Что такое ограничители импульсных перенапряжений

Оглавление

Схемы подключения прибора

Подключение может быть однофазное и трехфазное. У прибора ОИН-1 есть ряд похожих устройств от различных производителей бытовых приборов, потому все схемы подключения почти похожи. Стандартная схема описана ниже. Ее можно применять под все типы устройств.

ОИН 1 схема подключения

В первом случае подключение выполнено параллельно к цепи, а во втором – последовательно с размыкателем. Проще говоря, в итоге включения ОИН-1 во время скачков напряжения размыкатель будет обрывать цепь питания, чтобы миновать риск возникновения пожара в системе и прохождения тока по электродуге.

Внимание! Кроме грамотной установки нулевого и фазного проводников, достаточно важную роль играет длина самого кабеля. От метки подключения в клемме прибора до заземляющей шины общая длина проводов должна быть не больше 50 см. От метки подключения в клемме прибора до заземляющей шины общая длина проводов должна быть не больше 50 см

От метки подключения в клемме прибора до заземляющей шины общая длина проводов должна быть не больше 50 см.

Установка УЗИП — ограничители импульсного перенапряжения, правильный монтаж и подключение

Ограничители импульсного перенапряжения — скачкообразное напряжение атмосферного происхождения является основной причиной выхода из строя электронного оборудования и простоев производства. Наиболее опасный тип перенапряжения вызван прямыми ударами молнии.

Фактически, молния создает пики тока, которые генерируют перенапряжения в сети электропередачи и передачи данных, последствия которых могут быть чрезвычайно нежелательными и опасными для систем, сооружений и людей. У разрядников для защиты от перенапряжений есть много применений, от защиты дома до коммунальной подстанции.

Они устанавливаются на автоматических выключателях внутри жилого дома, внутри вмонтированных трансформаторов, на полюсных трансформаторах, на столбовых стойках и подстанциях. В данной публикации мы расскажем как правильно подключать ограничители импульсного перенапряжения, и покажем схемы соединения. В частности здесь речь пойдет о конкретном устройстве ОИН-1.

Для чего нужен ОИН-1 и его функциональные возможности

Прибор ограничителя импульсных напряжений в первую очередь нужен для защиты электрической сети переменного тока 380/220v. Скачкообразные, импульсные напряжения, многократно превышающие штатные значения, могут возникать из-за грозовых разрядов.

Кроме этого, действующее сетевое напряжение может изменяться в следствия бросков тока в электросети. Возникают они как правило во время подсоединения к сети либо отключения каких либо мощных электрических устройств.

В схему прибора ОИН-1 включен мощный варистор, выполняющий функции разрядника, которые применялись в устройствах более старшего поколения.

Устройство защиты от импульсных перенапряжений в силовом щитке

В этом варианте прибор подключен к защищаемой электрической цепи по параллельной схеме.

В случае каких либо возникших аварийных ситуаций, когда штатное напряжение начинает периодически «прыгать» до критического уровня, тогда устройство защиты мгновенно сработает.

Принцип действия защиты заключается в следующем. Во время образования в силовой цепи внезапного подъема напряжения, например, от грозового разряда. При этом на варисторе снижается сопротивление, и как следствие возникает короткое замыкание, после чего срабатывает автомат и отключает электрическую цепь. Установленные в этом силовом тракте, после варистора, различные приборы не получат повреждений, благодаря тому, что вовремя сработали ограничители импульсного перенапряжения.

Виды ОПН

  • Класс напряжения – рабочая величина, на которую рассчитан ограничитель, разделяется на устройства до 1кВ и выше, как правило, номинал напряжения соответствует стандартному значению электрических параметров сети (6, 10, 35 кВ).
  • Материал рубашки – определяет тип изоляции наружного слоя, наиболее часто используются фарфоровые или полимерные модели.
  • Класс защищенности – определяет возможность установки или на открытой части, или только внутри помещения.
  • Количеству элементов или фаз – число ограничителей перенапряжения зависит от числа защищаемых фаз и величины питающего их напряжения.

Так для каждой из фаз в электроустановке может устанавливаться отдельная колонка или одна для всех. Также следует отметить, что в электроустановках на 110 кВ и более ОПН для одной фазы может собираться из нескольких однотипных элементов, к примеру, из трех на 35 кВ.

Комбинация нескольких видов позволяет выстраивать многофункциональные или ступенчатые ограничители.

