Технологии полупроводников. часть 1

Собственная и примесная проводимость полупроводников

Примечание 1

Если температура увеличивается, электроны начинают производить обмен энергии с ионами кристаллической решетки. Это может стать причиной обретения добавочной кинетической энергии ≈kT. Ее количества достаточно для перевода некоторой части электронов в зону проводимости. Там они способны проводить ток.

Определение 2

В валентной зоне освобождаются квантовые состояния, которые электронами не заняты. Эти состояния называют дырками. Они являются носителями тока.

Электроны способны совершать квантовые переходы в незаполненные состояния. Заполненные состояния в этом случае освобождаются, то есть становятся дырками. В результате чего можно наблюдать появление равновесной концентрации дырок.

При отсутствии внешнего поля ее значение одинаковое по всему объему проводника. Квантовый переход сопровождается его перемещением против поля. Он способен уменьшить значение потенциальной энергии системы. Переход, который связан с перемещением в направлении поля, способен увеличить потенциальную энергию системы. При наличии преобладания количества переходов против поля над переходами по полю через полупроводник начнет протекать ток по движению приложенного электрического поля. Незамкнутый полупроводник характеризуется течением тока до тех пор, пока электрическое поле не будет компенсировать внешнее. Конечный результат такой же, как если бы в качестве носителей тока были не электроны, а положительно заряженные дырки. Отсюда следует, что различают два вида проводимости полупроводников: электронная и дырочная.

Носителя тока в металлах и полупроводниках считаются электроны, а дырки введены формально. Дырки в качестве положительно заряженных частиц не существует. Но перемещение в электрическом поле такое же, как и при классическом рассмотрении положительно заряженных частиц. Небольшая концентрация электронов в зоне проводимости и дырки в валентной зоне позволяют применять классическую статистику Больцмана.

Примечание 2

Дырочная и электронная проводимости не связаны с наличием примесей. Ее называют собственной электропроводностью полупроводников.

Если имеется идеально чистый проводник без примесей, то каждому освобожденному электрону при помощи теплового движения или света соответствовало бы образование одной дырки, иначе говоря, количество электронов и дырок, участвующих в создании тока, было бы одинаковое.

Существование идеально чистых полупроводников невозможно, поэтому при необходимости их создают искусственным путем. Даже наличие малого количества примесей способно повлиять на изменение свойств полупроводника.

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!

Описать задание

Видео по теме «Легирование полупроводников»

Полупроводники с электронной проводимостью имеют так на­зываемые свободные электроны, которые слабо связаны с ядрами атомов. Если к этому полупроводнику приложить разность потенциалов, то свободные электроны будут двигаться поступательно — в определенном направлении, создавая таким образом электри­ческий ток. Поскольку в этих типах полупроводников электрический ток представляет собой перемещение отрицательно заря­женных частиц, они получили название проводников типа п (от слова negative — отрицательный).

Полупроводники и проводники.

Полупроводники с дырочной проводимостью называются полу­проводниками типа р (от слова positive — положительный). Прохождение электрического тока в этих типах полупроводников можно рассматривать как перемещение положительных зарядов. В полупроводниках с р-проводимостью нет свободных электронов- если атом полупроводника под влиянием каких-либо причин по­теряет 1 электрон, то он будет заряжен положительно.

Отсутствие одного электрона в атоме, вызывающее положи­тельный заряд атома полупроводника, назвали дыркой (это зна­чит, что образовалось свободное место в атоме). Теория и опыт показывают, что дырки ведут себя как элементарные положитель­ные заряды.

В действительности, при дырочной проводимости происходит следующее. Предположим, что имеются 2 атома, один из которых снабжен дыркой (отсут­ствует 1 электрон на внешней орбите), а другой, находящий­ся справа, имеет все электроны на своих местах (назовем его ней­тральным атомом). Если к полупроводнику приложена разность потенциалов, то под влиянием электрического поля электрон из нейтрального атома, у которого все электроны на своих местах, переместится влево на атом, снабженный дыркой.

Характеристики вещества

Полупроводники можно разделить на следующие подгруппы:

  • Электронные (вида n),
  • Дырочные (вида p).

