§ 2.8. электрические цепи. последовательное и параллельное соединения проводников

Оглавление

Физические формулы и примеры вычислений

Формулы для эквивалентных сопротивлений цепи, состоящей из пары резисторов R1 и R2, можно выделить в определённый ряд:

  • параллельное присоединение определяют по формуле Rэкв. = (R1*R2)/R1+R2;
  • последовательное включение вычисляют, определяя его сумму Rэкв. = R1+R2.

У смешанного соединения резистивных элементов нет конкретной формулы. Чтобы не запутаться при длительных преобразованиях, здесь допустимо воспользоваться специальной программой из интернета. Это сервис «онлайн-калькулятор». Он поможет разобраться со сложными схемами соединения, будь то треугольник, квадрат, пятиугольник или иная схематичная фигура, образованная резистивными элементами.

Понять, как работают все формулы и методы, можно на конкретной задаче. На представленном первом рисунке – смешанная электрическая схема. Она включает в себя 10 резисторов. Элементы представлены в следующих номиналах:

  • R1 = 1 Ом;
  • R2 = 2 Ом;
  • R3 = 3 Ом;
  • R4 = 6 Ом;
  • R5 = 9 Ом;
  • R6 = 18 Ом;
  • R7 = 2Ом;
  • R8 = 2Ом;
  • R9 = 8 Ом;
  • R10 = 4 Ом.

Напряжение, поданное на схему:

U = 24 В.

Требуется рассчитать токи на всех резистивных элементах.

Исходная цепь

Для расчётов применяется закон Ома:

I = U/R, подставляя вместо R эквивалентное сопротивление.

Внимание! Для решения этой задачи сначала вычисляют общее (эквивалентное) R, после чего уже рассчитывают ток в цепи и напряжение на каждом резистивном компоненте. Вычисляя Rэкв., разделяют заданную цепь на звенья, вмещающие в себя параллельные и последовательные включения

Делают расчёты для каждого такого звена, после – всей цепи целиком

Вычисляя Rэкв., разделяют заданную цепь на звенья, вмещающие в себя параллельные и последовательные включения. Делают расчёты для каждого такого звена, после – всей цепи целиком.

На рисунке выше изображено смешанное соединение сопротивлений. Его можно разбить на три участка:

  • АВ – участок, имеющий две параллельных ветви;
  • ВС – отрезок, вмещающий в себя последовательное сопряжение;
  • CD – отрезок схемы с расположением трёх параллельных цепочек.

Сопротивления R2 и R3, образующие нижнюю ветку отрезка АВ, соединены последовательно, что учитывается при расчёте.

Последовательно соединённые резисторы R2 и R3

Если посмотреть на участок СD, то можно отметить смешанное включение резистивных элементов.

Смешанное включение на участке CD

Начало расчётов состоит в определении эквивалентных сопротивлений для этих смешанных фрагментов. Выполняют это в следующем порядке:

  • Rэкв.2,3 = R2+R3=2 + 3 = 5 Ом;
  • Rэкв.7,8 = (R7*R8)/R7 + R8 = (2*2)/2 + 2 = 1 Ом;
  • Rэкв.7,8,9 = Rэкв.7,8 + R9 = 1 + 8 = 9 Ом.

Зная значения полученных эквивалентов, упрощают первоначальную схему. Она будет иметь вид, представленный на рисунке ниже.

Результат первого свёртывания

Далее можно уже определить Rэкв. для участков AB, BC, CD, по формулам:

  • Rэкв.AB = (R1*Rэкв 2,3)/R1 + Rэкв 2,3 = (1*5)/1 + 5 = 0,83 Ом;
  • Rэкв.BC = R4 + R5 = 6 + 9 = 15 Ом;
  • 1/Rэкв.CD = 1/R6 + 1/Rэкв.7,8,9 + 1/R10 = 1/18 + 1/9 + 1/4 = 0,05 + 0,11 + 0,25 = 0,41 Ом.

В результате выполненных вычислений получается эквивалентная схема, в которую входят три Rэкв. сопротивления. Она имеет вид, показанный на рисунке ниже.

Результат последующего свёртывания

Теперь можно определить эквивалентное сопротивление всей первоначальной схемы, сложив эквивалентные значения всех трёх участков:

Rэкв. = Rэкв.AB + Rэкв.BC + Rэкв.CD = 0,83 + 15 + 0,41 = 56,83 Ом.

