Приливные электростанции плюсы и минусы

Недостатки приливных ГЭС

Основной недостаток приливных электростанций – нерегулярность работы. Ее характер цикличный, поскольку приливы и отливы происходят с определенной периодичностью. Так, после окончания отлива и начала прилива кинетической энергии воды становится недостаточно. Этот период занимает 1-2 ч. Существует еще несколько минусов ПЭС.

  • Продолжительность активного периода составляет всего 4-5 ч. На протяжении дня бывает 4 цикла, состоящих из активной и пассивной части (1-2 ч).
  • Длительная окупаемость строительства из-за недостаточной эффективности.
  • Невозможность использовать побережье для туристического бизнеса, который часто оказывается более выгодным. ПЭС занимает значительную площадь, поэтому по сравнению с туризмом экономически менее выгодна. Это еще одна причина, почему такие станции строят именно на севере.
  • Сложности возведения сооружения, которые связаны с тем, что оптимальные места для ПЭС находятся у изрезанных берегов.

Хотя для многих приливные ГЭС – это экзотика, что может стимулировать развитие туризма в регионах, где они строятся. Стимулом для развития отрасли остается легкость расчета периодичности приливов и отливов. Как раз предсказуемость работы ПЭС делает их одним из самых перспективных источников альтернативной энергии.

Что это значит

Запуск О2 происходит в контексте стимулирования промышленности и научных разработок Великобритании. Создание плавающей приливной электростанции может революционизировать весь сектор приливной энергетики.

В отличие от распространенных в настоящее время береговых приливных электростанций, плавучие «подводные ветряки» не нуждаются в огромной плотине, строительство которой занимает много времени и предполагает большие финансовые вложения.

Таким образом, в теории цена киловатт-часа электроэнергии, вырабатываемой на плавающих ПЭС, может быть значительно дешевле, чем у классических ПЭС. Кроме того, обслуживание подобных электростанций может осуществляться небольшими судами, что позволяет быстро реагировать на чрезвычайные внештатные ситуации.

Разработка Orbital Marine Power также отвечает амбициозным планам Великобритании по сокращению выбросов углекислого газа в атмосферу и развитию возобновляемых источников энергии. Компании и ассоциации данной сферы надеются на помощь государства в продвижении приливной энергетики — от установки целевых показателей в 1 ГВт для «подводных ветряков» к 2030 году до внедрения специальных механизмов поддержки отрасли в виде контрактов на разницу цен.

Как государству продвигать экологическую повестку

Комитет по аудиту в сфере охраны окружающей среды Палаты общин Великобритании в недавнем отчете признал, что государство должно поддержать активно развивающийся и многообещающий сектор приливной энергетики. В случае успеха плавающих ПЭС в Великобритании, стоит ожидать, что за ней последуют и международные рынки.

«В Orbital мы реализуем смелое и новаторское видение, — возможно, достаточно сильное, чтобы наконец сдвинуть отрасль со стартовой площадки». — отмечает гендиректор Orbital Marine Power Эндрю Скотт.

Основная информация

Высота приливов в Пенжинском заливе составляет 9 метров (30 футов), а во время весенних приливов — 12,9 метров (42 фута) , что является самой высокой величиной для Тихого океана . Поскольку площадь бассейна залива составляет 20 530 км 2 (7 930 миль 2 ), это соответствует суточному расходу 360–530 км 3 (86–130 куб миль). Этот расход воды в 20–30 раз выше, чем у самой большой реки мира, реки Амазонки . Два проекта были разработаны для приливных электростанций. Первый использовал бы весь бассейн бухты. Второй предлагает установку меньшего масштаба с использованием северной части бассейна с более высокими приливами:

Вариант Высота прилива, м / фут Мощность, ГВт Годовая добыча, ТВт · ч Время исследования
Южный сайт 11/36 87,1 190–205 1972–1996 гг.
Северный участок 13,4 / 44 21,4 50 1983–1996 гг.