Важно! В веществах вида n в роли носителей можно рассматривать электроны, которые, при возникновении тока, передвигаются по всему полупроводнику в хаотичном порядке. Как выглядят полупроводниковые приборы

Как выглядят полупроводниковые приборы

В дырочном виде p в роли носителей зарядов рассматриваются так называемые отверстия (под ними понимается свободное пространство между атомами, на место которого может стать другой электрон). Дырки считаются равносильными положительному заряду. При возникновении тока внутри проводника вида p, электроны выполняют только направленные скачки между ближайшими атомами.

Важно! При перескоке заряда из одного отверстия в другое, дырка передвигается в противоположном направлении, что влечёт за собой образование тока. Вам это будет интересно Понятие электрического тока

Вам это будет интересно Понятие электрического тока

Что такое удельная электропроводимость

Удельная проводимость (или удельная электролитическая проводимость) определяется, как способность вещества проводить электрический ток

Это величина, обратная удельному сопротивлению.
При химическом очищении воды очень важно измерить удельную проводимость воды, зависящую от растворенных в воде ионных соединений.
Удельная проводимость легко может быть измерена электронными приборами. Широкий спектр соответствующего оборудования позволяет сейчас измерять проводимость практически любой воды, от сверхчистой (очень низкая проводимость) до насыщенной химическими соединениями (высокая проводимость).

Виды полупроводников

По характеру проводимости

Собственная проводимость

Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».

Проводимость связана с подвижностью частиц следующим соотношением:

σ=1ρ=q(Nnμn+Npμp){\displaystyle \sigma ={\frac {1}{\rho }}=q(N_{\rm {n}}\mu _{\rm {n}}+N_{\rm {p}}\mu _{\rm {p}})}

где ρ{\displaystyle \rho } — удельное сопротивление, μn{\displaystyle \mu _{\rm {n}}} — подвижность электронов, μp{\displaystyle \mu _{\rm {p}}} — подвижность дырок, Nn,p{\displaystyle N_{n,p}} — их концентрация, q — элементарный электрический заряд (1,602⋅10−19 Кл).

Для собственного полупроводника концентрации носителей совпадают и формула принимает вид:

σ=1ρ=qN(μn+μp){\displaystyle \sigma ={\frac {1}{\rho }}=qN(\mu _{\rm {n}}+\mu _{\rm {p}})}

Примесная проводимость

Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.

По виду проводимости

Электронные полупроводники (n-типа)

Полупроводник n-типа

Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.

Проводимость N-полупроводников приблизительно равна:

σ≈qNnμn{\displaystyle \sigma \approx qN_{\rm {n}}\mu _{\rm {n}}}

Дырочные полупроводники (р-типа)

Полупроводник p-типа

Термин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными.

Проводимость p-полупроводников приблизительно равна:

σ≈qNpμp{\displaystyle \sigma \approx qN_{\rm {p}}\mu _{\rm {p}}}

тип

Существуют различные типы полупроводниковых материалов в зависимости от присутствующих в них примесей и их физической реакции на различные воздействия окружающей среды..

Собственные полупроводники

Те элементы, молекулярная структура которых состоит из одного типа атома. К таким типам полупроводников относятся кремний и германий..

Молекулярная структура собственных полупроводников является тетраэдрической; то есть он имеет ковалентные связи между четырьмя окружающими атомами, как показано на рисунке ниже.

Каждый атом собственного полупроводника имеет 4 валентных электрона; то есть 4 электрона, вращающиеся во внешнем слое каждого атома. В свою очередь каждый из этих электронов образует связи со смежными электронами.

Таким образом, каждый атом имеет 8 электронов в своем наиболее поверхностном слое, который образует прочный союз между электронами и атомами, составляющими кристаллическую решетку..

Из-за этой конфигурации электроны не могут легко перемещаться внутри структуры. Таким образом, в стандартных условиях собственные полупроводники ведут себя как изолятор.

Однако проводимость собственного полупроводника возрастает всякий раз, когда температура увеличивается, поскольку некоторые валентные электроны поглощают тепловую энергию и отделяются от связей.

Эти электроны становятся свободными электронами и, если на них правильно воздействует разница в электрическом потенциале, они могут способствовать циркуляции тока в кристаллической решетке..

В этом случае свободные электроны переходят в зону проводимости и переходят к положительному полюсу источника потенциала (например, батареи)..

Движение валентных электронов вызывает вакуум в молекулярной структуре, что приводит к эффекту, подобному тому, который мог бы вызвать положительный заряд в системе, поэтому они рассматриваются как носители положительного заряда..

Затем имеет место обратный эффект, поскольку некоторые электроны могут выпадать из зоны проводимости до тех пор, пока валентный слой не высвободит энергию в процессе, который получает название рекомбинации..