Фарфоровые

Рис. 4. Фарфоровые ОПН

Такие модели отличаются своими эксплуатационными  параметрами, так как керамика невосприимчива к воздействию солнечной радиации, а находящийся внутри вентильный разрядник практически не зависит от температуры внешней среды.

Также весомым преимуществом этих ограничителей является большая механическая прочность на сжатие и разрыв, благодаря чему их можно использовать и в качестве опорной конструкции. Но фарфоровые ОПН характеризуются сравнительно большим весом, а также представляют значительную угрозу в случае разрыва, так как осколки фарфора поражают близлежащие здания и могут травмировать персонал.

Полимерные

Рис 5. Полимерные ОПН

Представляют собой устройства с рубашкой из каучука, винила, фторопласта или других подобных материалов.

Полимерные ограничители куда боле устойчивы к воздействию влаги, отличаются меньшим весом и большей взрывобезопасностью, так как в случае разрушения корпуса избыточным давлением внутри колонки, рубашка повреждается по линии разлома, но не разлетается острыми осколками. Значительным преимуществом полимерных моделей является их устойчивость к динамическим нагрузкам.

Одноколонковые

Такие ограничители перенапряжения представляют собой один конструктивный элемент с нелинейным сопротивлением. Число полупроводниковых дисков в них набирается в соответствии с категорией защищаемой электроустановки. 

Многоколонковые

Эти средства имеют несколько колонок, модулей или блоков, объединяемых в одну систему. Характеризуется большей надежностью по отношению к защищаемым объектам, так как способен реагировать и на одиночные, и на дифференциальные перенапряжения.

Литература

  1. Рикетс Л. У. и др. Электромагнитный импульс и методы защиты. М.: Атомиздат, 1979.
  2. Харрисон У. Л.и др. Ядерный взрыв в космосе, на земле и под землей. М.: Воениздат, 1974.
  3. Устойчивость радиоэлектронной аппаратуры к воздействию электромагнитного импульса при ядерном взрыве // Радиоэлектроника за рубежом. Вып. 10 (1008). М., 1981.
  4. Кравченко В. И. и др. Радиоэлектронные средства и мощные электромагнитные помехи. М.: Радио и связь, 1987.
  5. Кондратьев Б. В., Попов Б. В. Ограничители для защиты радиоэлектронной аппаратуры от перенапряжения // М.: ЦНИИ «Электроника». Сер. Зарубежная электронная техника. 1983. № 2 (260).
  6. Морозова Н. К, Рахматов А. З., Скорняков С. П. Кремниевые ограничители напряжения // Новые промышленные технологии. Изд. Минатомэнерго РФ. 1993. № 4 (258).
  7. Кларк О. М., Нейл Д. Стандартизация характеристик устойчивости электронного оборудования воздействию импульсных перенапряжений // Электроника. 1992. № 11–12.
  8. Черепанов В. П. и др. Электронные приборы для защиты РЭА от электрических перегрузок. М.: Радио и связь, 1994.
  9. Митрофанова Н. Weidmьller: система защиты от импульсных перенапряжений // Компоненты и технологии. 2004. № 1.
  10. Белкин А., Самарин А. Защита линейных цепей телекоммуникационной аппаратуры // Электронные компоненты. 2005. № 2.
  11. Полупроводниковые приборы. Руководство по применению. ОСТ 11336.907.0-79.
  12. Рынки сбыта электронной промышленности США и других ведущих стран в 1989 г. // Электроника. 1989. № 1.
  13. Transient Voltage Suppressors “Transil” // Справочник. Thomson Semiconductors. 1986, vol. 2.
  14. Transzorbs. Transient Voltage Suppressors // Справочник США. General Semiconductors Industries, Inc., 1987.
  15. Скорняков С. П., Рахматов А. З. Ограничители напряжения // Электронная техника. 1992. Сер. 2. Вып. 2.
  16. Аладинский В. К. Теоретические и экспериментальные исследования электронных процессов при пробое p-n-переходов и некоторые аспекты их практического применения. Диссертация. М., 1973.
  17. Скорняков С.П. Разработка физико-технических основ получения диффузионных кремниевых р-n-переходов с туннельным пробоем. Диссертация. М., 1982.
  18. Колпаков А. Большие технологии маленьких диодов // Электронные компоненты. 2004. № 11.
  19. Яковлев Г. А. Пайка материалов припоями на основе свинца // Обзор: ЦНИИ «Электроника». 1978. Сер. 7, вып. 9/556. Технология, организация производства, оборудование.
  20. Блихер А. Физика тиристоров. Л.: Энергоиздат, 1981.
  21. Рахматов А. З. и др. Ограничители напряжения для электронных автоматических телефонных станций // Электронная промышленность. 1991. Вып. 1.