В связи с отсутствием существующих локальных потребителей энергии или инфраструктуры распределения электроэнергии на большие расстояния, есть предложения о дискретной работе станции для обеспечения энергопотребляющей продукции. Одним из таких потребителей, например, будет производство жидкого водорода .

Плюсы и минусы приливных установок

Несомненные достоинства этих электростанций дали серьезный толчок к их дальнейшему развитию и совершенствованию. Практически все приливные электростанции отличаются следующими положительными качествами:

  • Экологическая чистота, отсутствие каких-либо вредных выбросов.
  • Достаточно продолжительный срок эксплуатации.
  • Возможность предварительных расчетов по количеству выработанной электроэнергии, независимость объема используемой воды от времени года.
  • Более мягкий ледовый режим, отсутствие торосов в водохранилище и предпосылок их появления. Аварийное разрушение плотины не приводит к катастрофе, как это может случиться на обычной ГЭС.
  • Энергия приливов и отливов действует постоянно, независимо от времени года.
  • Невысокая стоимость получаемой электроэнергии.
  • Берега дополнительно защищены от воздействия штормов, турбины расположены на дне и не несут угрозы морскому транспорту. Рыба тоже может свободно передвигаться по установленным маршрутам.
  • Меньший объем документации, отсутствует необходимость в отчуждении земель для устройства бассейна.
  • Большинство изменений и вмешательств в природу имеют местное значение и не наносят существенного вреда.
  • На приливных плотинах при необходимости прокладываются железные или автомобильные дороги.

Минусы которые следует учитывать, когда планируется строительство приливных электростанций:

  • Нерегулярное действие, которое связано с цикличностью приливов и отливов, находящихся в активной фазе всего лишь 4-5 часов. Также существует пассивная фаза перед началом прилива и сразу после отлива, продолжительностью 1-2 часа.
  • Установки окупаются в течение длительного времени, поскольку они недостаточно эффективны.
  • Побережье, занятое приливными электростанциями, оказывается непригодным для отдыха и туризма, которые нередко бывают более выгодными, чем производство электричества. Поэтому такие объекты строятся преимущественно в северных регионах.
  • Специфические трудности строительства, поскольку наиболее подходящие места расположены на побережьях с изрезанной береговой линией.

Как работает приливная электростанция

Чтобы на берегу можно было соорудить станцию, рельеф должен образовывать бухту-бассейн. Для таких целей хорошо подходят устья рек или заливы. Для оптимальной работы ПЭС необходимо, чтобы разница перепадов между приливами и отливами составляла не менее 4-х метров. Поэтому ПЭС строятся на побережьях с высокой приливной амплитудой. В некоторых резервуарах разница составляет 17-18 метров для большей эффективности. Иными словами, чем больше разница высот, тем мощнее электростанция. На мощность также влияет количество гидротурбин и объемы резервных водохранилищ.

Основным элементом ПЭС выступает гидротурбина, которая приводит в движение генератор, накапливающий ток. Для увеличения КПД энергетического комплекса его строят с таким расчетом, чтобы «поймать» максимальные приливы. На выбранном месте возводится плотина, отделяющая море (или реку) от прибережной зоны. В плотине монтируются гидротурбины, захватывающие поступательную энергию воды для дальнейшего ее преобразования в электрическую. Ближе к берегу строятся специальные резервуары, которые компенсируют количество вырабатываемой энергии во время отливов. Это позволяет увеличить мощность установки и поддерживать ее работу, когда вода убывает. Во время прилива резервуары снова заполняются. Таким образом, ПЭС работает циклично: основной забор энергии происходит во время прилива (4-5 часов), потом следует период покоя (1-2 часа), и все снова повторяется заново.