Далее, используя закон Ома, находят ток в последнем последовательном участке:

I = U/ Rэкв. = 24/56,83 = 0,42 А.

Зная силу тока, можно найти, какое падение напряжения на рассмотренных участках AB, BC, CD. Это выполняется следующим образом:

  • UAB = I* Rэкв.AB= 0,42*0,83 = 0,35 В;
  • UBC = I* Rэкв.BC= 0,42*15 = 6,3В;
  • UCD = I* Rэкв.CD = 0,42*0,41 = 0,17 В.

Следующим шагом станет определение токов на параллельных отрезках AB и CD

  • I1 = UAB/R1 = 0,35/1 = 0,35 А;
  • I2 = UAB/Rэкв.2,3 = 0,35/5 = 0,07 А;
  • I3 = UCD/R6 = 0,17/18 = 0,009 А;
  • I6 = UCD/Rэкв.7,8,9= 0,17/9 = 0,02 А;
  • I7 = UCD/R10 = 0,17/4 = 0,04 А.

Далее, чтобы найти значения токов, проходящих через R7 и R8, нужно рассчитать напряжение на этих двух резисторах. Предварительно находят падение напряжения на R9.

U9 = R9*I6 = 8*0,02 = 0,16 В.

Теперь напряжение, падающее на Rэкв.7,8, будет разностью между U CD и U9.

U7,8 = UCD – U9= 0,17 – 0,16 = 1 В.

После этого можно уже узнать значение токов, движущихся по резисторам R7 и R8, используя формулы:

  • I4 = U7,8/R7 = 1/2 = 0,5 A;
  • I5 = U7,8/R8 = 1/2 = 0,5 A.

Рассчитывая схемы и решая задачи по нахождению значений электрических параметров, необходимо использовать эквивалентные сопротивления. С помощью такой замены сложные построения превращаются в элементарные цепи, которые сводятся к параллельным и последовательным соединениям резистивных элементов.

Последовательное соединение приемников энергии

Приемники электрической энергии можно соединить между собой тремя различными способами: последовательно, параллельно или смешано (последовательно — параллельно). Вначале рассмотрим последовательный способ соединения, при котором конец одного приемника соединяют с началом второго приемника, а конец второго приемника – с началом третьего и так далее. На рисунке ниже показано последовательное соединение приемников энергии с их подключением к источнику энергии


Пример последовательного подключения приемников энергии.

В данном случае цепь состоит из трёх последовательных приемников энергии с сопротивлением R1, R2, R3 подсоединенных к источнику энергии с напряжением U. Через цепь протекает электрический ток силой I, то есть, напряжение на каждом сопротивлении будет равняться произведению силы тока и сопротивления

Таким образом, падение напряжения на последовательно соединённых сопротивлениях пропорциональны величинам этих сопротивлений.

Из вышесказанного вытекает правило эквивалентного последовательного сопротивления, которое гласит, что последовательно соединённые сопротивления можно представить эквивалентным последовательным сопротивлением величина, которого равна сумме последовательно соединённых сопротивлений. Это зависимость представлена следующими соотношениями

где R – эквивалентное последовательное сопротивление.

Ток при последовательном соединении конденсаторов

Электрический ток бывает двух видов: постоянным и переменным. Для работы ёмкостей это имеет большое значение.

Конденсатор и постоянный ток

Маркировка танталовых smd конденсаторов

Постоянный ток через конденсатор не проходит вообще. Справедливо это и для линейки из последовательно соединённых ёмкостей. Объясняется такой эффект опять же конструкцией самого электронного прибора. Конденсатор имеет две металлические обкладки. В простых электролитических приборах они сделаны из алюминиевой фольги. Между ними расположен тонкий слой диэлектрика (оксид алюминия). Если приложить к обкладкам разность потенциалов (напряжение), то ток потечёт, но только очень короткое время, пока конденсатор полностью ни зарядится. Далее движение носителей заряда прекратится, т.к. они не смогут пройти через диэлектрик. В этот момент можно сказать, что электрический ток равен нулю, и конденсатор его не пропускает.

