Зарядное из компьютерного блока питания

Что понадобится для изготовления

Более 90% компонентов лабораторной лаборатории уже находятся в блоке питания компьютера. Остальное придется подбирать по конкретной схеме (элементы дешевые и их будет мало), но вам обязательно понадобятся:

  • два потенциометра для регулирования напряжения и тока;
  • клеммы для подключения нагрузки (для плюсовой клеммы удобно использовать красный, а для минусовой — черный);
  • вольтметр и амперметр для измерения выходных параметров (можно использовать аналоговые приборы, можно использовать цифровые, а удобнее использовать двойной вольтметр-амперметр).
  • несколько оксидных конденсаторов на напряжение не менее 35 вольт (желательно 50+) с емкостью, соответствующей номинальной емкости канальных элементов +12 вольт (или больше, если они подходят по размеру);

Из инструментов вам обязательно понадобится мультиметр. Осциллограф не будет лишним — он проверяет наличие выходных импульсов на микросхеме ШИМ и ее реакцию на управляющее воздействие, если что-то пойдет не так. Также вам понадобится паяльник с набором расходных материалов и небольшой кузнечный инструмент (набор отверток, кусачки и т.д.).

Самодельная зарядка для АКБ

Существует много схем автомобильных зарядных устройств. Для реализации большинства подойдут детали, трансформаторы, выпаянные из старой радиоаппаратуры, блоки питания компьютеров.

Простое устройство на 6 и 12 вольт

Устройство подойдет для зарядки аккумуляторов напряжением 6 и 12 В, емкостью 10-120 А∙ч. Наладка после сборки не требуется, прибор сразу готов к работе.

Основные детали:

  1. Понижающий трансформатор Т1: от старого лампового телевизора или самодельный. Требуется мощность 300 Вт, ток 10-15 А, на выходе не менее 15 В.
  2. Выпрямитель из 4 диодов VD2-VD5, которые выдерживают ток от 10 А, обратное напряжение не менее 40 В. Такие характеристики у полупроводников типа Д2124, Д242, Д305. Их устанавливают через изоляторы на радиатор площадью 300 см² и более.
  3. Конденсаторы С1-С4 бумажные, рассчитанные не меньше, чем на 300 В. Такие используются в бытовой технике, имеют форму кубика.
  4. Переключатели S2-S5 для регулировки тока.
  5. Вольтметр PU1 на 30 В, амперметр PA1 на 30 А.

Величина зарядного тока устанавливается с помощью переключателей S2-S5. Через них в первичную обмотку трансформатора подключают конденсаторы С1-С4, гасящие колебания напряжения. Различными комбинациями включения тумблеров регулируют зарядный ток от 1 до 15 А с шагом 1 А. Например, чтобы установить 5 А, задействуют второй и четвертый переключатели. Комбинация S2 и S5 дает 10 А.

Зарядка с плавной регулировкой тока

Схема немного сложнее, но все детали доступны. Прибором заряжают 12-вольтовые АКБ, емкость которых — до 120 А∙ч. Вид зарядного тока — импульсный, используется тиристор. Регулятором плавно изменяют величину зарядного тока, но одновременно предусмотрен ступенчатый переключатель. Контролируют режим при помощи стрелочного амперметра на 30 А.

Самодельный резистор R1 нужен для ограничения тока. Для его изготовления подойдет медный или нихромовый провод диаметром 0,8 мм. Нужна будет небольшая индикаторная лампа Е1, рассчитанная на 24-36 В.

Выходное напряжение на понижающем трансформаторе 16-18 В, ток — 15 А. Ищут прибор с такими характеристиками или делают своими руками из подходящего устройства мощностью 300 Вт. Оставляют только первичную обмотку, вторичную из 42 витков наматывают проводом с изоляцией, сечение 6 мм².

Для схемы нужен тиристор КУ202 с буквенным индексом В-Н. Для охлаждения используют радиатор, площадь рассеивания которого от 200 см². А также понадобится диод VD1 любого типа с характеристиками обратного напряжения 20 В, тока — 200 мА.

Настраивают устройство калибровкой амперметра, подключив в качестве контрольного заведомо исправный. Для нагрузки вместо АКБ подключают автомобильные лампочки, общая мощность которых составляет 250 Вт.

Зарядка из компьютерного блока питания

Из старого блока питания ПК с контроллером TL 494 получается зарядное устройство с хорошими характеристиками. У него регулируемое напряжение и возможность подстройки тока до 10 А.