Нормативная база применения УЗИП

Что такое УЗИП? Основной российский документ, определяющий, что такое УЗИП, это ГОСТ Р 51992-2002 «Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах».

Согласно этому ГОСТу «Устройство для защиты от импульсных перенапряжений (УЗИП): устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсов тока. Это устройство содержит, по крайней мере, один нелинейный элемент». Стандарт распространяется на устройства для защиты электрических сетей и электрооборудования при прямом или косвенном воздействии грозовых или иных переходных перенапряжений. Данные устройства предназначены для подсоединения к силовым цепям переменного тока частотой 50-60 Гц на номинальное напряжение до 1000В (действующее значение) или 1500В постоянного тока.

В зависимости от класса испытаний УЗИП делятся на 3 типа.

Испытания класса I предназначены для имитации частично направленных грозовых импульсов тока. УЗИП, подвергаемые таким испытаниям, рекомендуются для установки на линейных вводах в здания, защищённые молниезащитными системами, а также при воздушном вводе питания. Характерной особенностью данного класса является испытание импульсным током Iimp c формой волны 10/350 мкс (1). Важнейшим параметром, характеризующим УЗИП, является уровень напряжения защиты Up, который измеряется при In. Это «параметр, характеризующий УЗИП в части ограничения напряжения на его выводах, который выбран из числа предпочтительных значений». Его значение всегда выше остаточного напряжения Ures , т.е. пикового значения, появляющегося на выводах УЗИП вследствие прохождения разрядного тока заданной амплитуды. Up не должен превышать стойкость электрооборудования к импульсному напряжению, определённому в ГОСТ Р 50571.19-2000. Поэтому принято, что для УЗИП 1-го класса Up не превышает 4 кВ.

Стандартный испытательный импульс

Испытания класса II предназначены для имитации наведённого в проводниках под действием электромагнитного поля импульса. УЗИП, подвергаемые таким испытаниям (УЗИП 2-го класса), предназначены для установки после УЗИП 1-го класса в промежуточные шкафы, либо во вводной шкаф, если отсутствует вероятность попадания части прямого тока молнии в систему электроснабжения. Испытания проводятся номинальным разрядным током In и максимальным разрядным током Imax . Оба импульса имеют форму волны 8/20 мкс, но разную амплитуду. При этом Imax > In. Импульс In УЗИП должен выдержать многократно при условии его остывания до комнатной температуры в промежутке между импульсами. Обычно количество выдерживаемых импульсов от 5 до 15 (по ГОСТу количество не установлено и определяется производителем, по МЭКу – 15 импульсов). Импульс Imax УЗИП должен выдержать однократно, при этом его дальнейшая работа в соответствии с заявленными параметрами не гарантируется (но возможна). Уровень напряжения защиты Up для устройств 2-го класса не должен превышать 2,5 кВ.

Испытания класса III также имитируют наведённый импульс, но испытываются комбинированной волной напряжения 1,2/50 мкс и тока 8/20 мкс. При этом в параметрах указывается напряжение разомкнутой цепи Uoc и номинальный In и максимальный Imax токи. Уровень напряжения защиты Up для 3-го класса не должен превышать 1,5 кВ. Это тот уровень, который должна выдерживать техника, даже не проходившая испытаний на устойчивость к микросекундным импульсным перенапряжениям. Поэтому данные устройства рекомендуется использовать в непосредственной близости от защищаемого оборудования (желательно не далее 5-7 метров, а в общем, чем ближе, тем лучше).

Ещё несколько важных параметров, которые необходимо знать для подбора УЗИП.

Максимальное длительное рабочее напряжение Uc — действующее значение переменного или постоянного тока, которое длительно подаётся на выводы УЗИП. Оно равно номинальному напряжению с учетом возможного завышения напряжения при различных нештатных режимах работы сети.

