Как правильно выбрать метод управления преобразователем частоты?

Другие часто востребованные настройки

Помимо основных настроек, рассмотренных выше, нередко становятся актуальными ещё несколько функций. В частности, к примеру, требуется перевести на ПЧ управление асинхронным электродвигателем из ручного режима пуска в автоматический режим пуска или обратно. Делается это применительно к модели «VLT» уже посредством обычного меню через секции 0-40, 0-41, 0-42.

Видеоролик настройки алгоритмов включения/отключения

Видеоролик ниже демонстрирует, как секция меню из трёх (0-40, 0-41, 0-42) установочных параметров может использоваться для настройки алгоритма запуска асинхронного электродвигателя с поддержкой нескольких (разных) режимов управления пуском и остановкой мотора:

Следует отметить, что установкой определённого параметра в секциях допустимо заблокировать функцию кнопки отключения/сброса (Off Reset) на устройстве.

То есть отключить асинхронный электродвигатель, питаемый напряжением через ПЧ, можно только сигналом внешнего управления. Аналогично можно настроить пусковой режим.

Видеоролик настройки ПЧ VLT быстрым меню

Видео показывает последовательность манипуляций пользователя кнопками панели управления в момент настройки оптимальной связи электромотора с преобразователем частоты. Рассматривается работа пользователя в режиме быстрого меню (Quick Menu):

Устройство и принцип работы

Рассматриваемое устройство состоит из следующих элементов:

  1. Мост постоянного тока выступает в качестве выпрямителя. Именно он проводит преобразование, к примеру, промышленного тока с генератора в постоянный.
  2. Инвертор проводит создание переменного тока. При этом, есть возможность контролировать частоту и амплитуду.
  3. Также, в конструкции есть тиристоры или транзисторы, которые обеспечивают подачу рабочего тока к электродвигателю. Они выступают в качестве электрических ключей.
  4. В управляющей части установлен микропроцессор, который проводит управление работой установленных ключей. Также, микропроцессор выполняет ряд других задач: проводит защиту системы, контролирует выходные параметры, диагностирует состояние подаваемого тока.

Многие построены на основе двойного преобразования.

Можно выделить 2 основных класса:

  1. С созданием промежуточного звена.
  2. С образованием непосредственной связи.

2 вышеприведенных класса имеют свои особенности, которые определяют возможность и целесообразность их использования тех или в иных условиях.

Непосредственная связь обуславливается тем, что преобразователь представлен выпрямителем управляемого типа. Используемая система управления проводит отпирание группы тиристоров и также проводит подвод напряжения к обмотке электродвигателя.

В данном случае, напряжение преобразуется путем вырезания синусоид из входного тока. Проведенные измерения показывают, что получаемая частота находится в приблизительном промежутке от 0 до 30 Гц. Использовать подобный вариант исполнения нельзя в регулируемых приводах.

Для того, чтобы использовать незапираемые тиристоры, нужно организовывать сложные системы управления, которые значительно повышают стоимость создаваемой цепи.

При выходе синусоида с непосредственной связью, приводит к следующему:

  1. Появляется гармоник.
  2. Происходят потери в самом электродвигателе.
  3. Происходит перегрев электродвигателя.
  4. Значительно снижается показатель момента.
  5. Создаются сильные помехи.

Кроме этого, компенсаторы значительно повышают стоимость цепи, ее габариты и вес. Включение дополнительного элемента в цепь также приводит к уменьшению показателя КПД из-за возникающих потерь.

Современные цепи питания часто создаются при использовании преобразователя, который имеет промежуточное звено.

В данном случае, проводится процедура, предусматривающая двойное преобразование электрического тока:

  1. Изначально, входное напряжение синусоидального типа с неизменной частотой и амплитудой преобразуется при помощи выпрямителя.
  2. Используются специальные фильтры, которые сглаживают показатели.
  3. Инвертор на выходе проводит преобразование энергии с изменяемым показателем амплитуды и частоты.

Как правило, процедура двойного преобразования приводит к значительному снижению показателя КПД, вследствие чего также ухудшаются показатели соотношения массы и габаритов.

