поверхности специальными символом (точки, горизонтальные, вертикальные или пунктирные линии) или цветной геометрической фигурой (круг, полукруг, квадрат, треугольник, ромб и др.). Маркировка группы относится одной (несколькими) точками на торце корпуса (КТ-26, КТП-4).

Цветовая гамма точек, обозначающих группу при данной маркировке, не совпадает со стандартной цветовой гаммой по ГОСТ 24709-81. Она определяется производителем.

Символ круга на боковом срезе транзистора необходимо отличать от точки, которая не имеет четкой формы, т.к. наносится кистью.

Определение полевого транзистора

Транзистор полевого типа считается полупроводниковым прибором, в конструкции которого регулировка осуществляется измерением проводимости проводящего канала, благодаря использованию поперечного электрического поля.

Другими словами, он является источником тока, который управляется Uз-и. От параметра напряжения между затвором и истоком зависит проводимость канала. Помимо p–n – канальных транзисторов существует их разновидность с затвором из металла, который изолирован от канала кремниевым диэлектриком. Это МДП-транзисторы (металл – диэлектрик, (окисел) – проводник). Транзисторы с использованием окисела называются МОП-транзисторы.

Сферы применения тех и других транзисторов

Различия между полевыми и биполярными транзисторами четко разделяют области их применений. Например в цифровых микросхемах, где необходим минимальный ток потребления в ждущем состоянии, полевые транзисторы применяются сегодня гораздо шире. В аналоговых же микросхемах полевые транзисторы помогают достичь высокой линейности усилительной характеристики в широком диапазоне питающих напряжений и выходных параметров.

Схемы типа reel-to-reel удобно реализуются сегодня с полевыми транзисторами, ведь легко достигается размах напряжений выходов как сигналов для входов, совпадая почти с уровнем напряжения питания схемы. Такие схемы можно просто соединять выход одной с входом другой, и не нужно никаких ограничителей напряжения или делителей на резисторах.

Что касается биполярных транзисторов, то их типичными сферами применения остаются: усилители, их каскады, модуляторы, детекторы, логические инверторы и микросхемы на транзисторной логике.

Общие сведения

Название «транзистор» произошло от слияния двух английских слов: transfer — переносимый, и resistor — сопротивление. В общепринятом понятии это полупроводниковый элемент с тремя выводами. В нём величина тока на двух выводах зависит от третьего, при изменении на котором тока или напряжения происходит управление значением тока выходной цепи. Вариацией тока управляются биполярные приборы, а напряжением — полевые.

Первые разработки транзистора были начаты в XX веке. В Германии учёный Юлий Эдгар Лилиенфельд описал принцип работы транзистора, а уже в 1934 году физиком Оскаром Хейл был зарегистрирован прибор, названный позже транзистором. Такое устройство работало на электростатическом эффекте поля.

Физики Уильям Шокли, Уолтер Браттейн вместе с учёным Джоном Бардином в конце 40-х годов изготовили первый макет точечного транзистора. С открытием n-p перехода выпуск точечного транзистора прекратился, а вместо него начались разработки плоскостных устройств из германия. Официально представлен был действующий прототип транзистора в декабре 1947 года. В этот день появился первый биполярный транзистор. Летом 1948 года начались продаваться устройства, выполненные на транзисторной основе. С этого момента распространённые на тот момент электронные лампы (триоды) начали уходить в прошлое.

В середине 50-х годов первый плоскостной транзистор был выпущен в серию компанией Texas Instruments, в качестве материала для его изготовления послужил кремний. На тот момент при производстве радиоэлемента выходило много брака, но это не помешало технологическому развитию прибора. В 1953 году на транзисторах была изготовлена схема, использующаяся в слуховых аппаратах, а годом позже американские физики получили за своё открытие Нобелевскую премию.

Март 1959 года ознаменовался созданием первого кремниевого планарного прибора, его разработчиком был физик из Швейцарии Жан Эрни. Пара транзисторов была успешно размещена на одном кристалле кремния. С этого момента и началось развитие интегральной схемотехники. На сегодняшний день в одном кристалле размещается более миллиарда транзисторов. Например, на популярном 8-ядерном компьютерном процессоре Core i7−5960X их количество составляет 2,6 миллиарда штук.

Изначально понятие «транзистор» относилось к сопротивлению, величина которого управлялась напряжением, поскольку транзистор можно представить как некий резистор, регулируемый приложенным потенциалом на одном выводе. Для полевых транзисторов, сравнение с которыми более верно, — потенциалом на затворе, а для биполярных транзисторов — потенциалом на базе или током базы.