Номинальный ток нагрузки IL — максимальный длительный переменный (действующее значение) или постоянный ток, который может подаваться к нагрузке, защищаемой УЗИП. Данный параметр важен для УЗИП, подключаемых в сеть последовательно с защищаемым оборудованием. Так как большинство УЗИП подключаются параллельно цепи, то данный параметр у них не указывается.

Конструкция ограничителя перенапряжения

Ограничители перенапряжения являются следующим этапом эволюции устройств, защищающих от импульсных бросков напряжения. Данный прибор не содержит воздушных промежутков. Основным элементом устройства является варистор. Если быть более точным, набор варисторов. Для получения необходимых рабочих характеристик варисторы соединяются между собой в последовательные или параллельно – последовательные блоки.

Основу варистора составляет оксид цинка. В процессе изготовления варистора добавляются также оксиды других металлов. СтабЭксперт.ру напоминает, что в результате, готовое изделие представляет собой набор p–n переходов, соединённых параллельно и последовательно. Наличие данных полупроводниковых переходов определяет нелинейные свойства варистора.

Ограничители перенапряжения имеют некоторые конструктивные и функциональные различия. Классификация ОПН осуществляется по следующим признакам:

  • материалу изоляции;
  • конструкции устройств;
  • рабочему напряжению;
  • месту монтажа.

В некоторых случаях оборудование может оказаться под влиянием завышенного, по сравнению с номинальным, напряжения (при грозе или коммутациях электрических цепей). В этом случае возрастает вероятность пробоя изоляции установки. Нелинейные ограничители перенапряжений предназначены для использования в качестве основных средств защиты электрооборудования станций и сетей среднего и высокого классов напряжения переменного тока промышленной частоты от коммутационных и грозовых перенапряжений.

Ограничители перенапряжения (ОПН) – это высоковольтные аппараты, широко применяемые в промышленности. Область их применения распространяется на сети среднего и высокого классов напряжения переменного тока промышленной частоты. ОПН используются для защиты от повышенного сетевого и атмосферного напряжения

ОПН широко используются для защиты:

  • двигателей
  • трансформаторов
  • подстанций подвижного состава
  • компенсаторов напряжения
  • различных электроустановок и электрических машин

Варисторы в основном состоят из окиси цинка в оболочке из глифталевой эмали для улучшения проводимости. В процессе изготовления в оксид цинка добавляют примеси других металлов образуя p-n переходы, которые обеспечивают нелинейность вольт-ампеной характеристики варистора.

В данных аппаратах колонки варисторов расположены в полимерном корпусе из высокомолекулярного каучука. К недостаткам ОПНп относят небольшую механическую прочность и влияние перепадов температур на сопротивление изоляции.

Преимущества полимерных ограничителей перенапряжения:

  1. Высокая взрывобезопасность
  2. Высокая герметичность
  3. Небольшой вес
  4. Простота монтажа
  5. Возможность работы в загрязненных условиях
  6. Хорошие разрядные характеристики

Фарфоровые ОПН состоят из колонки варисторов, прижатой к боковой поверхности стеклопластиковой трубы, внутри фарфоровой покрышки. Фарфоровые ОПН отлично переносят перепады температур и обладают прекрасными механическими харктеристиками. В последнее время фарфоровые ОПН стали заменять на полимерные из-за ряда недостатков.

Недостатки фарфоровых ограничителей перенапряжения:

  1. Высокая масса и габариты
  2. Взрывоопасность
  3. Низкая герметичность из-за низких эксплуатационных характеристик резиновых уплотнителей
  4. Худшие в сравнении с ОПНп тепловые характеристики

Классы или типы УЗИП — чем отличаются?

Все УЗИП подразделяются на три класса или три типа. Эти классы подсказывают в каких местах нужно ставить, то или иное устройство.

1 класс

Защищает от перенапряжения, спровоцированного прямым попаданием молнии в здание или молниеотвод.

Этот тип рассчитан на пиковое значение тока с фронтом 10/350мс.

Что это означает? Это значит, что рост тока до максимального значения происходит в течение 10мс. Далее его значение падает на 50% через 350мс.

Такое наблюдается именно при прямом ударе молнии. Это очень малое время воздействия, на которое остальные защитные аппараты зачастую не успевают среагировать. А при достаточном импульсном токе, просто выходят из строя, никак не защищая подключенное оборудование.

А вот УЗИП при максимальных величинах данного параметра гарантированно защитит цепь хотя бы один раз.