К основным достоинствам преобразователей частоты, которые работают как тиристор, можно отнести следующее:

  1. Возможна работа в системе с большими показателями тока.
  2. Система может быть использована при высоких показателях напряжения.
  3. Есть устойчивость к длительному воздействию большой нагрузки и импульсного воздействия.
  4. Более высокий показатель КПД, который достигает 98%.

Данные особенности являются основными отличительными признаками работы двух типов преобразователей.

Монтаж частотника

Привод устанавливается на твердую ровную площадку из негорючего материала в месте, недоступным для прямых лучей солнца. Сложность работ по установке прибора зависит от него самого (чем выше мощность и больше функций, тем сложнее схема подключения частотного преобразователя).

Для установки, кроме самого преобразователя частоты, потребуются соединительные провода, крепежи, инструмент для подготовки технических отверстий, если они необходимы, обжимка, автоматические выключатели. Параметры выключателей должны соответствовать характеристикам выбранного частотника. Порядок действий:

  • изучить инструкцию частотного преобразователя;
  • сформировать комплект дополнительных изделий, руководствуясь рекомендациями производителя;
  • выполнить работы по настройке, перечисленные в инструкции (строго соблюдая последовательность, проверяя контакты и качество обжимки проводов, без спешки);
  • повторно проверить надежность креплений, отсутствие неизолированных проводов и т. д. (базовые пункты правил безопасности при проведении электротехнических работ).

Важный момент: сразу после подключения частотный преобразователь электродвигателя запускать нельзя. В любой инструкции есть это указание, но многие его нарушают. По статистике, такое действие – самая распространенная причина негарантийного ремонта нового преобразователя частоты.

Вторая распространенная ошибка – использование автоматики, не рассчитанной на уровень потребления электродвигателя, к которому подключается частотник. Это приводит к подвижности биметаллической пластины, хаотичным разъединениям цепи и повреждению механизма.

Подключение, настройка

Схема подключения частотника предполагает установку перед ним автоматического выключателя. В идеале последний должен работать с током, равным номинальному потреблению электромотора. Если в каталоге нужного выключателя преобразователя частоты не нашлось, надо брать аналог, приближенный к номинальному току электродвигателя.

Количество фаз, на которое рассчитана автоматика, выбирается по частотнику:

  • Для трехфазного устройства берется 3-фазный выключатель с общим рычагом. Последний обеспечит обесточивание сети при угрозе (факте) короткого замыкания в одной из фаз. Ток срабатывания равен току 1 фазы электродвигателя.
  • Для однофазного частотного преобразователя нужен одинарный автомат. Ток срабатывания равен току 1 фазы, умноженному на 3. Подключение – напрямую.

При настройке нужно соединить в электрическом двигателе обмотки (схема – «звезда» или «треугольник» в зависимости от характера напряжения). Затем фазные провода привода соединяются с контактами электродвигателя по схеме подключения частотника.

Электродвигатели для частотного регулирования — АДЧР

Асинхронные трёхфазные низковольтные короткозамкнутые частотно-регулируемые двигатели специальных модификаций

Электродвигатели асинхронные с короткозамкнутым ротором общего назначения, частотно-регулируемые АДЧР (в дальнейшем «двигатели»), предназначены для работы в составе одиночного и (или) группового частотно-регулируемого электропривода или от сети переменного тока в режиме S1-S9 по ГОСТ Р 52776 частоты 50 Гц и 60 Гц.

Усовершенствованная технология изготовления обмотки статора и конструкция магнитопровода обеспечивают надежную эксплуатацию двигателей при питании от автономных инверторов напряжения и возможность регулирования частоты вращения в широком диапазоне.

Основные области применения частотно-регулируемого электропривода:

• энерго- и ресурсосберегающие системы с нагрузкой вентиляторного типа – привода центробежных насосов, вентиляторов, воздуходувок.

• замена приводов на базе двигателей постоянного тока – машиностроение, металлургическая, химическая, пищевая, стекольная, целлюлозно-бумажная и текстильная промышленности.

Применение двигателей возможно при следующих типах управления частотой вращения:

  • Скалярное вольт-частотное – управление, при котором изменение частоты вращения достигается путем воздействия на частоту напряжения статорных обмоток при одновременном изменении амплитуды этого напряжения.
  • Векторное – регулирование с обратной связью по частоте вращения, основанное на мгновенном управлении амплитудой и фазовым углом намагничивающей и рабочей составляющей токов статора.
  • Бездатчиковое (беcсенсорное) векторное – векторное управление, не требующее применения датчиков частоты вращения.