Исследования США в 21 веке

Snohomish ЯБДКИ , утилита район общественного расположен в основном в Снохомише, штат Вашингтон, начали приливный энергетический проект в 2007 г. В апреле 2009 г. PUD выбраны OpenHydro, компании , базирующиеся в Ирландии, для разработки турбин и оборудования для окончательной установки. Первоначально проект предусматривал размещение генерирующего оборудования в районах с высокими приливными стоками и эксплуатацию этого оборудования в течение четырех-пяти лет. По истечении испытательного срока оборудование будет снято. Первоначально общая стоимость проекта составляла 10 миллионов долларов, причем половина этого финансирования была предоставлена ​​PUD из резервных фондов коммунальных предприятий, а половина — за счет грантов, в основном от федерального правительства США. PUD оплатил часть этого проекта из резервов и получил грант в размере 900 000 долларов в 2009 году и грант в размере 3,5 миллиона долларов в 2010 году в дополнение к использованию резервов для оплаты примерно 4 миллионов долларов затрат. В 2010 году бюджетная смета была увеличена до 20 миллионов долларов, половина из которых должна быть оплачена коммунальным предприятием, а половина — федеральным правительством. Коммунальное предприятие не смогло контролировать расходы по этому проекту, и к октябрю 2014 года расходы выросли примерно до 38 миллионов долларов и, по прогнозам, продолжат расти. PUD предложил федеральному правительству выделить дополнительно 10 миллионов долларов на эту повышенную стоимость, сославшись на джентльменское соглашение . Когда федеральное правительство отказалось платить эту сумму, PUD отменил проект, потратив почти 10 миллионов долларов из резервов и грантов. PUD отказался от всех исследований приливной энергии после того, как этот проект был отменен, и не владеет и не эксплуатирует какие-либо источники приливной энергии.

Места строительства ПЭС

При возникновении прилива уровень воды повышается на несколько метров, максимальное повышение на Земле – 18 метров. Приливные электростанции строятся в местах самого высокого повышения уровня моря. Большинство действующих ПЭС построено в местах, где вода поднимается не менее чем на 10 метров. Таких мест на Земле несколько:

  • Бухта Фанди (Канада) – самые высокие приливы на Земле (15-18 метров);
  • Побережье Бретани у города Сан-Мело (Франция) – самые высокие приливы Европы (до 14 метров);
  • Пенжинская губа (Россия) – самые высокие приливы на тихоокеанском побережье (до 13 метров);
  • Побережье Баренцева моря (Россия и Норвегия) – до 10 метров.

Принцип работы приливной электростанции

Приливная электростанция – это комплекс инженерных систем, при помощи которых энергия от движения воды, или кинетическая энергия воды, преобразуется в электрическую.

Характер работы – цикличный, это обусловлено периодичностью приливов и отливов. В период покоя, а это происходит когда отлив заканчивается, или только начинается прилив, кинетическая энергия воды мала, и ее недостаточно. Этот период длится 1-2 часа. В активный период, ее продолжительность 4-5 часов, энергия водных масс, преобразуется в электрическую энергию. Циклы, в течение суток повторяются 4 раза.

Основным элементом любой электростанции служит генератор, который вырабатывает электрический ток, разница лишь в механизме, приводящем его во вращательное движение. В варианте приливной электростанции, этим механизмом становится гидротурбина.

Для того чтобы повысить КПД такого сложного комплекса, как приливная электростанция, выбирается местоположение, где регистрируются максимальные приливы. Затем монтируется плотина, которая отделяет акваторию самого моря от прибрежной зоны.

В тело построенной плотины монтируются гидротурбины, которые преобразуют кинетическую поступательную энергию воды, в кинетическую вращательную энергию. Также, чтобы повысить коэффициент использования, изготавливаются резервные водохранилища, которые во время прилива наполняются морской водой.

Во время отлива, набранная водная масса увеличивает количество вырабатываемой электрической энергии, за счет увеличения объема, который проходит через турбину. В качестве механизма, обеспечивающего набор воды во время прилива, выступают также гидротурбины.

Показателем работы электростанции любого типа является ее мощность, которая зависит от технических показателей и вида преобразуемой энергии.