В демонтированный из компьютера БП вносят согласно схеме некоторые изменения:

  1. На шинах питания откусывают все провода, оставив только желтые и черные.
  2. Проводники одного цвета соединяют между собой. Жгут из черных — это минусовый контакт ЗУ, из желтых — плюсовой.
  3. Печатные дорожки к ножкам 1, 14, 15, 16 микросхемы перерезают.
  4. Для регулировки напряжения устанавливают переменный резистор 10 кОм, зарядного тока — 4,4 кОм.

Собирают способом навесного монтажа, используют провода с минимальным сечением 4 мм². Устанавливают вольтметр, амперметр, подключают провода с зажимами.

Расположенный внизу схемы резистор на 0,1 Ом мощностью 10 Вт и больше делают из меди или нихрома: подбирают нужную длину провода, замеряя сопротивление. Подойдут также резисторы С5-16МВ или 2 подключенных параллельно 5WR2J. Остальные — любого типа.

С чего начать

Чтобы создать зарядный аппарат, потребуется компьютерный блок, обеспечивающий питание для ПК, то есть персонального компьютера.

Если это первая попытка изготовить подобное устройство, разбирать свой новый компьютер на запчасти вовсе не нужно. Достаточно взять старый комп либо купить простейший блок на форм-факторе ATX с мощностью буквально 200–250 Вт. Переживать не стоит, поскольку такой мощности хватит, чтобы заряжать автомобильный аккумулятор. Ещё и с приличным запасом.

Работать, как и полагается по технике безопасности, нужно с отключёнными компонентами блока питания. Лишь после завершения сборки потребуется подключить аппарат к сети и протестировать его.

Самостоятельная переделка блока питания от компьютера (БП) в полноценное и работоспособное зарядное устройство для легковой автомобильной аккумуляторной батареи начинается с выполнения таких процедур:

  • подготовьте блок питания с необходимыми характеристиками;
  • отпаять все штатные провода, выходящие из БП;
  • оставить нужно только зелёный провод, который следует припаять к минусовым контактам;
  • учитывайте, что площадки, откуда шли провода чёрного цвета, являются минусом;
  • такие переделки позволят обеспечить автоматический запуск блока при его подключении к сети;
  • одновременно следует припаять провода с клеммами к минусу, а также к шине +12 (в БП это бывшие провода жёлтого цвета);
  • эти шаги позволят получить более удобное зарядное устройство с возможностью настройки.

Это лишь первый этап. Но если всё сделать правильно, в дальнейшем получится отличное зарядное устройство.

Переделка БП ATX в регулируемый или лабораторный блок питания

А теперь самое время сделать из БП компьютера своими руками импульсный лабораторный блок питания. Дорабатывать будем блок питания, ШИМ контроллер которого собран на специализированной микросхеме TL494 (она же: μА494, μPC494, M5T494P, KIA494, UTC51494, AZ494AP, KA7500, IR3M02, AZ7500BP, КР1114ЕУ4, МВ3759 и подобные аналоги).

Для примера мы доработаем блок питания, схема которого приведена ниже. Поняв идею вносимых изменений, подобрать алгоритм переделки любого другого блока не составит особого труда.

Разбираем БП, вынимаем плату. Сразу же отпаиваем все ненужные провода шлейфов питания, оставив один желтый, один черный и зеленый.

Также выпаиваем сглаживающие электролитические конденсаторы по всем линиям питания. На схеме они обозначены как С30, С27, С29, С28, С35. Мы собираемся существенно (до 25 В по шине +12 В) поднять выходное напряжение, на которое эти конденсаторы не рассчитаны. На место того, что стоял по шине +12 В, устанавливаем конденсатор той же или большей емкости на напряжение не менее 35 В. Остальные места оставляем пустыми. Зеленый провод припаиваем на место, где был любой черный, чтобы разрешить блоку питания запускаться. Теперь можно заняться доработкой контроллера.

Взглянем на назначение выводов микросхемы TL494. Нас интересуют два узла – усилитель ошибки 1 и усилитель ошибки 2. На первом собран стабилизатор напряжения, на втором – контроллер тока. То есть нас интересует обвязка выводов 1, 2, 3, 4, 13, 14, 15, 16.

Изменим схему обвязки таким образом, чтобы усилитель ошибки 1 отвечал за регулировку выходного напряжения, а усилитель 2 – за регулировку тока. В первую очередь перережем дорожки, обозначенные на приведенной ниже схеме крестиками.