Конденсатор и переменный ток

При переменном токе носители заряда периодически меняют своё направление. В случае с бытовой сетью изменение происходит 50 раз в секунду. Поэтому говорят, что частота тока в розетке равна 50 Гц.

Конденсатор определённо пропустит переменный ток, но не факт, что весь. Количество носителей заряда, которые смогут пройти через этот электронный прибор, зависит от ёмкости конденсатора, приложенного к нему напряжения и частоты смены направления зарядов. Математически это выражается так:

I = 2pfCU.

Здесь I – это электрический ток с частотой f, проходящий через конденсатор ёмкостью C, если к его обкладкам приложить напряжение U. 2 – просто число, а p = 3.14.

Такая способность конденсаторов ограничивать переменный ток широко применяется в аудиотехнике для построения различных звуковых фильтров. Изменяя ёмкость, можно влиять на частоту сигнала, которую она пропускает.

Фильтр на основе ёмкости

Разница между последовательным и параллельным соединением, преимущества и недостатки

Принципиальные отличия между последовательным и параллельным соединение проводников по ключевым электротехническим параметрам приведены в таблице:

Параметр/тип соединения Последовательное Параллельное
Электросопротивление Равняется сумме электросопротивлений всех электропотребителей. Меньше значения электросопротивления каждого отдельного из подключенных электроприборов.
Напряжение Равняется совокупному вольтажу всех электропотребителей. Одинаковая величина на всех участках электроцепи.
Сила тока Одинаковая величина на всех участках электроцепи. Равняется совокупному значению токов на каждом из приборов.

За счет своих особенностей каждый из типов сборки цепей имеет свои преимущества и недостатки. Это позволяет использовать данные способы для решения разных электротехнических задач.

Плюсы и минусы последовательного соединения

Основными преимуществам электроцепей из последовательно соединенных приборов являются их следующие особенности:

  • простота проектирования и построения схемы;
  • низкая стоимость комплектации;
  • возможность подключения приборов, рассчитанных на меньшее рабочее напряжение, по сравнению с номинальным напряжением сети;
  • выполнение функции регулирования тока – обеспечивает равномерные нагрузки на все приборы.

Однако у этого способа компоновки электросхемы есть и серьезные недостатки. Главным из них является ненадежность цепи из последовательно соединенных проводников. При выходе из строя любого из подключенных приборов, происходит отключение всей цепи.

Кроме того, минусом является снижение напряжения при увеличении количества подключенных потребителей. Примером может служить последовательное соединение нескольких ламп. Чем больше осветительных приборов подключено таким способом к источнику электропитания, тем менее яркий свет они будут давать.

Плюсы и минусы параллельного соединения

При использовании параллельного соединения проводников обеспечиваются такой набор преимуществ:

  • стабильность напряжения на электроприборах, вне зависимости от их числа;
  • возможность включения или отключения отдельных участков в нужный момент без нарушения работы всей электроцепи;
  • надежность – при выходе одного или нескольких компонентов из строя сама электроцепь продолжает сохранять работоспособность.

Недостатком является более сложный расчет и сложная схема, использование которой повышает стоимость комплектации электросети.

Не допускается подключение приборов, с номинальным рабочим вольтажом меньше сетевого. Параллельное соединение аккумуляторов с разным значением вольтажа связано с перетеканием тока в АКБ с меньшей его величиной, что может вызывать ускоренный износ батареи.

Формула параллельного соединения резисторов

Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:

Ток, протекающий через отдельно взятый резистор, согласно закону Ома, можно найти по формуле:

Пример  №1

При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.

Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:

Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом.
Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:

Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.

Пример расчета №2

Найти общее сопротивление  R из трех параллельно соединенных резисторов:

Общее сопротивление R рассчитывается по формуле:

Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.

Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.

Как рассчитать сложные схемы соединения резисторов

Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:

Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).

Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:

В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:

Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.

Ток, протекающий в цепи параллельно соединенных резисторах

Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.

Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).

Рассмотрим это на примере двух параллельно соединенных резисторов. Ток, который течет через каждый из резисторов ( I1 и I2 ) будет отличаться друг от друга поскольку сопротивления резисторов R1 и R2 не равны.
Однако мы знаем, что ток, который поступает в цепь в точке «А» должен выйти из цепи в точке «B» .