У приливных электростанций мощность установки зависит от:

  • характера приливов и отливов, а также их мощности;
  • количества и объема резервных водохранилищ;
  • количества и мощности гидротурбин.

Количество турбин и их мощность напрямую зависят от характеров приливов и объема резервных хранилищ.

В связи с тем, что сооружение плотин сильно увеличивает стоимость строительства станции, то и развитие гидроэнергетики этого типа шло довольно медленно

Последние десятилетия появились новые материалы и новые технологии, которые не обошли своим вниманием и энергетику, в свете этого, появились новые типы приливных электростанций

Принцип действия приливных электростанций нового поколения остался прежним, это преобразование движения водных масс, отличие же в том, что на специальной конструкции, которая закрепляется на дне, монтируются лопасти большого диаметра. Они вращаются при движении водных масс и через редукторы передают вращательное движение на генераторы. По конструкции электростанции такого типа напоминают ветряные генераторы, с той лишь разницей, что источником энергии у ветряных установок служит ветер, а у приливных станций – вода.

Гидрологический потенциал бухты

В Пенжинской губе Охотского моря наблюдаются наиболее высокие приливы в Тихом океане, двойная амплитуда которых достигает 13,4 м. Приливы в заливе Шелихова являются суточными, площадь бассейна Пенжинской губы составляет 20 530 км². Таким образом, если считать усредненной высотой прилива значение 10 м, то в среднем в бухте за сутки проходит 410,6 км³ воды, что соответствует среднесуточному расходу 4,75⋅106 м3·сек−1. Проходящий поток воды имеет потенциальную энергию, которая в поле тяготения Земли не равна нулю при наличии ненулевого перепада высот () и может быть выражена формулой:

, (1)

где  обозначает потенциальную энергию;  — плотность морской воды, равную 1 027 кг/м³;  — площадь бассейна;  — высоту приливной волны и  — ускорение свободного падения, равное 9,81 м/с². Часть выражения, ограниченная квадратными скобками, указывает на множители, которые определяют массу проходящей воды за сутки.

Как видно из формулы (1), потенциальная энергия обращается в ноль при нулевом напоре и при напоре, равном высоте приливной волны. Если рассматривать данную формулу как функцию от, то она является параболической функцией с максимумом при  = 2•, что соответствует использованию перепада высот, равного 5 м. В данном случае изменение уровня воды в бухте и количество пропускаемой воды имеют в два раза ме́ньшую величину — соответственно, 5 м и 2,38⋅106 м3·сек−1 (205,3 км³/сут).

Подстановка полученных параметров в (1) и последующее деление на число секунд в сутках дает значение мощности, равное 120 ГВт. Эта мощность позволяет получить 1 054 млрд кВт•ч или 3,79⋅1018 Дж энергии за год. В зависимости от эффективности преобразования потенциальной энергии в электрическую, общее количество получаемой электроэнергии и электрическая мощность будут иметь несколько ме́ньшие значения. Если считать КПД турбин равным 96%, то соответствующая электрическая мощность составит 115 ГВт, а количество электроэнергии — 1 012 млрд кВт•ч или 3,64⋅1018 Дж.

Первое появление приливных электростанций

Первые приливные электростанции появились в СССР. Экспериментальное строение было возведено в 1968 году, когда ученым удалось обуздать стихию. Тогда они доказали, что энергетика в будущем пополнится новыми возможностями и источниками. Причем они ослабят отрицательное воздействие на окружающую среду.

Приливная электростанция в России оказалась начальным этапом развития глобального направления конструкторских исследований. С их помощью удалось категорически изменить принцип действия турбин, значительно повысив мощность. Раньше даже колоссальный перепад уровня давал небольшой приток энергии, а теперь удается забрать из него максимум.

Самые крупные ПЭС в мире

Одной из наиболее известных приливных электростанций считается установка, которая построена во Франции, возле города Сен-Мало в устье реки Ранс (рис. 1). В течение длительного времени она удерживала первенство по всем основным показателям, и лишь сравнительно недавно ее обогнала южнокорейская установка.