Перечень модификаций двигателей АДЧР:

  • «О» — двигатели стандартного исполнения. Представляют собой базовый конструктивный вариант двигателя. Отсутствуют независимая вентиляция, тормоз и датчик скорости/положения (Подробнее – см. Электродвигатели для частотного регулирования АДЧР).
  • «В» — двигатели, оснащенные системой независимой вентиляции. Отсутствуют тормоз и датчик скорости/положения (Подробнее – см. Электродвигатели для частотного регулирования АДЧР).
  • «ДВ» — двигатели с датчиком скорости/положения и независимой вентиляцией. Отсутствует тормоз (Подробнее – см. Электродвигатели для частотного регулирования АДЧР).
  • «ТВ» — двигатели с электромагнитным тормозом и независимой вентиляции. Отсутствует датчик скорости/положения (Подробнее – см. Электродвигатели для частотного регулирования АДЧР).
  • «Т» — двигатели, оснащенные электромагнитным тормозом. Отсутствуют независимая вентиляция и датчик скорости/положения (Подробнее – см. Электродвигатели для частотного регулирования АДЧР).
  • «ТДВ» — двигатели с электромагнитным тормозом, датчиком скорости/положения и независимой вентиляцией (Подробнее – см. Электродвигатели для частотного регулирования АДЧР).

Принцип работы

Частотный преобразователь — это устройство, которое плавно изменяет частоту исходного напряжения. Есть устройства, работающие как от однофазной (220 В), так и от трехфазной сети (380 В). Предел изменения частоты — от 0,1 Гц до 500 Гц. Существуют преобразователи двух типов — индукционного и электронного. Индукционные имеют невысокий КПД, так что используются реже. Практически все современные частотные преобразователи — электроника с системой управления и контроля.

Как работает преобразователь частоты с электродвигателем? Известно, что вал асинхронного электрического двигателя с короткозамкнутым ротором вращается со скоростью, которая зависит от частоты питающего напряжения. Частота вращения ротора определяется по следующей формуле:

n = 60 * f / p

где n — частота вращения ротора; f — частота питающего напряжения, p — число пар полюсов статора. Как видите, зависимость прямая. Чем выше частота питающего напряжения, тем быстрее вращается ротор, чем меньше частота, тем медленнее вращение. Вот на этой зависимости и построено управление асинхронным двигателем при помощи преобразователя частоты, его плавный старт и останов. Осталось разобраться как частотный регулятор это делает.

Для чего понадобился ПЧ

Ко мне обратился старый знакомый с обувного производства. Ему для предпродажной подготовки женских сапог требуется операция полировки, чтобы сапоги блестели.

Станок для полировки был в отвратительном состоянии, но его удалось привести в чувство, перебрав советские контакторы и подсоединив двигатели.

Тем не менее, для качественной обработки поверхности кожи было предпочтительно, чтобы линейная скорость полировки могла меняться. Кроме как ПЧ, другими способами это сделать невозможно. Замена шкивов не рассматривалась – скорость нужно менять оперативно и без инструментов.

В результате я установил преобразователь частоты Delta. Подключил и настроил его так, что можно менять обороты подключенного через него двигателя нажатием кнопок на панели управления. Дальше – подробности.

На какие параметры обратить внимание

Сразу стоит отметить, что с помощью частотного преобразователя вы можете подключить асинхронный трёхфазный двигатель к однофазной сети без конденсаторов, соответственно и без потери мощности.

Чтобы понять, как правильно выбрать частотный преобразователь, давайте рассмотрим ряд основных параметров:

Мощность. Подбирают большую, чем полная мощность двигателя, который будет к нему подключен. Для двигателя на 2.5 кВт, если он работает с редкими незначительными перегрузками или в номинале, частотный преобразователь выбирают ближайший в сторону увеличения из модельного ряда, допустим на 3 кВт. Количество питающих фаз и напряжение – однофазные и трёхфазные

К однофазным на вход подключается на 220В, а на выходе мы получаем 3 фазы с линейным напряжением 220В или на 380В (уточняйте какое выходное напряжение при покупке, это важно для правильного соединения обмоток двигателя). К мощным трёхфазным приборам подключается три фазы соответственно