Теперь находим резисторы R17 и R18. Первый имеет сопротивление 2.15 кОм, второй 27 кОм. Меняем их на номиналы 1.2 кОм и 47 кОм соответственно. Добавляем в схему два переменных резистора, один постоянный на 10 кОм (отмечены зеленым), клеммы для подключения внешнего потребителя, амперметр и вольтметр. В результате у нас получится вот такая схема.

Как видно из схемы, резистор на 22 кОм позволяет плавно регулировать напряжение в пределах 3-24 В, резистор 330 Ом – ток от 0 до 8 А. Кл1 и КЛ2 служат для подключения нагрузки. Вольтметр имеет предел измерения 25-30 В, амперметр – 10 А. Приборы могут быть как стрелочными, так и с цифровыми шкалами, главное, малогабаритными – ведь они должны войти в корпус блока питания. Можно начинать проверку и градуировку.

Все в порядке? Включаем БП напрямую в сеть, выводим движки резисторов в нижнее по схеме положение. К клеммам КЛ1, Кл2 подключаем нагрузку –  2 лампы дальнего света, включенные последовательно. Вращаем резистор регулировки напряжения и убеждаемся по встроенному вольтметру, что напряжение плавно изменяется от 3 до 24 вольт. Для верности подключаем к клеммам контрольный вольтметр, к примеру, тестер. Градуируем ручку регулятора напряжения, ориентируясь по показаниям приборов.

Возвращаем движок в нижнее по схеме положение, выключаем блок питания, а лампы соединяем параллельно. Включаем блок питания, устанавливаем регулятор тока в среднее положение, а регулятор напряжения – на отметку 12 В. Вращаем ручку регулятора тока. При этом показания амперметра должны плавно изменяться от 0 до 8 А, а лампы – плавно менять яркость. Градуируем регулятор тока, ориентируясь по показаниям амперметра.

Отключаем устройство и собираем его. Наш лабораторный блок питания готов. С его помощью мы можем получить любое напряжение от 3 до 24 вольт и устанавливать ограничение тока через нагрузку в пределах 0-10 А.

Описание и принцип работы пуско-зарядного устройства

Здесь особо сложного ничего нет. Сетевое U = 220 В подаётся через выключатель на первичную обмотку трансформатора, а на вторичной происходит уменьшение переменного напряжения. Потом оно сглаживается двухполупериодным или мостовым выпрямителем, собранным на мощных диодах. Далее пульсирующее напряжение может быть отфильтровано посредством электролитических конденсаторов. При необходимости около выхода осуществляется увеличение напряжения, что делается с помощью усилителей, в которых основными компонентами являются транзисторы, тиристоры.

Из недостатков описываемого пуско-зарядного устройства можно отметить разве что солидный вес, что обусловлено установкой мощного и, как следствие, габаритного трансформатора. Ниже – схема двухполупериодного пуско-зарядного устройства своими руками:

В этой схеме задействован лабораторный трансформатор ЛАТР. Вместо двух диодов можно использовать и диодный мост типа КЦ405. Схема пуско-зарядного устройства для автомобиля с усилителем:

Как сделать пуско-зарядное устройство своими руками, чтобы оно наверняка заработало? Нужно соблюдать параметры деталей. Мощность указанных на картинке тиристоров – не менее 80 А (если будет использоваться диодный мост, то от 160 А). Диоды на ток – 100–200 А. Транзистор – КТ361 либо КТ 3102 (можно любой другой с такими же параметрами). Мощность используемых резисторов – от 1 Вт.

Собранное своими руками зарядно-пусковое устройство подключается через зажимы-крокодилы к АКБ в соответствии с полярностью. При нормально заряженной батарее с ПЗУ энергия поступать не будет. Если же АКБ не функционирует, тиристорный переход откроется, и зарядный ток пойдёт на батарею и стартер.

Расчёт обмоток трансформатора

Сначала нужно подобрать магнитопровод, сечение которого должно быть не меньше 37 кв. см. Чтобы рассчитать количество витков в первичной обмотке, необходимо воспользоваться формулами: Т = 30/S, где S – площадь магнитопровода и N = 220*Т, то есть W1 = 220*30/37 = 178 витков. Для обмотки необходимо использовать изолированный провод сечением не менее 2 кв. мм. Формула для вторичной обмотки: W2 = 16*Т = 16*30/37 = 13 витков. Здесь понадобится шина из алюминия площадью 36 кв. мм.