УЗИП 1 класса устанавливаются непосредственно на вводных щитовых промышленных и административных зданий.

Тип 1 используется при наличии системы молниезащиты – молниеотвод, металлическая сетка на здании.

Кстати, устройства класса 1 соответствующей конструкции, при воздушном вводе проводом СИП и наличии хорошего контура заземления, можно легко установить непосредственно на опоре через специальные прокалывающие зажимы и арматуру.

2 класс

Обеспечивает защиту от импульсных скачков напряжения, которые появляются при включении-отключении очень мощного оборудования, либо при непрямом попадании молнии.

Они рассчитаны на пиковое значение тока с фронтом 8/20мс. То есть, максимум тока достигается за 8мс, а спадает он наполовину за 20мс.

Автоматы, УЗО, реле опять же пропускают такой импульс, не успевая среагировать вовремя.

УЗИП 2 класса должны монтироваться в вводных распредустройствах многоквартирных жилых зданий или в уличных ВРУ частных коттеджей и домов.

При воздушном вводе в здание это условие прямо регламентируется правилами ПУЭ.

Получается, что УЗИП Т-2 должны использоваться практически всегда.

3 класс

Защищает от остаточных импульсных перенапряжений, образующихся при коротких замыканиях, либо после гашения основного импульса, первыми двумя классами УЗИП.

Третий класс часто встраивают в сетевые фильтры и удлинители.

Эта защита нужна очень чувствительному электронному оборудованию. Например, дорогостоящим медицинским приборам, компьютерам и т.п.

Третий класс применяют только как дополнительную защиту к Т-2, и он имеет более низкую разрядную способность.

Тип Т-3 обязательно устанавливается, если приборы расположены далее 30 метров от вводного УЗИП Т-2.

Обратите внимание, что для обеспечения селективности защиты, нельзя устанавливать УЗИП разных классов параллельно один за другим в одном месте. Иначе максимальный ток молнии изначально пойдет совсем не через то устройство и элементарно сожгет его

Чтобы этого не произошло, между УЗИП разного класса должен быть развязывающий элемент – индуктивность. Роль этой индуктивности выполняет обычный кабель или провод.

Рекомендуемое расстояние между разными УЗИП – не менее 10 метров.

Виды

В зависимости от устройства и принципа действия УЗИП делятся на несколько видов.

Коммутирующие защитные аппараты

Также называются искровыми разрядниками. Принцип работы разрядника основан применении явления искрового промежутка. Конструкция имеет воздушный зазор в перемычке, которая соединяет каждую из линий электропередачи с контуром заземления. Цепь в перемычке разомкнута при номинальном напряжении. Если происходит разряд молнии из-за перенапряжения в линии электропередачи, произойдет пробой воздушного зазора, цепь между фазой и землей будет замкнута, а импульс высокого напряжения будет напрямую заземлен. Конструкция разрядника клапана в цепи с искровым разрядником обеспечивает резистор, на котором подавляются импульсы высокого напряжения. В большинстве случаев разрядники используются в высоковольтных сетях.


УЗИП-разрядник

Ограничители сетевого перенапряжения (ОПН)

Эти устройства заменили устаревшие, громоздкие разрядники. Чтобы понять принцип работы ограничителя, необходимо рассмотреть характеристики нелинейного резистора, так как принцип работы разрядника основан на его вольтамперной функции. Варисторы используются в качестве нелинейных резисторов в данных устройствах. Основным материалом для изготовления варистора является оксид цинка. В смеси с другими оксидами металлов образуется компонент, образующий p-n-переход с вольтамперными характеристиками. Когда напряжение в сети соответствует номинальному параметру, ток в цепи варистора близок к нулю. Когда в p-n-переходе возникает перенапряжение, ток резко увеличивается, что приводит к падению напряжения до номинального значения. После стандартизации параметров сети варистор возвращается в непроводящий режим, не влияя на работу устройства.

Вам это будет интересно Простейший асинхронный генератор тока


Ограничители

Комбинированные УЗИП

Комбинированные приборы работают по принципу разрядника, но также имеют в конструкции резистор. С помощью данной конструкции напряжение не только заземляется, но и параллельно стабилизируется в основной цепи.