Тип управления – векторное и скалярное. Частотные преобразователи со скалярным управлением не обеспечивают точной регулировки в широких пределах, при слишком низких или слишком высоких частотах могут изменяться параметры двигателя (падает момент). Сам же момент поддерживается так называемой ВЧХ (функция U/f=const), где напряжение на выходе зависит от частоты. Для частотников с векторным управлением применяются цепи обратной связи, с их помощью поддерживается стабильность работы в широком диапазоне частот. А также, когда при постоянной частоте изменяется нагрузка на двигатель, такие преобразователи частоты более точно поддерживают момент на валу таким образом снижая реактивную мощность двигателя. На практике чаще встречаются частотные преобразователи со скалярным управлением, например, для насосов, вентиляторов, компрессоров и прочего. Однако при повышении частоты выше чем в сети (50 Гц) момент начинает снижаться, говоря простым языком – некуда повышать напряжение с увеличением оборотов. Модели с векторным управлением стоят дороже, их основная задача – поддержание высокого момента на валу, независимо от нагрузки, что может быть полезным для токарного или фрезерного станка, для поддержания стабильных оборотов шпинделя. Диапазон регулирования. Этот параметр важен, когда вам нужно регулировать электропривод в широком диапазоне. Если вам, например, нужно подстраивать производительность насоса – регулировка будет происходить в пределах 10% от номинала. Функциональным особенности. Например, для управления насосом будет хорошо, если в частотном преобразователе будет функция отслеживания режима «сухого хода». Исполнение и влагозащищенность. Этот параметр определяет, где может быть установлен частотник. Чтобы сделать правильный выбор определитесь где вы его установите, если это будет сырое помещение – подвал, например, то лучше поместить прибор в щит с классом защиты IP55 или близкий к нему. Способ торможения вала. Инерционное торможение происходит при простом отключении питания от двигателя. Для резкого разгона и торможения применяется рекуперативное или динамическое торможение, за счет обратного вращения электромагнитного поля в статоре, или быстрое понижение частоты с помощью преобразователя. Способ отвода тепла. При работе полупроводниковые ключи выделяют достаточно большое количество тепла. В связи с этим их устанавливают на радиаторы для охлаждения. В мощных моделях используется активная система охлаждения (с помощью кулеров), что позволяет снизить габариты и вес радиаторов. Это нужно учесть еще до покупки, перед тем как вы решите выбрать ту или иную модель. Сперва определите где и как будет проведен монтаж. Если он будет установлен в шкафу, то следует учесть и то, что при малом объеме пространства вокруг прибора охлаждение будет затруднено.

Часто преобразователи частоты подбирают для глубинного насоса. Он нужен для регулирования производительности насоса и поддерживания постоянного давления, плавного пуска, контроля работы «на сухую» и экономии электроэнергии. Для этого есть специальные приборы, которые отличаются от частотников общего назначения.

Общие требования к организации подключения

Вне зависимости от назначения системы, ее мощности, решаемых задач и автоматики управления, подключение частотника к электродвигателю должно выполняться с соблюдением общих норм электробезопасности, которые предусмотрены при эксплуатации электрооборудования в низковольтных сетях бытового и промышленного назначения.

Несмотря на то, что современные частоткик имеет свои цепи защиты, следует понимать, что какой бы вы ни выбрали частотный преобразователь, подключение к двигателю в общем случае требует соблюдения следующих условий:

  • Установка входного автоматического выключателя, число полюсов которого соответствует числу фаз сети. При подключении к трехфазной сети защитный автомат должен быть оборудован единым рычагом одновременного отключения всех фаз. Автомат ставиться в начале цепи питания системы.
  • Установка пускателя, при помощи которого напряжение подается на частотный преобразователь.
  • Подключение питания на вход частотника в соответствии с паспортной документацией.
  • Подключение двигателя к преобразователю частоты с соблюдением маркировки.

Естественно, требуется обеспечить заземление всех цепей и подобрать провода, сечение которых рассчитано в соответствии с мощностью подключенной нагрузки. В ряде случаев цепь питания может быть дополнена фильтрами электромагнитных помех и сетевым дросселем.