Стоит заметить, что формулы не всегда могут выдавать точное число обмоток (особенно вторичной), поэтому можно применить метод подбора. Намотав первичную обмотку, накрутите несколько витков вторичной и измерьте получившееся напряжение, не обрезая шину. Таким образом нужно добиться на выходе значения 14–16 В.

Дело будет обстоять проще, если у вас имеется ЛАТР – лабораторный трансформатор. От него нужно взять сердечник. Количество витков первичной обмотки – 265–295. Используйте изолированный провод сечением 2 мм. Намотку производите в три слоя. Далее обязательно проверьте значение тока холостого хода (включите мультиметр в разрыв между сетью 220 В и одним из концов обмотки). Прибор должен показывать 210–390 мА. Если показания больше, число витков нужно увеличить, в противном случае, наоборот, уменьшить. Вторичная обмотка разделена на две секции, в каждой из которых 15–18 витков. Здесь понадобится провод сечением 10 кв. мм.

Расчёт выпрямителя

Далее рассмотрены параметры электронных компонентов (помимо указанных выше), применяемых в обеих схемах:

  1. Диоды. Максимальный пропускаемый ток не должен быть менее 100 А. Это могут быть В200, Д141, 2Д141, 2Д151 и иные аналогичные детали. Вместо КД105 не возбраняется применять КД209 или даже Д226. Стабилитрон – Д808, 2С182 и т. п.
  2. Тиристоры. I = 80 А и более: ТС185, Т15-80, Т15-100, Т161, Т125 и т. п. Если используется вариант выпрямления тока с диодным мостом, тиристоры будут мощнее вдвойне: Т15, Т160, Т250, Т16 и другие, аналогичные.
  3. Транзисторы. Здесь важен коэффициент усиления h = 21э. Это КТ361 либо КТ3107 проводимостью n-p-n. Вместо КТ816 подойдёт и КТ814.
  4. Резисторы. Желательно, чтобы их мощность была не менее 1 Вт.
  5. Выключатель. Должен держать ток от 6 А.

Подбор сечения проводов

Подбирая выходные провода, которые будут присоединяться к аккумулятору, нужно помнить, что их диаметр не может быть меньше такого же параметра вторичной обмотки. Лучше использовать многожильный медный кабель, используемый в сварочных аппаратах, где каждый проводок имеет сечение 2,5 кв. мм. Такую же площадь должен иметь провод, посредством которого самодельный аппарат будет подключаться к сети. Не забудьте приобрести мощные зажимы-крокодилы для подключения к клеммам АКБ. Здесь тоже рекомендуется использовать изделия, применяемы при сварке («масса»).

ИП

Если лишнего ИБП под рукой нет, то для ИП ЗУ нужно искать трансформатор на железе, его собственная постоянная времени (электрическая инерция) больше таковой АКБ, что очень хорошо по безопасности пользования. «Лепить» самодельный ИБП ни в коем случае не надо, его постоянная времени по выходу на 2 порядка меньше, чем у АКБ. Самодельный ИБП для ЗУ без сложных встроенных схем защиты способен стать причиной разного рода нештатных ситуаций. Помните – кипение электролита это туман и брызги крепкой ядовитой кислоты! А если АКБ с герметичными банками, то возможен и ее взрыв!

ИП ЗУ состоит из понижающего трансформатора и выпрямителя. Сглаживающий фильтр для зарядки АКБ не нужен. Трансформатор ИП ЗУ рекомендуют искать силовой с накальными обмотками от старых ламповых телевизоров – ТС-130, ТС-180, ТС-220, ТС-270. По мощности они годятся с избытком, но, во-первых, от влаги никак не защищены, в гараже могут и не перезимовать. Во-вторых, специалисты по вторичным металлам прекрасно знают, сколько выручки дает ТС, и найти их становится все труднее.

Понижающие трансформаторы типов ТП и ТПП

Если нет желания и/или возможности рассчитать и намотать трансформатор самому, для ИП ЗУ лучше будет купить трансформатор ТП или ТПП, они дешевле, чем ИБП б/у. Мощность – от 50 Вт, ее указывают последние 2 цифры в обозначении типономинала, напр. ТПП 36-220-80. 3 цифры в середине – рабочее напряжение первичной обмотки, а первые 2 или 3 кодируют количество и напряжение вторичных обмоток, оно 6,3 или 12,6 В на обмотку. Предпочтение следует отдавать трансформаторам в паровлагозащищенном исполнении («зеленым», слева на рис.), они способны неограниченно долгое время работать в атмосфере с влажностью 100% и примесями химически агрессивных паров. Трансформатор с обмотками на каркасе из плавкого пластика (справа) – вариант на самый крайний случай. Такие не рассчитаны на эксплуатацию в условиях ЗУ: работу свыше 50% времени использования на полной мощности с систематическими перегрузками по току. Вдруг берете такой, его мощность нужна от 120 Вт.