Первое правило Кирхгофа гласит: «Общий ток, выходящий из цепи равен току входящий в цепь».

  • Таким образом, протекающий общий ток в цепи  можно определить как:
  • I = I1 + I2
  • Затем с помощью закона Ома можно вычислить ток, который протекает через каждый резистор:
  • Ток, протекающий в R1 = U ÷ R1 = 12 ÷ 22 кОм = 0,545 мА
  • Ток, протекающий в R 2 = U ÷ R2 = 12 ÷ 47 кОм = 0,255 мА
  • Таким образом, общий ток будет равен:
  • I = 0,545 мА + 0,255 мА = 0,8 мА
  • Это также можно проверить, используя закон Ома:
  • I = U ÷ R = 12 В ÷ 15 кОм = 0,8 мА (то же самое)
  • где 15кОм — это общее сопротивление двух параллельно соединенных резисторов (22 кОм и 47 кОм)
  • И в завершении хочется отметить, что большинство современных резисторов маркируются цветными полосками и назначение ее можно узнать здесь.

Параллельное соединение резисторов — онлайн калькулятор

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных параллельно, вы можете воспользоваться следующим онлайн калькулятором:

Подведем итог

Когда два или более резистора соединены так, что оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов, то говорят, что они соединены между собой параллельно. Напряжение на каждом резисторе внутри параллельной комбинации одинаковое, но токи, протекающие через них, могут отличаться друг от друга, в зависимости от величины сопротивлений каждого резистора.

Эквивалентное или полное сопротивление параллельной комбинации всегда будет меньше минимального сопротивления резистора входящего в параллельное соединение.

Электрические цепи. Последовательное и параллельное соединения проводников

Подробности
Просмотров: 346

«Физика – 10 класс»

Как выглядит зависимость силы тока в проводнике от напряжения на нём?
Как выглядит зависимость силы тока в проводнике от его сопротивления?

От источника тока энергия может быть передана по проводам к устройствам, потребляющим энергию: электрической лампе, радиоприёмнику и др. Для этого составляют электрические цепи различной сложности.

К наиболее простым и часто встречающимся соединениям проводников относятся последовательное и параллельное соединения.

Последовательное соединение проводников.

При последовательном соединении электрическая цепь не имеет разветвлений. Все проводники включают в цепь поочерёдно друг за другом. На рисунке (15.5, а) показано последовательное соединение двух проводников 1 и 2, имеющих сопротивления R1 и R2. Это могут быть две лампы, две обмотки электродвигателя и др.

Сила тока в обоих проводниках одинакова, т. е.

I1 = I2 = I.         (15.5)

В проводниках электрический заряд в случае постоянного тока не накапливается, и через любое поперечное сечение проводника за определённое время проходит один и тот же заряд.

Напряжение на концах рассматриваемого участка цепи складывается из напряжений на первом и втором проводниках:

U = U1 + U2.

Применяя закон Ома для всего участка в целом и для участков с сопротивлениями проводников R1 и R2, можно доказать, что полное сопротивление всего участка цепи при последовательном соединении равно:

R = R1 + R2.         (15.6)

Это правило можно применить для любого числа последовательно соединённых проводников.

Напряжения на проводниках и их сопротивления при последовательном соединении связаны соотношением

Параллельное соединение проводников.

На рисунке (15.5, б) показано параллельное соединение двух проводников 1 и 2 сопротивлениями R1 и R2. В этом случае электрический ток I разветвляется на две части. Силу тока в первом и втором проводниках обозначим через I1 и I2.

Так как в точке а — разветвлении проводников (такую точку называют узлом) — электрический заряд не накапливается, то заряд, поступающий в единицу времени в узел, равен заряду, уходящему из узла за это же время. Следовательно,

I = I1 + I2.         (15.8)

Напряжение U на концах проводников, соединённых параллельно, одинаково, так как они присоединены к одним и тем же точкам цепи.