Частотные преобразователи для асинхронных двигателей

Благодаря частотным преобразователям, работа современных асинхронных двигателей отличается высокой эффективностью, устойчивостью и безопасностью

Это особенно важно, поскольку каждый электродвигатель отличается индивидуальными особенностями режима работы. Поэтому оптимизации параметров питания агрегатов с использованием преобразователей частоты придается большое значение

Когда частотный преобразователь выбирается для каких-либо конкретных целей, в этом случае должны обязательно учитываться его рабочие параметры.

Нормальная работа устройства будет зависеть от типа электродвигателя, его мощности, диапазона, скорости и точности регулировок, а также от поддержания стабильного момента вращения вала. Эти показатели имеют первостепенное значение и должны органично сочетаться с габаритами и формой аппарата

Следует обратить особое внимание на то, как расположены элементы управления и будет ли удобно им пользоваться

Выбирая устройство, необходимо заранее знать, в каких условиях оно будет эксплуатироваться. Если сеть однофазная, то и преобразователь должен быть таким же. То же самое касается и трехфазных аппаратов. Многое зависит от мощности асинхронных двигателей. Если при запуске на валу необходим высокий пусковой момент, то и частотный преобразователь должен быть рассчитан на большее значение тока.

Программирование частотных преобразователей необходимо для адаптации устройства к техническим параметрам электродвигателя, встраивания электропривода в систему автоматического регулирования и диспетчеризации, его синхронизации с работой других приводов. Оно осуществляется после монтажа преобразователя, выполнения всех подключений в точном соответствии со схемой, проверки правильности электрических соединений силовой и управляющей цепи.

Программирование ЧП должен проводить специалист по автоматизации, имеющий профильное образование и соответствующую квалификацию. Многие модели частотников узкоспециализированного назначения поставляются со встроенным программным обеспечением от производителя. Их настройка сводится к вводу технических характеристик электродвигателя и незначительной адаптации программ к реальным условиям эксплуатации электропривода. Существуют также модели, определяющие фактические характеристики электродвигателя при включении в режиме тестирования.

Большинство преобразователей общепромышленного назначения имеют открытый доступ к ПО и могут быть адаптированы к электроприводам самого различного промышленного оборудования, в том числе для полностью автоматизированных технологических установок.

Для универсальных преобразователей частоты, интегрированного в системы АСТП привода требуется написание отдельных программ и их настройка и отладка. Программы для типового электропривода различного назначения часто поставляют вместе с частотником, их также можно скачать на сайте технической поддержки производителя регуляторов частоты.

Первый пуск

После выполнения всех подключений необходимо еще раз проверить правильность сборки схемы и качество контактных соединений. Далее приступают к настройке преобразователя, пробному пуску привода.

  • Перед подачей напряжения на частотный преобразователь необходимо убедиться, что на устройстве отключена подача команд на двигатель, а запуск электрической машины никому не повредит.
  • При включении питания должны заработать встроенные в частотник вентиляторы охлаждения и загореться дисплей. На нем должно отображаться состояние “ выключено ” или “OFF” .
  • Далее требуется восстановить заводские настройки частотного регулятора. Для этого используется ввод соответствующей команды или нажатие клавиши Reset. Некоторые модели преобразователей затем следует перезагрузить.
  • Далее вводят все характеристики двигателя, фильтров и других вспомогательных элементов привода и осуществляют программирование частоты вращения, параметров регулирования и другие настройки. Некоторые модели частотников определяют фактические характеристики электродвигателей автоматически.
  • Далее осуществляется пробный пуск привода в ручном режиме. При этом проверяют правильность направления вращения вала и работу двигателя во всем интервале регулируемых скоростей. При необходимости вносят корректировки в предварительные настройки.
  • После чего производят окончательную настройку частотных преобразователей под регулируемый параметр и условия технологического процесса. Настройка преобразователей осуществляется с панели управления или с ПК. Эти операции должен производить специалист по автоматизации.
  • · Далее опробуют привод в тестовом режиме и вносят изменения в настройки, после чего проверяют корректность работы привода еще раз.

Функционал, схема подключения, порядок настройки разных типов и моделей частотных регуляторов могут существенно различаться. При выполнении монтажа и программирования частотников необходимо строго следовать общим правилам по монтажу электротехнического оборудования, инструкции и алгоритму настроек, рекомендованному производителем. Вносить изменения в ПО (программное обеспечение) и схемы подключения категорически запрещено.