Типовые схемы соединения обмоток ТП и ТПП на 12,6 В под выпрямление мостом или двухполупериодное со средней точкой даны на рис. слева и справа:

Схемы соединения обмоток типовых трансформаторов питания

У конкретного экземпляра они могут отличаться, т.к. производители вправе произвольно менять разводку выводов по ТУ заказчика. Остатки идут в продажу, а выпуск особо популярного типономинала может быть продолжен для рынка. Поэтому, приобретая ТП или ТПП, сверяйтесь со спецификацией к нему; если ее нет, придется вызванивать обмотки. Общие правила разводки выводов и соединения обмоток ТП/ТПП такие:

  1. Сетевые (первичные) обмотки выводятся на первые номера.
  2. Межобмоточные экраны выводятся на последние номера.
  3. Для соединения обмоток в параллель нечетные выводы соединяются с нечетными; четные – с четными.
  4. Для последовательного соединения обмоток нечетные выводы соединяются с четными.

Вариант подешевле – присмотреть на железном базаре старый накальный трансформатор ТН; система обозначений аналогична ТП/ТПП. «Кладоискатели» до ТНов не охочи: возни с разборкой много, медяшки мало. Типовая схема включения ТН для ЗУ дана на врезке в центре рис. Переключать, для повышения выходного напряжения, нижний по схеме диод с вывода 15 на 16 нельзя, нарушится симметрия обмоток!

Выпрямитель Шоттки

Выходные напряжения на схемах выше даны для входного (сетевого) 220 В. Если оно упадет, пойдет недозаряд. Вместе с тем, поскольку АКБ на заряд от внешнего ЗУ ставят холодной, остается некоторый запас на увеличение напряжения заряда; его возможно использовать полностью, если ЗУ с защитой. В таком случае выпрямитель нужно делать со средней точкой на сборке диодов Шоттки – выходное напряжение увеличится прим. на 0,6 В.

Современные диоды Шоттки с платиновым барьером для использования в ЗУ АКБ вполне пригодны, см. спецификацию на рис.:

Спецификация на сборку диодов Шоттки для выпрямителя зарядного устройства автоаккумулятора

Кроме того, на сборку из пары диодов Шоттки нужен радиатор от 50 кв. см, а каждому обычному, с p-n переходом, на ток до 10 А – от 100 кв. см. Брать сборки Шоттки нужно с максимальным обратным напряжением от 35 В и пиковым прямым током от 30 А, т.к. в схеме выпрямителя со средней точкой соотв. величины достигают 1,7 амплитудного значения напряжения вторичной обмотки и 2,4 выпрямленного тока (31 В и 24 А при 12,6 В и 10 А; начальный пиковый ток заряда полностью разряженной АКБ на 60 А/ч – 10 А).

Переделка блока питания с компьютера своими руками

При работе со средней нагрузкой потребляемый ток значительно меньше пускового. Усредненный ток пуска различных шуруповертов с рабочим напряжением 12В приблизительно равен 18А. Предположим, что максимальный ток не превысит 20А. Тогда, так как P=U×I, вас устроит блок питания мощностью от 240Вт с выходным током не менее 20А. Теперь, когда вы знаете, какой преобразователь подойдет для питания вашего «Шурика», остается только немного доработать его.

  • Пометьте выход +12В и «землю». Определить их можно даже без тестера. Общий провод имеет изоляцию черного цвета. Питание +12В – желтого.
  • Отпаяйте от платы БП выходные жгуты и удалите их вместе с разъемами. Оставьте только два провода – черный и зеленый.
  • Замкните оставленные провода между собой и заизолируйте соединение. Это нужно для имитации сигнала запуска БП с материнской платы.
  • К выходу +12В и к «земле» припаяйте 2 отрезка многожильного медного провода.
  • Выведите их из корпуса через отверстие для жгутов.
  • Сетевой кабель подключите к штатному гнезду блока питания.

Важно! Шуруповерт имеет низкое напряжение питания, поэтому необходимая мощность достигается за счет большого тока. Но потери в кабеле прямо пропорциональны величине электротока и сопротивлению проводов

Значит, чтобы мощность инструмента снижалась не очень заметно, выбирайте провода для его соединения с блоком питания как можно большого сечения. И не делайте их слишком длинными. Сечение лучше взять не меньше 3 мм2. А длина не должна превышать 1,5 м.