В осветительной сети обычно поддерживается напряжение 220 В. На это напряжение рассчитаны приборы, потребляющие электрическую энергию. Поэтому параллельное соединение — самый распространённый способ соединения различных потребителей. В этом случае выход из строя одного прибора не отражается на работе остальных, тогда как при последовательном соединении выход из строя одного прибора размыкает цепь. Применяя закон Ома для всего участка в целом и для участков проводников сопротивлениями R1 и R2, можно доказать, что величина, обратная полному сопротивлению участка ab, равна сумме величин, обратных сопротивлениям отдельных проводников:

Отсюда следует, что для двух проводников

Напряжения на параллельно соединённых проводниках равны: I1R1 = I2R2. Следовательно,

Обратим внимание на то, что если в какой-то из участков цепи, по которой идёт постоянный ток, параллельно к одному из резисторов подключить конденсатор, то ток через конденсатор не будет идти, цепь на участке с конденсатором будет разомкнута. Однако между обкладками конденсатора будет напряжение, равное напряжению на резисторе, и на обкладках накопится заряд q = CU

Рассмотрим цепочку сопротивлений R — 2R, называемую матрицей (рис. 15.6).

На последнем (правом) звене матрицы напряжение делится пополам из-за равенства сопротивлений, на предыдущем звене напряжение тоже делится пополам, поскольку оно распределяется между резистором сопротивлением R и двумя параллельными резисторами сопротивлениями 2R и т. д. Эта идея — деления напряжения — лежит в основе преобразования двоичного кода в постоянное напряжение, что необходимо для работы компьютеров.

Следующая страница «Примеры решения задач по теме «Закон Ома. Последовательное и параллельное соединения проводников»»

Назад в раздел «Физика – 10 класс, учебник Мякишев, Буховцев, Сотский»

Законы постоянного тока – Физика, учебник для 10 класса – Класс!ная физика

Электрический ток. Сила тока —
Закон Ома для участка цепи. Сопротивление —
Электрические цепи. Последовательное и параллельное соединения проводников —
Примеры решения задач по теме «Закон Ома. Последовательное и параллельное соединения проводников» —
Работа и мощность постоянного тока —
Электродвижущая сила —
Закон Ома для полной цепи —
Примеры решения задач по теме «Работа и мощность постоянного тока. Закон Ома для полной цепи»

Как соединять динамики?

Радиоэлектроника для начинающих

Самое главное при соединении динамиков – выполнить соединение так, чтобы ни один из динамиков не был перегружен. Перегрузка грозит выходом из строя динамика.

Важно понимать, что на динамик можно подавать мощность либо меньше, либо равную номинальной, на которую он, собственно, и рассчитан.  В противном случае, рано или поздно даже самый качественный динамик выйдет из строя из-за перегрузки. Понятно, что перед соединением динамиков нужно определить их:

Понятно, что перед соединением динамиков нужно определить их:

  • Номинальную мощность (Вт, W);
  • Активное сопротивление звуковой катушки (Ом, Ω).

Всё это, как правило, указывается на магнитной системе динамика, либо на корзине.

1W — значит на 1Вт, 4Ω — сопротивление звуковой катушки.

Марка динамика — 3ГДШ-16. Первая цифра 3 — это номинальная мощность, 3 Вт. Рядом подпись — 8 Ом, сопротивление катушки.

Бывает и не указывают, но можно узнать по маркировке.

Среднечастотный динамик 15ГД-11-120. Номинальная мощность — 15 Вт, сопротивление катушки — 8Ω.

Соединение динамиков. Пример

Давайте начнём так сказать с азов – наглядных примеров. Представим, что у нас есть 6-ти ваттный усилитель мощности звуковой частоты (УМЗЧ) и 3 динамика. Два динамика мощностью 1 Вт (сопротивление катушки 8 Ω каждый) и один динамик на 4 Вт (8 Ω). Задача состоит в том, чтобы подключить все 3 динамика к усилителю.

Сначала рассмотрим пример неверного соединения этих динамиков. Вот наглядный рисунок.

Как видим, сопротивления всех трёх динамиков одинаково и равно 8 Ω. Так как это параллельное соединение динамиков, то ток разделится поровну между 3-мя динамиками. При максимальной мощности усилителя (6 Вт) на каждый из динамиков будет приходиться по 2 Вт мощности. Ясно, что 2 из 3 динамиков будут работать с перегрузкой – те, чья номинальная мощность равна 1 Вт. Понятно, что такая схема соединения не годится.

Если бы усилитель выдавал на выходе всего 3 Вт звуковой мощности, то такая бы схема подошла, но динамик на 4 Вт работал бы не в полную силу — «филонил». Хотя это и не всегда критично.