Место под строительство было выбрано не случайно. В устье реки приливы очень часто достигали 8 метров, а максимальная отметка составила более 13 метров. Объект строился в 1963-1966 годах, а стоимость работ достигла показателя в 150 млн долларов.

Величина установленной мощности находится в пределах 240 мВт. На станции задействовано 24 турбины, работающие примерно 2200 часов в течение года. Себестоимость электроэнергии, произведенной на этой ПЭС, примерно в 1,5 раза меньше, чем на французских АЭС. Основным конструктивным элементом является плотина протяженностью 800 метров. Кроме того, она выполняет функции моста с проложенной высокоскоростной трассой.

Единственная приливная электростанция в России – Кислогубская (рис. 2). Она расположена на побережье Баренцева моря в наиболее узком месте Кислой Губы, неподалеку от населенного пункта Ура-Губа Мурманской области. Данная установка считается экспериментальной, ее первоначальная мощность составляла 0,4 МВт, в настоящее время – 1,7 МВт. Взята на государственный учет в качестве памятника науки и техники. Конструкция включает две части: старую, построенную в 1968 году и новую, возведенную в 2006 году.

Газотурбинная электростанция (ГТЭС)

Гидроаккумулирующая электростанция (ГАЭС)

Ветряные электростанции

Волновая электростанция (ВЭС)

Геотермальные электростанции (ГТЭС)

Самые мощные электростанции в мире

Использование приливных электростанций за рубежом

Использование природной энергии широко распространено во многих странах мира, так приливные электростанции успешно работают в США, Франции, Канаде, Норвегии, Южной Корее, Великобритании, Китае и Индии. Важными условиями наличия подобных энергетических объектов являются: наличие технических возможностей и присутствие собственных морских побережий.

Рассмотрим несколько зарубежных проектов

Великобритания

В 1913 году около города Ливерпуль в бухте Ди в Великобритании впервые в мире запустили приливнуюэлектростанцию, мощность которой была 0,635 МВт.

В настоящее время там же в Великобритании на реке Северн идёт подготовка по реализации проекта в строительстве уже самой большой и мощной приливной электростанции. Проектная мощность составляет 8,6 ГВт.

США

Первая подобную станцию, в этой стране, начали строить в 1935 году. В настоящее время успешно реализованы несколько проектов, и есть проекты в стадии разработки.

Южная Корея

ПЭС «Shihwa», которая построена в 2003 году, имеет мощностью 254 МВт, и затем до 2011 года прошла модернизацию. Объем вырабатываемой электроэнергии составляет 550 млн. кВт/часов ежегодно.

В планах строительство еще нескольких электростанций подобного типа.

Канада

ПЭС «Аннаполис» была построена в 1985 году в заливе Фанди и имеет мощность 20 МВт.

Франция

ПЭС «Ля Ранс», выдающая мощность 240 МВт, расположена в провинции Северная Бретань.

Хотя использованием возобновляемых источников энергии интересуется большое количество специалистов из разных стран нашей планеты, тем не менее широкое распространение способ использования энергии природных приливов и отливов пока не получил. Это обусловлено рядом объективных причин.

Общие сведения

Высота приливов в Пенжинской губе составляет 9 м, а в случае сизигийных приливов достигает 12,9 м, что является наивысшим для всего Тихого океана показателем. При площади бассейна 20 530 км² это соответствует ежесуточному проходу 360−530 км³ воды, что в 20−30 раз превышает расход воды в устье крупнейшей реки Земли Амазонки (через устье в сутки пройдет только ~19 км³). Для реализации гидропотенциала бухты разрабатывались два проекта приливных электростанций, каждый из них с различной установленной мощностью и годовой выработкой:

Вариант Море, макс.
прилив, м
Мощность,
ГВт
Среднегодовая
выработка, млрд кВт·ч
Разрабатывался
в период (гг)
Южный створ 11,0 87,1 190-205 1972—1996
Северный створ 13,4 21,4 50 1983—1996

В связи с недостатком местных потребителей и энергосистем, существуют предложения дискретной работы электростанции на энергоёмкий потребитель-регулятор, например, производство жидкого водорода, который затем транспортируется к возможным потребителям. Рассматриваются также варианты экспорта электроэнергии в страны южной Азии.