Зарядное устройство из блока питания компьютера

Для начала необходим рабочий блок питания. Можно брать совсем старый на 200 – 250 Вт, этой мощности хватит с запасом. Учитывая что зарядка должна происходить при напряжении в 13,9 – 14,4 В, то самой главной доделкой в блоке станет поднятие напряжение на линии 12 В до 14,4 В. Подобный метод применялся в статьи: Зарядное устройство из блока питания светодиодных лент.

Внимание! В работающем блоке питания элементы находятся под опасным для жизни напряжением. Не стоит хапаться руками за все подряд. Первым делом отпаиваем все провода, которые выходили с блока питания

Оставляем только зеленый провод, его необходимо запаять к минусовым контактам. (Площадки, от которых выходили черные провода — это минус.) Это делается для автоматического старта блока при включении в сеть. Также сразу рекомендую припаять провода с клеммами к минусу и шине + 12 В (бывшие желтые провода), для удобства и дальнейшей настройки зарядного

Первым делом отпаиваем все провода, которые выходили с блока питания. Оставляем только зеленый провод, его необходимо запаять к минусовым контактам. (Площадки, от которых выходили черные провода — это минус.) Это делается для автоматического старта блока при включении в сеть. Также сразу рекомендую припаять провода с клеммами к минусу и шине + 12 В (бывшие желтые провода), для удобства и дальнейшей настройки зарядного.

Следующие манипуляции будут производиться с режимом работы ШИМ — у нас это микросхема TL494 (есть еще куча блоков питания с ее абсолютными аналогами). Ищем первую ножку микросхемы (самая нижняя левая ножка), дальше просматриваем дорожку с обратной стороны платы.

С первым выводом микросхемы соединены три резистора, нам нужен тот, который соединяется с выводами блока +12 В. На фото этот резистор отмечен красным лаком.

Этот резистор необходимо отпаять с платы и измерить его сопротивление. В нашем случае это 38,5 кОм.

Вместо него необходимо впаять переменный резистор, который предварительно настраиваем на такое же сопротивление 38,5 кОм.

Плавно увеличивая сопротивление переменного резистора, добиваемся значения напряжения на выходе в 14,4 В.

Внимание! Для каждого блока питания номинал этого резистора будет разный, т.к. схемы и детали в блоках разные, но алгоритм изменения напряжение один для всех. При поднятии напряжения свыше 15 В, может быть сорвана генерация ШИМ

После этого блок придется перезагружать, предварительно уменьшив сопротивление переменного резистора

При поднятии напряжения свыше 15 В, может быть сорвана генерация ШИМ. После этого блок придется перезагружать, предварительно уменьшив сопротивление переменного резистора.

В нашем блоке сразу поднять напряжение до 14 В не получилось, не хватило сопротивление переменного резистора, пришлось последовательно с ним добавить еще один постоянный.

Когда напряжение 14,4 В достигнуто, можно смело выпаять переменный резистор и измерить его сопротивление (оно составило 120,8 кОм).

Поле замера резистора необходимо подобрать постоянный резистор с как можно близким сопротивлением.

Мы его составили из двух 100 кОм и 22 кОм.

Тестируем работу.

На этом этапе можно смело закрывать крышку и пользоваться зарядным устройством. Но если есть желание, можно подключить к этому блоку цифровой вольтамперметр, это даст нам возможность контролировать ход зарядки.

Также можно прикрутить ручку для удобной переноски и вырезать отверстие в крышке под цифровой приборчик.

Финальный тест, убеждаемся, что все правильно собрано и хорошо работает.

Внимание! Данное зарядное устройство сохраняет функцию защиты от короткого замыкания и перегрузки. Но не защищает от переплюсовки! Ни в коем случае не допускается подключать к зарядному устройству аккумулятор неправильной полярностью, зарядное мгновенно выйдет из строя. При переделке блока питания в зарядное устройство желательно иметь под рукой схему

Что бы упростить жизнь нашим читателями мы сделали небольшую подборку, где размещены схемы компьютерных блоков питания ATX

При переделке блока питания в зарядное устройство желательно иметь под рукой схему. Что бы упростить жизнь нашим читателями мы сделали небольшую подборку, где размещены схемы компьютерных блоков питания ATX.

Для защиты от переполюсовки существует масса интересных схем. С одной из них можно знакомиться в этой статье.

comments powered by HyperComments