Оглавление
- ВАХ полупроводниковых диодов из разных материаллов
- Схема сборки конструкции
- Устройство и принцип работы светодиодов
- Технические характеристики и их зависимость друг от друга
- Сравнение SMD светодиодов
- Принцип работы светодиодов
- Расчет резистора для светодиода
- Какова экономия светодиодного освещения
- Светодиодная матрица
- Способы подключения
- Как появилась специфическая светотехника?
- Светодиоды типа COB
- Светодиоды типа DIP
- Как коротко сказать о том что такое светодиод и в чем суть светодиода?
- Что такое светодиод
- Светодиоды типа DIP
- Разновидности светодиодов
ВАХ полупроводниковых диодов из разных материаллов
ВАХ полупроводниковых диодов как в прямом, так и в обратном направлениях протекания тока аппроксимируются экспоненциальными функциями. На практике совпадение расчетных (теоретических) и экспериментальных характеристик наблюдается лишь на ограниченных участках кривых, например, в области малых токов. В области прямых больших токов (напряжений) зависимость тока от напряжения практически линейна. На рисунке показаны реальные ВАХ полупроводниковых диодов.
ВАХ полупроводниковых диодов, выполненных из разных материалов и разными методами (точечные – m, плоскостные – n). Монокристаллические: германиевые – Ge, кремниевые – Si; поликристаллические: меднозакисные (купроксные) – Cu2O; селеновые – Se.
В последние десятилетия в отечественной литературе избегают приводить внешний вид ВАХ полупроводниковых приборов. И это не случайно. Вольт-амперные характеристики не очень хорошо воспроизводимы: они отличаются даже у приборов одной партии. Кроме того, ВАХ, особенно для силовых низкочастотных полупроводниковых приборов, сильно зависят от частоты, от сопротивления нагрузки, его резистивно-емкостных и иных характеристик.
Тем не менее, свойства полупроводниковых приборов необходимо каким-то образом описывать. В этой связи в паспортах на них и справочных руководствах принято указывать параметры характерных точек на ВАХ, полученные путем статистического усреднения данных по большой выборке однотипных полупроводниковых приборов испытанных по стандартизированной методике измерений, в пределах использования которой эти данные достаточно воспроизводимы.
К наиболее важным параметрам, характеризующим избранные и наиболее практически значимые точки ВАХ, принято относить:
Прямой ток (Iпр.) — среднее значение тока через открытый диод, при котором обеспечивается надежный режим работы.
Прямое падение напряжения (Uпр.) — напряжение на диоде при прохождении прямого тока Iпр.
Обратный ток (Iобр.) — ток через диод при определенном обратном напряжении.
Максимальное обратное напряжения (Uобр.) — напряжение, соответствующее безопасной области работы, после превышения которого может произойти повреждение прибора.
Все эти сведения для выпрямительных диодов обычно приводят для области низких частот, a именно, 50 Гц. При повышенных частотах на работу полупроводниковых силовых приборов начинают заметно влиять емкости переходов, что можно наблюдать, например, на характериографе. Более того, емкости переходов изменяются в несколько раз при разном уровне приложенного напряжения, a также существенно разнятся при прямом и обратном включении. На практике c ростом частоты диоды теряют выпрямительные свойства и больше напоминают резистивноемкостную цепочку, поэтому при выборе диода для той или иной схемы необходимо учитывать его частотные характеристики.
Как следует из последнего рисунка, ВАХ различных полупроводниковых приборов заметно отличаются друг от друга. Эти различия часто используют во благо при создании полупроводниковых приборов, предназначенных для выполнения специфических функций. B частности, селеновые выпрямители не могут составить конкуренцию кремниевым или германиевым, поскольку рассчитаны на малый прямой ток и малое обратное напряжение, зато свойства их более воспроизводимы,что позволяет применять селеновые выпрямители при параллельном или последовательном их включении без использования уравнительных резисторов (обычно для создания слаботочных высоковольтных выпрямительных столбов).
Меднозакисные выпрямители в настоящее время практически не используют, однако их и сейчас можно встретить в некоторых измерительных приборах.
Наиболее широкое распространение в последнее время получили кремниевые и, в меньшей мере, германиевые полупроводниковые диоды. Кремниевые выгодно отличаются тем, что способны работать при повышенных температурах, вплоть до 100…130oС. Они имеют меньшие обратные токи, допускают работу при более высоких обратных напряжениях — до 800…1200В. Германиевые диоды имеют малое прямое падение напряжения на переходе, но работают до температур не выше 70oС. Кроме перечисленных, выпрямительные функции могут выполнять и другие полупроводниковые приборы, например на основе арсенида галлия GaAs или антимонида индия InSb.