Внешние полупроводники

Они соответствуют включением примесей в собственные проводники; то есть путем включения трехвалентных или пятивалентных элементов.

Этот процесс известен как легирование и направлен на повышение проводимости материалов, улучшение физических и электрических свойств этих.

Подставляя собственный атом полупроводника на атом другого компонента, можно получить два типа внешних полупроводников, которые подробно описаны ниже..

Полупроводник типа Р

В этом случае примесь является трехвалентным полупроводниковым элементом; то есть с тремя (3) электронами в своей валентной оболочке.

Нарушающие элементы в структуре называются легирующими элементами. Примерами этих элементов для полупроводников P-типа являются бор (B), галлий (Ga) или индий (In).

Не имея валентного электрона для образования четырех ковалентных связей собственного полупроводника, полупроводник P-типа имеет зазор в недостающем звене.

Это делает прохождение электронов, которые не принадлежат к кристаллической сети через эту дырку с носителем положительного заряда.

Из-за положительного заряда зазора звена этот тип проводников называется буквой «Р» и, следовательно, они распознаются как акцепторы электронов..

Поток электронов через зазоры связи создает электрический ток, который течет в направлении, противоположном току, получаемому от свободных электронов..

Полупроводник типа N

Навязчивый элемент в конфигурации дается пятивалентными элементами; то есть те, которые имеют пять (5) электронов в валентной зоне.

В этом случае примесями, которые включены в собственный полупроводник, являются такие элементы, как фосфор (P), сурьма (Sb) или мышьяк (As).

Присадки имеют дополнительный валентный электрон, который, не имея ковалентной связи для присоединения, автоматически может свободно перемещаться по кристаллической сети..

Здесь электрический ток циркулирует через материал благодаря избытку свободных электронов, обеспечиваемых легирующей добавкой. Поэтому полупроводники N-типа считаются донорами электронов..

Примеры полупроводников

Оксиды являются прекрасными изоляторами. Примеры полупроводников этого типа – оксид меди, оксид никеля, двуокись меди, оксид кобальта, оксид европия, оксид железа, оксид цинка.

Процедура выращивания полупроводников данного типа не совсем изучена, поэтому их применение пока ограничено за исключением оксида цинка (ZnO), используемого в качестве преобразователя и в производстве клеящих лент и пластырей.

Помимо этого оксид цинка применяется в варисторах, датчиках газа, голубых светодиодах, биологических сенсорах. Используется полупроводник и для покрытия оконных стекол с целью отражения инфракрасного света, его можно встретить в ЖК-дисплеях и солнечных батареях.

Слоистые кристаллы представляют собой двойные соединения, подобные дииодиду свинца, дисульфиду молибдена и селениду галлия. Они отличаются слоистым строением кристалла, где действуют ковалентные связи значительной силы. Полупроводники такого типа интересны тем, что электроны ведут себя в слоях квази-двумерно. Взаимодействие слоев изменяется введением в состав сторонних атомов. Дисульфид молибдена (MoS2) применяется в высокочастотных выпрямителях, детекторах, транзисторах, мемристорах.

Органические полупроводники представляют собой широкий класс веществ: нафталин, антрацен, полидиацетилен, фталоцианиды, поливинилкарбазол. У них есть преимущество перед неорганическими: им легко придать нужные качества. Они обладают значительной оптической нелинейностью и поэтому широко используются оптоэлектронике.

Кристаллические аллотропы углерода тоже относятся к полупроводникам:

  • Фуллерен со структурой в виде выпуклого замкнутого многогранника.
  • Графен с одноатомным слоем углерода обладает рекордной теплопроводностью и подвижностью электронов, повышенной жесткостью.
  • Нанотрубки – свернутые в трубку пластины графита в нанометров в диаметре. В зависимости от сцепления могут проявлять металлические или полупроводниковые качества.

Примеры магнитных полупроводников: сульфид европия, селенид европия и твердые растворы. Содержание магнитных ионов влияет на магнитные свойства, антиферромагнетизм и ферромагнетизм. Сильные магнитооптические эффекты магнитных полупроводников позволяют использовать их для оптической модуляции. Применяются они в радиотехнических, оптических приборах, в волноводах СВЧ-устройств.