Теперь возьмём пример верного соединения всё тех же динамиков. Применим, так называемое, смешанное соединение (и последовательное и параллельное).

Соединим последовательно два  1-ваттных динамика. В результате общее их сопротивление будет равно 16 Ω. Теперь параллельно им подключаем 4-ёх ваттный динамик сопротивлением 8 Ω.

При работе усилителя на максимальной мощности ток в цепи разделится исходя из сопротивления. Так как сопротивление последовательной цепи из двух динамиков в 2 раза больше (т.е. 16 Ω), то динамики получат от усилителя всего 2 ватта звуковой мощности (по 1 ватту на каждый). А вот на 4-ёх ваттный динамик пойдёт мощность в 4 ватта. Но он будет работать согласно своей номинальной мощности. Перегрузки при таком соединении не будет. Каждый из динамиков будет работать в нормальном режиме.

И ещё один пример.

У нас есть 4-ёх ваттный усилитель мощности звуковой частоты (УМЗЧ, он же «усилок»). 4 динамика, мощность каждого – 1 ватт, а сопротивление каждого равно 8 Ω. К выходу усилителя можно подключать нагрузку сопротивлением 8 Ω. Нужно соединить динамики между собой так, чтобы общее сопротивление их было равно 8 Ω.

Как правильно соединить динамики между собой в таком случае?

Параллельное и последовательное соединение динамиков (смешанное соединение)

Ну, а если применить смешанное соединение, то получим вот что.

При последовательном соединении динамиков, сопротивление их складывается, получаем 2 плеча по 16 Ω. Далее сопротивление считаем по упрощённой формуле, так как у нас всего 2 плеча, включенных параллельно.

Вот такое соединение уже подходит для нашего усилителя. Таким образом, мы согласовали выходное сопротивление усилителя с нагрузкой — нашим составным динамиком (колонкой). Усилитель будет отдавать в нагрузку полную мощность без перегрузки.

При соединении динамиков не забываем об их синфазном включении.

» Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

  • Ремонт акустической системы SVEN.
  • Устройство динамика.

Линейная электрическая цепь

Электрические цепи с постоянными параметрами считаются в физике такими цепями, в которых сопротивления резисторов $R$, индуктивность катушек $L$ и емкость конденсаторов $С$ будут постоянными и не зависимы от действующих в цепи напряжений, токов и напряжений (линейные элементы).

При условии независимости сопротивления резистора $R$ от тока, линейная зависимость между током и падением напряжения выражается на основании закона Ома, то есть:

$ur = R_хir$

Вольтамперная характеристика резистора при этом представляет собой прямую линию.

При независимости индуктивности катушки от величины тока, протекающего в ней, потокосцепление самоиндукции катушки $ф$ оказывается прямо пропорциональным этому току:

Готовые работы на аналогичную тему

  • Курсовая работа Линейные и нелинейные электрические цепи 440 руб.
  • Реферат Линейные и нелинейные электрические цепи 240 руб.
  • Контрольная работа Линейные и нелинейные электрические цепи 220 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость $ф = Lхil$

При условии независимости емкости конденсатора С от приложенного к обкладкам напряжения $uc$, накопленный на пластинах заряд $q$ и напряжение $uc$ оказываются связанными между собой через линейную зависимость.

При этом линейность сопротивления, индуктивности, а также емкости носит сугубо условный характер поскольку в действительности все реальные элементы электроцепи не линейны. При прохождении через резистор тока он будет нагреваться с изменением сопротивления.

При этом в нормальном рабочем режиме элементов подобные изменения обычно настолько несущественны, что при расчетах не берутся во внимание (такие элементы считаются в электрической цепи линейными). Транзисторы, функционирующие в режимах, когда применяются прямолинейные участки их вольтамперных характеристик, условно также могут рассматриваться в формате линейных устройств

Транзисторы, функционирующие в режимах, когда применяются прямолинейные участки их вольтамперных характеристик, условно также могут рассматриваться в формате линейных устройств.

Определение 1

Электрическая цепь, которая будет состоять из линейных элементов, называется линейной. Такие цепи характеризуют линейные уравнения для токов и напряжений и заменяются линейными схемами замещения.