Схема сборки конструкции
Как будет работать светодиодная лампа напрямую зависит от производителя и цены изделия. Отличия можно заметить, если снять рассеиватель
В первую очередь стоит обратить внимание на качество пайки чипов, а также соединительных проводов. Дешевые лампочки служат меньше, чем качественные и дорогие
Низкокачественные китайские лампочки
Приобретая лампочку не более чем за 3 доллара, не стоит рассчитывать на симметричное расположение светодиодов на плате. Это говорит о том, что пайка выполнялась вручную и на скорую руку, а провода подбирались с минимальным сечением. Надёжного драйвера здесь также не будет. Вместо него реализована бестрансформаторная схема с выпрямителем и конденсатором.
Схема китайской лампочки.
Если приходится проводить диагностику и после ремонтировать лампы подобного типа, следует обязательно придерживаться особой техники безопасности. Каждый элемент, который является составляющей одной цепи, может находиться под напряжением, опасным для человека. Если случайно дотронутся до одной из токоведущих частей, можно получить удар током. То же самое может произойти, если щуп мультиметра случайно соскользнёт и спровоцирует короткое замыкание.
Фирменные светодиодные лампы
Дорогие и качественные лампочки имеют приятный внешний вид, но это далеко не все преимущества. Качество элементной базы будет значительно выше, чем у китайского аналога, приобретённого по низкой цене. Установленный драйвер отличается сложным устройством. Один из способов его сборки подразумевает установку импульсного трансформатора, а также преобразователя тока, который в дальнейшем стабилизирует полученную нагрузку.
Качественная лампа LED.
Трансформатор может не устанавливаться. Основная нагрузка будет направлена на микросхему, стабилизирующую входное напряжение, которая:
- имеет систему отрицательной обратной связи;
- возможность диммирования;
- поддерживает ток с заданной шириной импульса.
Схема без трансформатора.
Выбирая качественную светодиодную лампочку на 220 В с токовым драйвером, покупатель получает защищенное от помех и скачков в сети устройство, которое соответствует характеристикам, указанным в паспорте. Установленный здесь радиатор обеспечит быстрый теплоотвод. Эта лампочка будет служить более чем в 5 раз дольше дешевой китайской.
Устройство и принцип работы светодиодов
Светодиодом
называется прибор-полупроводник, способный преобразовывать электрический ток в
видимое световое излучение. Часто применяемое обозначение светодиода ЛЕД
является абберевиатурой light-emitting diode
– светоизлучающий диод.
В
отличие от ламп, излучение которых лежит в широком спектре, кристалл светодиода по внешнему полю излучает конкретный цвет. Диапазон освещения определяется
химическими особенностями полупроводников, используемых в каждом случае.
Все модели светодиодов содержат следующие элементы:
- катод, отвечающий за подачу отрицательной части волны постоянного тока на полупроводниковый кристалл;
- анод, осуществляющий подачу положительной части волны на кристалл;
- рассеиватель, увеличивающий угол свечения;
- рефлектор, который отражает световой поток на рассеиватель;
- кристалл или чип полупроводника, осуществляющий излучение светового потока, используя p-n переход.
Конструкция
диода включает два полупроводника, легированных разными примесями. Один из них
содержит свободные электроны, а второй – отверстия (дырки). Это обеспечивает
p-n переход между полупроводниками, когда электроны переходят от донора к
реципиенту, занимая свободные отверстия и выделяя фотоны. Данная реакция
возможна при наличии источника постоянного тока. На практике применяются
гетероструктуры – многослойные полупроводники, имеющие самый маленький вес.
Зная, какие бывают светодиоды по мощности и по внешнему виду, можно выбрать
прибор для разных случаев. Они делятся на две большие группы:
- Индикаторные. Маленькие светодиоды относительно небольшой мощности с умеренной яркостью. Применяются для цветовой индикации, при подсветке приборных панелей и прочего.
- Осветительные. Их мощность может доходить до нескольких десятков Ватт, за счёт чего достигается свечение высокой интенсивности. Используются в составе светодиодных лент и ламп для освещения помещений, в фарах и иных приборах.
Технические характеристики и их зависимость друг от друга
Основными функциональными и эксплуатационными параметрами светодиодных светильников являются:
- интенсивность светового потока (яркость);
- рабочее напряжение;
- сила тока;
- цветовая характеристика;
- длина волны.
Светодиодное напряжение и яркость выступают прямо пропорциональными величинами – чем выше одна, тем выше другая. Но это не напряжение питающего тока, а величина падения напряжения на приборе. Кроме того, от напряжения зависит и цвет светодиода. Таким образом, между собой связаны яркость, длина волны, напряжение и цвет светодиода, а их соотношение представлено в следующей таблице.