Классы

Такие устройства которые можно разделить на несколько категорий:

  • Класс I. Предназначен для предотвращения прямого воздействия молнии. Эти устройства должны быть оснащены входным распределительным оборудованием (АСУ) для административных и промышленных зданий и жилых многоквартирных домов.
  • Класс II. Они обеспечивают защиту распределительной сети от перенапряжений, вызванных процессом переключения, и выполняют функцию вторичной защиты, чтобы предотвратить воздействие ударов молнии. Они установлены и подключены к сети в щитке.
  • Класс III. Они используются для защиты оборудования от импульсов напряжения, вызванных остаточными скачками и асимметричным распределением напряжения между фазовой и нейтральной линиями. Такие устройства также могут работать в режиме фильтра высокочастотных помех. Наиболее удобным для частных домов или квартир является то, что они подключены и установлены непосредственно потребителями. Особенно популярным является изготовление устройства в виде модуля, который можно быстро монтировать на DIN-рейку, или конфигурации с сетевой розеткой или штепсельной вилкой.

Ограничитель импульсных перенапряжений

  1. Преимущества в использовании ОПН
  2. Технические характеристики ОПН
  3. Устройство ограничителей импульсных перенапряжений
  4. Защита от импульсных перенапряжений

Среди множества защитных устройств широко известен такой высоковольтный аппарат, как ограничитель импульсных перенапряжений. Импульсные перенапрежения возникают в результате нарушений в атмосферных или коммутационных процессах и способны нанести серьезный вред электрооборудованию.

Основным средством защиты дома при попадании молнии служит громоотвод или молниеотвод. Но он не способен справиться с разрядом, проникшим в сеть через воздушные линии. Поэтому проводник, принявший на себя этот импульс, становится основной причиной выхода из строя электрооборудования и домашней аппаратуры, подключенной к данной сети. Чтобы избежать подобных неприятностей рекомендуется их полное отключение на период грозы. Гарантированная защита обеспечивается путем установки ограничителей перенапряжения (ОПН).

Преимущества в использовании ОПН

В обычных средствах защиты установлены карборундовые резисторы, а также соединенные последовательно искровые промежутки. В отличие от них в ОПН устанавливаются нелинейные резисторы, основой которых является окись цинка. Они объединяются в общую колонку, помещенную в фарфоровый или полимерный корпус. Таким образом, обеспечивается их эффективная защита от внешних воздействий и безопасная эксплуатация устройства.

Особенности конструкции оксидно-цинковых резисторов позволяют выполнять ограничителям перенапряжения более широкие функции. Они свободно выдерживают, независимо от времени, постоянное напряжение электрической сети. Размеры и вес ОПН значительно ниже, чем у стандартных вентильных разрядников.

Технические характеристики ОПН

Основной величиной, характеризующей работу ограничителя перенапряжения ОПН, является максимальное действие рабочего напряжения, которое может подводиться к клеммам прибора без каких-либо временных ограничений.

Ток, проходящий через защитное устройство под действием напряжения, называется током проводимости. Его значение измеряется в условиях реальной эксплуатации, а основными показателями служит активность и емкость. Общая величина такого тока может составлять до нескольких сотен микроампер. По этому параметру оцениваются рабочие качества ОПН.

Все импульсные ограничители способны устойчиво переносить медленно изменяющееся напряжение. То есть, они не должны разрушаться в течение определенного времени при повышенном уровне напряжения. Значения, полученные при испытаниях, позволяют настроить защитное отключение прибора по истечению установленного срока.

Величина предельного разрядного тока является максимальным значением грозового разряда. С ее помощью устанавливается предел прочности импульсного ограничителя при прямом попадании молнии.

Нормативный ресурс ОПН определяется и токовой пропускной способностью. Он рассчитывается для работы в наиболее тяжелых условиях, когда присутствуют максимальные грозовые или коммутационные перенапряжения.

Устройство ограничителей импульсных перенапряжений

Производители электротехники пользуются технологией и конструкторскими решениями, которые применяются в других электроустановочных изделиях. Прежде всего, это материал корпуса и габаритные размеры, внешний вид и прочие параметры. Отдельно решаются технические вопросы, связанные с установкой ОПН и его подключением к общим электроустановкам потребителей.

Существуют отдельные требования, предъявляемые именно этому классу устройств. Корпус ограничителя перенапряжений должен обеспечивать защиту от прямых прикосновений. Полностью исключается риск возгорания защитного устройства из-за перегрузок. При его выходе из строя на линии не должно быть коротких замыканий.