Лень читать?

Задай вопрос специалистам и получи ответ уже через 15 минут!

Задать вопрос

Где и для чего используются

Как уже говорили, сложно найти схему без конденсаторов. Их применяют для решения самых разных задач:

  • Для сглаживания скачков сетевого напряжения. В таком случае их ставят на входе устройств, перед микросхемами, которые требовательны к параметрам питания.
  • Для стабилизации выходного напряжения блоков питания. В таком случае надо искать их перед выходом.Часто можно увидеть электролитические цилиндрические конденсаторы
  • Датчик прикосновения (тач-пады). В таких устройствах оной из «пластин» конденсаторов является человек. Вернее, его палец. Наше тело обладает определённой проводимостью. Это и используется в датчиках прикосновения.
  • Для задания необходимого ритма работы. Время заряда конденсаторов разной ёмкости отличается. При этом цикл заряд/разряд конденсатора остаётся величиной постоянной. Это и используется в цепях, где надо задавать определённый ритм работы.
  • Ячейки памяти. Память компьютеров, телефонов и других устройств — это огромное количество маленьких конденсаторов. Если он заряжен — это единица, разряжен — ноль.
  • Есть стартовые конденсаторы, которые помогают «разогнать» двигатель. Они накапливают заряд, потом резко его отдают, создавая требуемый «толчок» для разгона мотора.
  • В фотовспышках. Принцип тот же. Сначала накапливается заряд, затем выдаётся, но преобразуется в свет.

Конденсаторы встречаются часто и область их применения широка. Но надо знать как правильно их подключить.

Существующие способы подключения

Розетки в количестве больше двух штук соединяются тремя способами: последовательно, параллельно и смешанно. Электрики используют другие термины – звездой (для первого варианта), шлейфом (для второго). Прежде чем выбрать один из методов, необходимо выяснить плюсы и минусы каждого, и выбрать подходящий для конкретной квартиры.

Если в помещении проведена электрика, важно учитывать способ разводки кабелей и общую доступную мощность. Новые могут превысить предел, провод придется тянуть от щитка

Параллельное подключение

Суть метода – подключение розеток в одном распределительном блоке, на который приходится вся нагрузка при включении электрооборудования. От общедомового щитка к распредкоробке протягивают кабель, от него тянут разводку на каждую точку питания (провода отдельные).

Плюсом способа является независимая работа каждой точки питания и выключателя. Если одно устройство перегорит, другие продолжат работу. Но если основной провод придет в негодность, напряжение пропадет полностью. В такой ситуации проще найти разрыв и устранить неисправность.

Последовательное соединение

Подключение шлейфом означает последовательный переход от первой розетки к следующей. Вместо скруток проводов используются контакты устройств. На первый механизм подключают фазовый и нулевой кабели, потом на следующий и последовательно до последнего.

Способ «чистом виде» используют редко. Например, если нужно поставить дополнительную розетку или выключатель или переставить одно из устройств на некоторое расстояние. Во второй ситуации старую точку доступа оставляют, от нее проводят к новому месту – так меньше придется штробить стены.

Смешанное соединение и заземление при последовательном подключении

Если принято решение использовать последовательное соединение розеток, можно усилить общую конструкцию, использовав смешанный способ. Суть метода заключается в следующем:

  1. К распределительной коробке от общедомового щитка подводят центральный кабель.
  2. На предварительном плане электропроводки выбирают наиболее отдаленную точку доступа к питанию.
  3. Выбранная розетка подключается от кабеля распредкоробки.
  4. От этого устройства запитываются остальные.

Такой способ повышает надежность сети. Если розетка выходит из строя, остальные продолжают работать. Отключение всей системы возможно только в случае неисправности основного кабеля, скрутки в распредкоробке.

Такая техника имеет минусы – большая длина используемых проводов, необходимость установить несколько распредкоробок (на каждое ответвление). Чтобы точно знать, можно ли в сеть включать высокомощные приборы, необходимо рассчитывать напряжение до этапа проводки кабелей. Точный расчет поможет выбрать, как подключить розетки в итоге – последовательно, параллельно или смешанно.

Кольцевое соединение

Подобный способ подключения является редкостью в постсоветских странах. Метод имеет ряд неоспоримых преимуществ, поэтому в последнее время набирает популярность.