Перспективы развития приливной энергетики

Энергия морских приливов может играть большую роль в прогрессе человечества. Эффективность преобразования в электроэнергию — 80%. КПД ветра — 30%, а солнечных батарей составляет 5 —15%.

Страны, в которых разрабатывают проекты:

  • Великобритания;
  • Канада;
  • США;
  • Норвегия;
  • Япония;
  • Китай;
  • Россия (Мезенская и Северная ПЭС);
  • Индия.

В 2017 году компания по развитию технологий NEDO провела в Японии эксперимент. Она протестировала устройство, генерирующее энергию из океана. Турбину установили на 20—50 метров под воду. Полученная мощность в результате эксперимента — 30 кВт.

Энергией океана можно обеспечить весь мир, но нет экономически выгодного способа ее извлечения. Компания Carbon Trust утверждает, что уже к 2050 году возникнет рынок приливной энергетики. К этому времени ожидается вырабатывание 300 ГВт.

В 2010 году компания Mey Gen начала разработку проекта мощностью 398 МВт. Находится объект между шельфом северной Шотландии и островом Строма. Первая фаза включает установку четырех турбин на опорных конструкциях. Каждая турбина весит от 250 до 350 тонн. Вес шести балластных блоков составляет 1200 тонн.

У каждой турбины предусмотрен подводный кабель, проложенный на морском дне. Кабели будут выведены на берег через буровую скважину. Установка турбин начата в 2016 году. В настоящее время мощность системы — 252 МВт. После завершения работ мощность ПЭС должна составить 398 МВт. Компания утверждает, что данный проект – вполне жизнеспособный и осуществимый.

Без тепловой и атомной энергетики пока не обойтись. Следует внедрять альтернативные источники энергии — рано или поздно переход неизбежен. Извлечение энергии пока еще находится на стадии исследований и проектирования. По мере развития прогресса в будущем ее можно будет добывать из моря.

Узнайте еще много нового:

Плюсы и минусы приливных электростанций

Нетрадиционные и возобновляемые источники энергии

Альтернативная энергетика и экология: виды и пути развития

Достоинства и недостатки солнечной энергетики

Принцип работы волновых электростанций

Геотермальные электростанции: плюсы и минусы выработки электроэнергии ГеоТЭС

Что такое гидроэнергия, ее источники, плюсы и минусы

Плюсы и минусы геотермальной энергетики

Солнечная энергия в России: проблемы и перспективы развития солнечной энергетики

Как сделать ветрогенератор своими руками в домашних условиях?

10 самых загрязненных Морей в мире

Экологические проблемы в Белом море

Виды и конструкционные отличия

Среди построенных ПЭС выделяют эти виды приливных электростанций:

  • Генераторы проливного потока;
  • Динамические;
  • Плотины или лагуны приливного типа.

Монтаж первого варианта конструкционно выглядит как ветряные станции для добычи электричества. Лопасти ПЭС монтируются в воде, а несущие элементы мостового сооружения, поддерживающие пролетные строения, устанавливаются в речных руслах или морских заливах. Это позволяет использовать ресурсы воды разумно и эффективно. При помощи генераторов энергия будет извлекаться из водной среды.

В работе динамической приливной электростанции используется 2 вида энергии. Здесь задействовано потенциальную и кинетическую энергию. Строительство таких объектов производится прямо в морской пучине. Конструкции могут быть длиной до 55 км. Главной особенностью таких строений будет наличие большого количества низконапорных турбин, позволяющих преобразовывать поступательную энергию воды в ток.