Полупроводниковые сегнетоэлектрики отличаются наличием в них электрических моментов и возникновением спонтанной поляризации. Пример полупроводников: титанат свинца (PbTiO3), теллурид германия (GeTe), титанат бария BaTiO3, теллурид олова SnTe. При низких температурах имеют свойства сегнетоэлектрика. Эти материалы применяются в запоминающих, нелинейно-оптических устройствах и пьезодатчиках.

Слоистые кристаллы

Двойные соединения, подобные дииодиду свинца, селениду галлия и дисульфиду молибдена, отличаются слоистым строением кристалла. В слоях действуют ковалентные связи значительной силы, намного сильнее ван-дер-ваальсовских связей между самими слоями. Полупроводники такого типа интересны тем, что электроны ведут себя в слоях квази-двумерно. Взаимодействие слоёв изменяется введением сторонних атомов – интеркаляцией.

  Типы полупроводников, слоистые кристаллы

MoS2, дисульфид молибдена применяется в высокочастотных детекторах, выпрямителях, мемристорах, транзисторах. dE=1,23 и 1,8 эВ.

Полупроводниковые приборы

Сразу можно привести примеры полупроводниковых приборов – это транзисторы, тиристоры, диоды, и даже микросхемы. Конечно, это далеко не полный список. Чтобы изготовить полупроводниковый прибор, нужно использовать материалы, у которых проводимость дырочная или электронная. Чтобы получить такой материал, необходимо в идеально чистый полупроводник с концентрацией примесей менее 10-11% ввести добавку (ее называют легирующей примесью).

Те примеси, у которых валентность оказывается больше, чем у полупроводника, отдают свободные электроны. Эти примеси называются донорами. А вот те, у которых валентность меньше, чем у полупроводника, имеют свойство хватать и удерживать электроны. Их называют акцепторами. Для того чтобы получился полупроводник, который будет обладать лишь проводимостью электронного типа, в исходный материал достаточно ввести вещество, у которого валентность будет всего на единицу больше. Для примера полупроводников в физике школьного курса рассматривается германий – его валентность равна 4. В него добавляется донор – фосфор или сурьма, у них валентность равна пяти. Металлов-полупроводников немного, они практически не используются в технике.

При этом 4 электрона в каждом атоме осуществляют установку четырех парных (ковалентных) связей с германием. Пятый электрон не имеет такой связи, а значит, он в свободном состоянии. И если приложить к нему напряжение, он будет образовывать электронный ток.

Характеристика полупроводников

Из 104 элементов таблицы Менделеева 79 являются металлами, 25 – неметаллами, из которых 13 химических элементов обладают полупроводниковыми свойствами и 12 – диэлектрическими. Основное отличие полупроводников состоит в том, что их электропроводность значительно возрастает при повышении температуры. При низких температурах они ведут себя подобно диэлектрикам, а при высоких — как проводники. Этим полупроводники отличаются от металлов: сопротивление металла растёт пропорционально увеличению температуры.

Другим отличием полупроводника от металла является то, что сопротивление полупроводника падает под действием света, в то время как на металл последний не влияет. Также меняется проводимость полупроводников при введении незначительного количества примеси.

Полупроводники встречаются среди химических соединений с разнообразными кристаллическими структурами. Это могут быть такие элементы, как кремний и селен, или двойные соединения, как арсенид галлия. Многие органические соединения, например полиацетилен (СН)n, – полупроводниковые материалы. Некоторые полупроводники проявляют магнитные (Cd1-xMnxTe) или сегнетоэлектрические свойства (SbSI). Другие при достаточном легировании становятся сверхпроводниками (GeTe и SrTiO3). Многие из недавно открытых высокотемпературных сверхпроводников имеют неметаллические полупроводящие фазы. Например, La2CuO4 является полупроводником, но при образовании сплава с Sr становится сверхроводником (La1-xSrx)2CuO4.

Учебники физики дают полупроводнику определение как материалу с электрическим сопротивлением от 10-4 до 107 Ом·м. Возможно и альтернативное определение. Ширина запрещённой зоны полупроводника — от 0 до 3 эВ. Металлы и полуметаллы – это материалы с нулевым энергетическим разрывом, а вещества, у которых она превышает З эВ, называют изоляторами. Есть и исключения. Например, полупроводниковый алмаз имеет запрещённую зону шириной 6 эВ, полуизолирующий GaAs – 1,5 эВ. GaN, материал для оптоэлектронных приборов в синей области, имеет запрещённую зону шириной 3,5 эВ.