Цвет | Длина волны | Напряжение |
Белый | Широкий спектр | 3,0-3,7 В |
Ультрафиолетовый | 10-400 нм | 3,1-44 В |
Фиолетовый | 400-450 нм | 2,8-4 В |
Синий | 450-500 нм | 2,5-3,7 В |
Зелёный | 500-570 нм | 2,2-3,5 В |
Жёлтый | 570-590 нм | 2,1-2,2 В |
Оранжевый | 590-610 нм | 2,3-2,1 В |
Красный | 610-760 нм | 1,6-2,03 В |
Инфракрасный | >760 | <1,9 В |
Принцип действия микроэлемента так устроен, что для стабильной работы в соответствии с номинальными характеристиками необходимо отслеживать не напряжение питания, а силу тока. Светодиоды работают от пульсирующего или постоянного тока, регулируя интенсивность которого можно изменять яркость излучения. Индикаторные светодиоды работают при токе в пределах 10-20 мА, а осветительные – от 20 мА и выше. Так, к примеру, элементы типа COB с четырьмя чипами требуют 80 мА.
Цветовая характеристика
Цвет свечения светодиодного элемента зависит от длины волны, которая измеряется в нанометрах. Для изменения цвета свечения в материал полупроводника на этапе производства добавляются активные вещества:
- полупроводники обрабатываются аллюминий-индий-галлием (AlInGaP) для получения красного цвета;
- оттенки зелёного и сине-голубого спектра получаются с использованием индий-нитрида галлия (InGaN);
- для получения белого свечения на базе синего светодиода его кристалл покрывают люминофором, который преобразует синий спектр в красный и жёлтый свет;
- для фиолетового свечения применяется индий-галлия нитрид;
- для оранжевого – галлия фосфид-арсенид;
- для синего – селенид цинка, карбид кремния или индий-галлия нитрид.
Аналогично методу получения белого свечения можно использовать люминофоры разных цветов для получения дополнительных оттенков. Так, красный люминофор позволяет выпускать розовые и пурпурные светодиоды, а зелёный – салатных оттенков. В обоих случаях люминофор наносит на основу в виде синего светодиода.
Читайте подробнее:индекс цветопередачи светодиодных ламп
Сравнение SMD светодиодов
Применение
SMD диодов повсеместно. Эти
относительно маломощные светодиоды
являются основой лампочек общего освещения, индикаторных панелей и систем
аварийного освещения. Наибольшей популярностью пользуются светодиодные ленты на
СМД диодах. Существуют и их вариации в виде модулей и
линеек, где используются планарные
светодиоды.
Определить тип и размер
корпусов SMD диодов можно по
маркировке, цифры которой обозначают ширину и длину. Новые модификации
конструируются на группах, состоящих из четырёх равных по мощности светодиодов
разных цветов – «G+R+W+B». Это увеличивает светоотдачу и расширяет
световые оттенки, поэтому такой тип
светодиодов самый яркий.
Классификация
светодиодов по типоразмерам следующая:
Маркировка SMD | 3528 | 5630 | 3014 | 5050 | 5730-05 | 5730-1 | 2835 |
Световой поток, Лм | 5 | 40 | 8 | 15 | 40 | 100 | 25 |
Мощность, Вт | 0,06 | 0,5 | 0,07 | 0,2 | 0,5 | 1 | 0,2 |
Температура,оС | до 65 | до 80 | до 65 | до 65 | до 80 | до 80 | до 65 |
Ток, мА | 20 | 150 | 30 | 60 | 150 | 30 | 60 |
Напряжение, А | 3,3 | 3,3 | 3,3 | 3,3 | 3,4 | 3,4 | 3,4 |
Габариты, мм | 3,5х2,8 | 5,3х3 | 3х1,4 | 5х5 | 4,8х3 | 4,8х3 | 2,8х3,5 |
Таблица включает усреднённые технические характеристики, которые показывают лучшие светодиоды с белым светом. Самые мощные лампы холодного и
тёплого белого света обладают меньшим световым потоком и, имея равную яркость светодиодов, дают лучшее
освещение, чем цветные.
Обратите внимание! Светоотдача тёплых тонов может быть на 10% меньше той, что отражают маркировка и характеристики, а холодных – на 10% больше, поэтому они самые энергоэффективные. Реальные
технические характеристики и качество светодиодов в значительной
степени определяет марка светодиодов,
причём колебания могут доходить до 15%
Качественные
светодиоды выпускают крупные японские, европейские и китайские бренды. Бюджетные же
устройства неизвестных китайских
производителей, занесённые в каталог,
обычно очень слабые, и вместо заявленных 0,5 Ватт могут выдавать 0,15 или даже
0,09
Реальные
технические характеристики и качество светодиодов в значительной
степени определяет марка светодиодов,
причём колебания могут доходить до 15%. Качественные
светодиоды выпускают крупные японские, европейские и китайские бренды. Бюджетные же
устройства неизвестных китайских
производителей, занесённые в каталог,
обычно очень слабые, и вместо заявленных 0,5 Ватт могут выдавать 0,15 или даже
0,09.