Как работает волновая электростанция, построенная как проливная плотина, разобраться довольно просто. Ее задачей является захват большого объема воды и удерживание его до наступления отлива. При этом движение водных масс осуществляется в обоих направлениях через турбины.

При использовании приливных лагун необходимо создание искусственного водоема. Такие волновые электростанции работают за счет разницы давления воды в резервуарах. Кинетическая энергия путем поступления и переработки турбинами и генератором преобразуется в ток.

Зачем регистрироваться?

После регистрации у Вас будет личный кабинет на официальном сайте Петроэлектросбыта, в котором можно

  • сдать текущие показания своего электрического счетчика,
  • оплатить показания за прошлый месяц, либо внести на свой счет предоплату вперед, если в этом есть необходимость,
  • видеть в личном кабинете показания и платежи за все время, начиная с момента регистрации (всю историю платежей), что гораздо нагляднее и информативнее, чем стопка бумажных счетов (хотя их я тоже сохраняю, на всякий случай),
  • квитанция об оплате приходит на электронную почту. Также на электронную почту приходит напоминание о том, что пора внести показания.

У меня в свое время была цель – научиться оплачивать все услуги ЖКХ через интернет, которую я со временем достигла. До этого приходилось собирать счета из почтового ящика, иногда еще самостоятельно заполнять соответствующие бланки, а потом идти в офис Петроэлектросбыта, стоять в очереди и оплачивать. При этом некоторые пенсионеры в очереди частенько выражали недовольство, если видели, что я оплачиваю сразу несколько квитанций. К моему удивлению, многие из них сразу шли оплачивать любую квитанцию, как только находили ее в своем почтовом ящике.

За последнее время сайт Петроэлектросбыта несколько раз менял дизайн, каждый раз приходится привыкать к новому (не всем это нравится), но в принципе, последняя версия получилась достаточно удобной, с современным дизайном.

Принцип работы приливной электростанции

Чтобы осуществить преобразование кинетической энергии водной среды в электрическую происходит за счет использования комплекса систем, представляющих собой волновые электростанции. Цикличность добычи электроэнергии обусловлена периодичностью приливных и отливных периодов. Для этих электростанций возводится плотина, которая будет отделять моря и океаны от прибрежной части суши. Благодаря этому образуются бассейны. В конструкцию плотины монтируются турбины, которые преобразовывают кинетическую поступательную энергию приливов во вращательную. Повышение коэффициента обеспечивается при помощи запасных водохранилищ, вырытых заблаговременно. Принцип работы ГЭС основан на прохождении водных потоков через турбину. Благодаря увеличению объема водной среды происходит значительная выработка энергии. Для строительных работ подбираются участки с максимальными перепадами водного массива.

Виды приливных электростанций

Несмотря на то, что действие ПЭС обеспечивается благодаря движению лопастей, находящихся в воде есть различия в работе некоторых станций. Существует 4 разновидности.

Генераторы приливного потока

Установка напоминает по виду ветряные электростанции. Разница состоит в том, что лопасти устанавливаются в воде. Станция небольшого размера устанавливается в мостовые опоры в руслах рек, проливах или вблизи морских заливов. При этом водные ресурсы используются человеком максимально эффективно и рационально. Генераторы извлекают кинетическую энергию в период приливов.

Динамические ПЭС

В работе приливной электростанции применяется кинетическая и потенциальная энергия. Они растягиваются в длину вплоть до 35-55 км, а строительство происходит прямо в море. Внутрь постройки монтируется огромное количество низконапорных гидротурбин, работающих на воде, идущей в одном направлении. Эти турбины преобразуют поступательную энергию от приливов в ток.

Приливные плотины

Во время работы указанный вид ПЭС захватывает большой объем воды, а затем удерживает до момента наступления отлива. Движение воды происходит в обоих направлениях через гидротурбины. Оно способствует образованию кинетической энергии, которая преобразуется в ток после прохождения через генераторы.