Донорные и акцепторные примеси

Пусть дополнительные уровни в запрещенной зоне появляются около нижнего края зоны проводимости. Если интервал, отделяющий дополнительные уровни энергии от зоны проводимости, мал при сравнении с шириной запрещенной зоны, то произойдет увеличение числа электронов в зоне проводимости, значит, сама проводимость полупроводника возрастет.

Определение 4

Примеси, которые перемещают электроны в зону проводимости, называют донорами или донорными примесями. Дополнительные энергоуровни получили название донорных уровней.

Определение 5

Полупроводники с донорными примесями – это электронные или полупроводники n-типа.

Определение 6

Пусть с введением примеси возникают добавочные уровни около верхнего края валентной зоны. В этом случае электроны из этой зоны переходят на добавочные уровни. Валентная зона характеризуется появлением дырок, так как появляется дырочная электропроводность проводника. Примеси такого рода получили название акцепторных. Дополнительные уровни, располагаемые в них, называют акцепторными.

Определение 7

Полупроводники с акцепторными примесями получили название дырочных или полупроводников p-типа. Имеют место на существование смешанные полупроводники.

Вид проводимости, которым обладает полупроводник, определяют по знаку эффекта Холла.

Определение 8

Легирование – это процесс введение примесей. Если примесный уровень обладает высокой концентрацией, то происходит их расщепление. Перекрытие границ соответствующих энергетических зон считается результатом процесса.

Пример 1

Объяснить, к какому типу примеси относят атомы мышьяка, бора, находящихся в кристаллической решетке кремния.

Решение

Кремний является четырехвалентным атомом, значит, атом содержит 4 электрона. Мышьяк пятивалентен, то есть содержит 5, причем пятый из которых отщепляется по причине наличия теплового движения. Положительный ион мышьяка вытесняет из решетки один из атомов кремния и встает на его место. Происходит возникновение электрона проводимости между узлами решетки. Отсюда следует, что мышьяк считается донорной примесью для кремния.

При рассмотрении бора в качестве примеси для кремния видно, что атом бора имеет наружную оболочку, состоящую из трех электронов. Атом бора захватывает четвертый электрон из соседнего места, находящегося в кристалле кремния. Именно там происходит появление дырки. Отрицательный ион бора, появившийся в ней, вытесняет атом кремния из кристаллической решетки и занимает его место. Говорят о возникновении в нем дырочной проводимости. Бор считается акцепторной примесью.

Ответ: мышьяк – донорная примесь, бор – акцепторная.

Пример 2

Даны термоэлементы с протеканием тока от металла к полупроводнику и наоборот. Объяснить, почему это происходит.

Решение

По условию, электронная и дырочная проводимость проходит в горячем спае. Это объясняется тем, что на конце электронного полупроводника с высокой температурой скорость электронов намного больше, чем в холодном. Отсюда следует, что электроны имеют возможность проходить от горячего конца к холодному до возникновения по причине перераспределения зарядов электрического поля и не останавливать поток диффундирующих электронов.

Только после установления равновесного состояния горячему концу, который потерял все электроны, соответствуют положительные заряды, а холодному – отрицательные. Можно сделать вывод, что имеется разность потенциалов между горячим и холодным концами с положительным знаком.

Дырочный полупроводник характеризуется обратным процессом. Диффузия идет от горячего конца к холодному, причем первый из них обладает отрицательным зарядом, а холодный – положительным. Получаем, что разности потенциалов имеют отрицательное значение, в отличие от электронного полупроводника.

Всё ещё сложно?
Наши эксперты помогут разобраться

Все услуги

Решение задач

от 1 дня / от 150 р.

Курсовая работа

от 5 дней / от 1800 р.

Реферат

от 1 дня / от 700 р.

Строение атомов полупроводников.

Германий и кремний являются основными материалами многих полупроводниковых приборов и имеют во внешних слоях своих оболочек по четыре валентных электрона.

Атом германия состоит из 32 электронов, а атом кремния из 14. Но только 28 электронов атома германия и 10 электронов атома кремния, находящиеся во внутренних слоях своих оболочек, прочно удерживаются ядрами и никогда не отрываются от них. Лишь только четыре валентных электрона атомов этих проводников могут стать свободными, да и то не всегда. А если атом полупроводника потеряет хотя бы один электрон, то он становится положительным ионом.