Современный ограничитель импульсных перенапряжений оборудуется простой и надежной индикацией. К нему может подключаться сигнализация дистанционного действия.

Как подключить УЗИП в частном доме?

Установка УЗИП производится в зависимости от показателя напряжения: 220В (одна фаза) и 380В (три фазы).

Схема подключения может быть направлена на бесперебойность или на безопасность, нужно определить приоритеты. В первом случае может временно отключиться молниезащиты для того, чтобы не допустить перебоя в снабжении потребителей. Во втором же случае недопустимо отключение молниезащиты, даже на несколько секунд, но возможно полное отключение снабжения.

Схема подключения в однофазной сети системы заземления TN-S

При использовании однофазной сети TN-S к УЗИП нужно подключить фазный, нулевой рабочий и нулевой защитный проводник. Фаза и ноль сначала подключаются к соответствующим клеммам, а затем шлейфом к линии оборудования. К защитному проводнику подключается заземляющий проводник. УЗИП устанавливается сразу после вводного автомата. Для облегчения процесса подключения все контакты на устройстве обозначены, поэтому сложностей не должно возникнуть.

Пояснение к схеме: А, В, С – фазы электрической сети, N – рабочий нулевой проводник, PE – защитный нулевой проводник.

Схема подключения в трехфазной сети системы заземления TN-S

Отличительной особенностью трехфазной сети TN-S от однофазной является то, что от источника питания исходит пять проводников, три фазы, рабочий нулевой и защитный нулевой проводники. К клеммам подключается три фазы и нулевой провод. Пятый защитный проводник подключается к корпусу электроприбора и земле, то есть служит некой перемычкой.

Схема подключения в трехфазной сети системы заземления TN-C

В системе подключения заземления TN-C рабочий и защитный проводник объединены в один провод (PEN), это и является главным отличием от заземления TN-S.

Система TN-C является более простой и уже довольно устаревшей, и распространена в устаревшем жилом фонде. По современным нормам применяется система заземления TN-C-S, в которой находятся по отдельности нулевой рабочий и нулевой защитный проводники.

Переход на более новую систему необходим для того, чтобы избежать поражения электрическим током обслуживающего персонала, и ситуаций с возникновений пожара. Ну и конечно же в системе TN-C-S лучше защита от резких импульсных перенапряжений.

Во всех трех вариантах подключения при перенапряжении ток направляется на землю через кабель заземления или же через общий защитный провод, что не дает импульсу навредить всей линии и оборудованию.

Технические характеристики

При выборе конкретной модели ограничителя перенапряжения обязательно учитываются такие  параметры устройства:

  • Время срабатывания – характеризует скорость открытия полупроводникового элемента ограничителя после нарастания напряжения.
  • Рабочее напряжение – определяет величину электрической энергии, которую ОПН может выдерживать без нарушения работоспособности в течении любого промежутка времени.
  • Номинальное повышенное напряжение – значение рабочей величины, которое ОПН способен выдерживать в течении 10 секунд, также нормируется совместно с остаточным напряжением, которое остается в сети.
  • Ток утечки – возникает как результат приложения напряжения к ограничителю перенапряжения и определяется его омическим сопротивлением или параметрами резисторов. В исправном состоянии этот параметр составляет сотые или тысячные доли ампер, перетекающие по рубашке и полупроводнику от источника к проводу заземления.
  • Разрядный ток – величина, образующаяся при импульсных скачках, в зависимости от источника перенапряжения разделяется на атмосферные, электромагнитные и коммутационные импульсы.
  • Устойчивость к току волны перенапряжения – определяет способность сохранять целостность всех элементов конструкции в аварийном режиме.

Часто задаваемые вопросы

  1. Есть ли смысл устанавливать плавкий предохранитель на линию нейтрали?

Да, при обрыве линий ЛЭП фаза часто попадает на нейтраль или заземление, в этом случае на розетку могут прийти две разные фазы это 380В. В нейтральную жилу или в заземление может попасть молния это сотни тысяч вольт.

  1. Если через УЗИП при скачке напряжения проходит сотни тысяч вольт, какого сечения провода надо ставить?

Провода устанавливаются с расчетным сечением для всего дома на вводной автомат, если УЗИП ставится на отдельную группу освещения или розеток, то сечение такое же, как и в проводах этой группы. На вводе обычно 10 -16 мм2,

Группы освещения 07-1,5 мм2, розетки 2.5 – 4 мм2.