Приливные лагуны

Принцип работы подобен плотине. Разница состоит в том, что для функционирования вырываются искусственные водоемы. Эти ПЭС работают за счет разницы водного давления в резервуарах и открытых лагунных водах. Как и в предыдущем случае, проходящая через гидротурбины вода способствует образованию кинетической энергии. Она потом переходит в ток.

Преимущества ПЭС

К преимуществам приливных электростанций относят следующие пункты:

  • Приливы, которые используются для получения электроэнергии, являются возобновляемыми, надёжными и предсказуемыми источниками.
  • Водоёмы, где большая разница между точками прилива и отлива, можно использовать для получения постоянного источника электричества.
  • При работе ПЭС не выделяется углекислый газ, углекислота и окислы азота. Имеются лишь небольшие выбросы от работы турбин, однако, они незначительные.
  • Приливные электростанции являются экзотикой для некоторых государств, что положительно влияет на развитие в них туризма.
  • Приливная плотина, являющаяся основным элементом ПЭС, может использоваться в качестве автомобильной или железной дороги через залив.
  • ПЭС имеют простоту в обслуживании. Используемые турбины обладают сроком службы от 30 лет.
  • Турбины располагаются под водой на большой глубине. Это исключает возможность создания угрозы для морского транспорта.
  • Не требуется участок земли для постройки электростанции.
  • Водность года (количество воды, которое переносится рекой с бассейна) не влияет на количество получаемой энергии.
  • Постоянное получение энергии, вне зависимости от погодных условий и сезона года.
  • Приливная плотина дополнительно защищает берег и прилегающие к нему сооружения от шторма и волн.

Также стоит отметить экологичность приливных электростанций. К слову, в бассейне ГЭС погибает примерно 83-99% планктона. У ПЭС же этот показатель редко превышает 10%. Наплавной способ строительства таких электростанций позволяет избежать сооружения дополнительных перемычек и стройбаз, которые оказывают негативное влияние на окружающую среду.

США и канадские исследования в 20 веке

Первое исследование крупномасштабных приливных электростанций было проведено Федеральной энергетической комиссией США в 1924 году. Если бы они были построены, электростанции были бы расположены в северной пограничной зоне американского штата Мэн и юго-восточной пограничной зоне канадской провинции Нью-Йорк. Брансуик, с различными дамбами, электростанциями и шлюзами, окружающими залив Фанди и залив Пассамакодди (примечание: см. Карту в ссылке). Из исследования ничего не вышло, и неизвестно, обращалась ли к Канаде по поводу исследования Федеральная энергетическая комиссия США.

В 1956 году коммунальное предприятие Nova Scotia Light и Power of Halifax заказало пару исследований возможности коммерческого развития приливной энергии на стороне Новой Шотландии в заливе Фанди. Два исследования, проведенные Stone & Webster из Бостона и Montreal Engineering Company из Монреаля , независимо друг от друга пришли к выводу, что от Fundy можно использовать миллионы лошадиных сил (то есть гигаватт), но что затраты на разработку будут коммерчески непомерно высокими.

В апреле 1961 г. был также подготовлен отчет международной комиссии под названием «Исследование международного проекта приливной энергетики Пассамакводди», подготовленный федеральными правительствами США и Канады. По соотношению выгод и затрат проект был выгоден США, но не Канаде. Также была предусмотрена система автомобильных дорог вдоль верха плотин.

По заказу правительств Канады, Новой Шотландии и Нью-Брансуика (переоценка силы приливов Фанди) было проведено исследование для определения потенциала приливных барражей в заливе Чигнекто и бассейне Минас — в конце устья залива Фанди. Было определено, что три участка являются целесообразными с финансовой точки зрения: залив Шеподи (1550 МВт), бассейн Камберленд (1085 МВт) и залив Кобеквид (3800 МВт). Они так и не были построены, несмотря на их очевидную осуществимость в 1977 году.