В полупроводнике атомы расположены в строгом порядке: каждый атом окружен четырьмя такими же атомами. Причем они расположены так близко друг к другу, что их валентные электроны образуют единые орбиты, проходящие вокруг соседних атомов, тем самым связывая атомы в единое целое вещество.

Представим взаимосвязь атомов в кристалле полупроводника в виде плоской схемы.
На схеме красные шарики с плюсом, условно, обозначают ядра атомов (положительные ионы), а синие шарики – это валентные электроны.

Здесь видно, что вокруг каждого атома расположены четыре точно таких же атома, а каждый из этих четырех имеет связь еще с четырьмя другими атомами и т.д. Любой из атомов связан с каждым соседним двумя валентными электронами, причем один электрон свой, а другой заимствован у соседнего атома. Такая связь называется двухэлектронной или ковалентной.

В свою очередь, внешний слой электронной оболочки каждого атома содержит восемь электронов: четыре своих, и по одному, заимствованных от четырех соседних атомов. Здесь уже не различишь, какой из валентных электронов в атоме «свой», а какой «чужой», так как они сделались общими. При такой связи атомов во всей массе кристалла германия или кремния можно считать, что кристалл полупроводника представляет собой одну большую молекулу. На рисунке розовым и желтым кругами показана связь между внешними слоями оболочек двух соседних атомов.

↑ Образование свободных электронов и дырок в полупроводнике

При абсолютном нуле (абсолютный нуль — наиболее низкая возможная температура —273,16 °С; в настоящее время достигнуты температуры, отличающиеся от абсолютного нуля на ничтожные доли градуса) все валентные электроны находятся на орбитах и прочно связаны с атомами. Поэтому в таком полупроводнике нет свободных электронов и он представляет собой идеальный изолятор (диэлектрик). С ростом температуры валентные электроны получают дополнительную энергию и могут оторваться от атома. Оторвавшийся электрон становится «свободным». Энергетические уровни свободных электронов образуют зону проводимости, расположенную над валентной зоной и отделенную от нее запрещенной зоной шириной ΔW (рис. 3.1, в). Свободные электроны могут перемещаться по полупроводнику и участвовать таким образом в образовании электрического тока. Чем больше свободных электронов в единице объема вещества, тем меньше его сопротивление.

Между атомами в кристалле полупроводника существуют ковалентные связи. Ковалентная связь образуется за счет вращения двух электронов, принадлежащих двум рядом расположенным атомам, по одной общей орбите (рис. 3.2, а). Германий и кремний являются четырехвалентными элементами, и их атомы имеют по 4 валентных электрона. В результате образования парных ковалентных связей все атомы германия и кремния оказываются взаимосвязанными. Плоские модели кристаллических решеток чистого германия Ge и кремния Si изображены на рис. 3.2, б. На этом рисунке парные ковалентпые связи показаны двумя параллельными линиями, соединяющими два соседних атома, а электроны, образующие эти связи,— в виде черных точек.

При сообщении электрону дополнительной энергии ковалентная связь может нарушиться и он станет свободным. Место на внешней орбите атома, где ранее находился электрон, называют дыркой. На энергетической диаграмме дырке соответствует свободный энергетический уровень в валентной зоне, с которого электрон перешел в зону проводимости (рис. 3.2, г).

Образование свободных электронов в зоне проводимости и дырок в валентной зоне называют генерацией подвижных носителей заряда, или генерацией пар электрон — дырка, поскольку появление свободного электрона в зоне проводимости обязательно сопровождается появлением дырки в валентной зоне.

Свободный электрон может, теряя часть своей энергии, из зоны проводимости перейти в валентную зону, заполнив собой одну из имеющихся в ней дырок. При этом восстанавливается ковалентная связь. Этот процесс называют рекомбинацией. Таким образом, рекомбинация всегда сопровождается потерей пары электрон—дырка.

Определение названия

Полупроводниками называют материалы, внутри которых, в следствие движения электронов, появляется электрический ток, а показатель удельного сопротивления заключается в интервале между проводниками и диэлектриками.


Определение вещества

К таким проводникам можно отнести ряд химических элементов IV, V и VI категорий из таблицы Д. И. Менделеева — графит, кремний, германий, селен и прочие, а также большинство окисей и иных соединений различных металлов. Число подвижных электронов внутри вещества, в основном, небольшое, но оно увеличивается в тысячи раз при под механическим воздействием внешней среды:

  • Повышение температуры,
  • Действие ультрафиолета
  • Наличие в составе определенных добавок.