Как правильно соединить розетки между собой при кольцевом соединении:

  1. От основного (общедомового) щитка в квартиру (дом, дачу) проводят общий кабель вкруговую.
  2. В каждой комнате (помещении) на главном проводе делается врезка, устанавливается распределительная коробка и проводится отдельный круг на отдельное помещение.
  3. В последнюю очередь проводят ответвления на каждую точку доступа.

Последовательное и параллельное соединения проводников

1. Потребители электрической энергии: электрические лампочки, резисторы и пр. — могут по-разному соединяться друг с другом в электрической цепи. Существует два основных типа соединения проводников: последовательное и параллельное. При последовательном соединении проводников конец одного проводника соединяется с началом другого проводника, а его конец — с началом третьего и т.д. (рис. 85).

Примером последовательного соединения проводников может служить соединение электрических лампочек в ёлочной гирлянде.

При последовательном соединении проводников ток проходит через все лампочки, при этом через поперечное сечение каждого проводника в единицу времени проходит одинаковый заряд, т.е. заряд не скапливается ни в какой части проводника. Поэтому при последовательном соединении проводников сила тока в любом участке цепи одинакова: ​ ( I_1=I_2=I ) ​.

Общее сопротивление последовательно соединённых проводников равно сумме их сопротивлений: ​ ( R_1=R_2=R ) ​. Это следует из того, что при последовательном соединении проводников их общая длина увеличивается, она больше, чем длина каждого отдельного проводника, соответственно увеличивается и сопротивление проводников.

По закону Ома напряжение на каждом проводнике равно: ​ ( U_1=IR_1 ) ​, ​ ( U_2=IR_2 ) ​, а общее напряжение равно ​ ( U=I(R_1+R_2) ) ​. Поскольку сила тока во всех проводниках одинакова, а общее сопротивление равно сумме сопротивлений проводников, то полное напряжение на последовательно соединённых проводниках равно сумме напряжений на каждом проводнике: ​ ( U=U_1+U_2 ) ​.

Из приведённых равенств следует, что последовательное соединение проводников используется в том случае, если напряжение, на которое рассчитаны потребители электрической энергии, меньше общего напряжения в цепи.

2. Примером параллельного соединения проводников служит соединение потребителей электрической энергии в квартире. Так, электрические лампочки, чайник, утюг и пр. включаются параллельно.

При параллельном соединении проводников все проводники одним своим концом присоединяются к одной точке цепи (А), а вторым концом к другой точке цепи (В) (рис. 86).

Поэтому вольтметр, подключенный к этим точкам, покажет напряжение как на проводнике 1, так и на проводнике 2. Таким образом, напряжение на концах всех параллельно соединённых проводников одно и то же: ​ ( U_1=U_2=U ) ​.

При параллельном соединении проводников электрическая цепь разветвляется, в данном случае в точке В. Поэтому часть общего заряда проходит через один проводник, а часть — через другой. Следовательно при параллельном соединении проводников сила тока в неразветвлённой части цепи равна сумме силы тока в отдельных проводниках: ​ ( I=I_1+I_2 ) ​.

В соответствии с законом Ома ​ ( I=frac ) ​, ( I_1=frac) , ( I_2=frac) . Отсюда следует: ​ ( frac=frac+frac) ​. Так как ​ ( U_1=U_2=U ) ​, ( frac=frac+frac ) . Величина, обратная общему сопротивлению параллельно соединенных проводников, равна сумме величин, обратных сопротивлению каждого проводника.

При параллельном соединении проводников их общее сопротивление меньше, чем сопротивление каждого проводника. Действительно, если параллельно соединены два проводника, имеющие одинаковое сопротивление ​ ( r ) ​, то их общее сопротивление равно: ​ ( R=r/2 ) ​. Это объясняется тем, что при параллельном соединении проводников как бы увеличивается площадь их поперечного сечения, соответственно уменьшается сопротивление.

Из приведённых формул понятно, почему потребители электрической энергии включаются параллельно: они все рассчитаны на определённое одинаковое напряжение, которое в квартирах равно 220 В. Зная сопротивление каждого потребителя, можно рассчитать силу тока в каждом из них и соответствие суммарной силы тока предельно допустимой силе тока.