Внимание! Фактические характеристики электродвигателей, долго находившихся в эксплуатации или побывавших в капитальном ремонте, могут отличаться от паспортных данных. Для частотно-регулируемого привода рекомендуется использовать новые электрические машины или частотные преобразователи, определяющие фактические параметры электродвигателей автоматически

Векторное управление без обратной связи

Векторное управление (ВУ) без обратной связи используется для более широкого и динамичного регулирования скорости электрической машины. При пуске от преобразователя частоты электродвигатели могут развивать пусковой момент в 200% от номинального при частоте всего 0,3 Гц. Это значительно расширяет перечень механизмов, где может быть применен асинхронный электропривод с векторным управлением. Этот метод также позволяет управлять моментом машины во всех четырех квадрантах.

Ограничение вращающего момента осуществляется двигателем. Это необходимо для предотвращения повреждения оборудования, машин или продукции. Значение моментов разбивают на четыре различных квадранта, в зависимости направления вращения электрической машины (вперед или назад) и в зависимости от того, реализует ли электродвигатель режим рекуперативного торможения. Ограничения могут устанавливаться для каждого квадранта отдельно или же пользователь может задать общий вращающий момент в преобразователе частоты.

Двигательный режим асинхронной машины будет при условии, что магнитное поле ротора отстает от магнитного поля статора. Если магнитное поле ротора начнет опережать магнитное поле статора, то тогда машина войдет в режим рекуперативного торможения с отдачей энергии, проще говоря – асинхронный двигатель перейдет в генераторный режим.

Например, машина по закупорке бутылок может использовать ограничение момента в квадранте 1 (направление вперед с положительным моментом) для предотвращения чрезмерного затягивания крышки бутылки. Механизм производит движение вперед и использует положительный момент для того, чтобы закрутить крышку бутылки. А вот устройство, такое как лифт, с противовесом тяжелее, чем пустая кабина, будет использовать квадрант 2 (обратное вращение и положительный момент). Если кабина подымается на верхний этаж, то крутящий момент будет противоположен скорости. Это необходимо для ограничения скорости подъема и недопущения свободного падения противовеса, так как он тяжелее, чем кабина.

Обратная связь по току в данных преобразователях частоты ПЧ позволяет устанавливать ограничения по моменту и току электродвигателя, поскольку при увеличении тока растет и момент. Выходное напряжение ПЧ может изменятся в сторону увеличения, если механизм требует приложения большего крутящего момента, или уменьшатся, если достигнуто его предельно допустимое значение. Это делает принцип векторного управления асинхронной машиной более гибким и динамичным по сравнению с принципом U/F.

Также частотные преобразователи с векторным управлением и разомкнутым контуром имеют более быстрый отклик по скорости – 10 Гц, что делает возможным его применение в механизмах с ударными нагрузками. Например, в дробилках горной породы нагрузка постоянно меняется и зависит от объема и габаритов обрабатываемой породы.

В отличии от шаблона управления U/F векторное управление использует векторный алгоритм, для определения максимально эффективного напряжения работы электродвигателя.

Векторное управления ВУ решает данную задачу благодаря наличию обратной связи по току двигателя. Как правило, обратная связь по току формируется внутренними трансформаторами тока самого преобразователя частоты ПЧ. Благодаря полученному значению тока преобразователь частоты проводит вычисления вращающего момента и потока электрической машины. Базовый вектор тока двигателя математически расщепляется на вектор тока намагничивания (Id) и крутящего момента (Iq).

Используя данные и параметры электрической машины ПЧ вычисляет векторы тока намагничивания (Id) и крутящего момента (Iq). Для достижения максимальной производительности, преобразователь частоты должен держать Id и Iq разведенными на угол 900. Это существенно, так как sin 900 = 1, а значение 1 представляет собой максимальное значение крутящего момента.

В целом векторное управление асинхронным электродвигателем осуществляет более жесткий контроль. Регулирование скорости составляет примерно ±0,2% от максимальной частоты, а диапазон регулирования достигает 1:200, что позволяет сохранять вращающий момент при работе на низких скоростях.