Такие
низкие показатели мощности объясняются тем, что внутри корпуса смонтирован
кристалл меньшего размера. Это характерно для низкокачественной китайской
продукции. Поэтому, самостоятельно проектируя источник питания, стоит
стремиться к реальным показателям тока в нагрузке, равным около 95% от
заявленного. При небольшой недогрузке можно увеличить рабочий ресурс даже для
устройств, где используются не самые лучшие
светодиоды.
Принцип работы светодиодов
Любой светодиод имеет p-n-переход. Свечение возникает при рекомбинации электронов и дырок в электронно-дырочном переходе. P-n переход создается при соединении двух полупроводников разного типа электропроводности. Материал n-типа легируется электронами, p-типа – дырками.
При подаче напряжения электроны и дырки в p-n-переходе начинают перемещаться и занимать места. Когда носители заряда подходят к электронно-дырочному переходу, электроны помещаются в материал p-типа. В результате перехода электронов с одного энергетического уровня на другой выделяются фотоны.
Не всякий p-n переход может излучать свет. Для пропускания света нужно соблюсти два условия:
ширина запрещенной зоны должна быть близка к энергии кванта света;
полупроводниковый кристалл должен иметь минимум дефектов.
Реализовать подобное в структуре с одним p-n-переходом не получится. По этой причине создаются многослойные структуры из нескольких полупроводников, которые называются гетероструктурами.
Для создания светодиодов используются прямозонные проводники с разрешенным прямым оптическим переходом зона-зона. Наиболее распространенные материалы группы А3В5 (арсенид галлия, фосфид индия), А2В4 (теллурид кадмия, селенид цинка).
Цвет светоизлучающего диода зависит от ширины запрещенной зоны, в которой происходит рекомбинация электронов и дырок. Чем больше ширина запрещенной зоны и выше энергия квантов, тем ближе к синему излучаемый свет. Путем изменения состава можно добиться свечения в широком оптическом диапазоне – от ультрафиолета до среднего инфракрасного излучения.
Светодиоды инфракрасного, красного и желтого цветов изготавливаются на основе фосфида галлия, зеленый, синий и фиолетовый – на основе нитридов галлия.
Расчет резистора для светодиода
Надежная работа светодиода зависит от тока, протекающего через него. При заниженных значениях, он просто не будет светить, а при превышении значения тока – характеристики элемента ухудшатся, вплоть до его разрушения. При этом говорят – светодиод сгорел. Для того чтобы исключить возможность выхода из строя этого полупроводника необходимо подобрать в цепь с включенным в нее, резистором. Он будет ограничивать ток в цепи на оптимальных значениях.
Вычисление номинала сопротивления
Для работы радиоэлемента на него нужно подать питание. По закону Ома, чем больше сопротивление отрезка цепи, тем меньший ток по нему протекает. Опасная ситуация возникает, если в схеме течет больший ток, чем положено, так как каждый элемент не выдерживает большей токовой нагрузки.
Сопротивление светодиода является нелинейным. Это значит, что при изменении напряжения, подаваемого на этот элемент, ток, протекающий через него, будет меняться нелинейно. Убедиться в этом можно, если найти вольт — амперную характеристику любого диода, в том числе и светоизлучающего. При подаче питания ниже напряжения открытия p – n перехода, ток через светодиод низкий, и элемент не работает. Как только этот порог превышен, ток через элемент стремительно возрастает, и он начинает светиться.
Если источник питания соединять непосредственно со светодиодом, диод выйдет из строя, так как не рассчитан на такую нагрузку
Чтобы этого не произошло – нужно ограничить ток, протекающий через светодиод балластным сопротивлением, или произвести понижение напряжения на важном для нас полупроводнике
Рассмотрим простейшую схему подключения (рисунок 1). Источник питания постоянного тока подключается последовательно через резистор к нужному светодиоду, характеристики которого нужно обязательно узнать. Сделать это можно в интернете, скачав описание (информационный лист) на конкретную модель, или найдя нужную модель в справочниках. Если найти описание не представляется возможным, можно приблизительно определить падение напряжения на светодиоде по его цвету:
- Инфракрасный — до 1.9 В.
- Красный – от 1.6 до 2.03 В.
- Оранжевый – от 2.03 до 2.1 В.
- Желтый – от 2.1 до 2.2 В.
- Зеленый – от 2.2 до 3.5 В.
- Синий – от 2.5 до 3.7 В.
- Фиолетовый – 2.8 до 4 В.
- Ультрафиолетовый – от 3.1 до 4.4 В.
- Белый – от 3 до 3.7 В.
Рисунок 1 – схема подключения светодиода
Ток в схеме можно сравнить с движением жидкости по трубе. Если есть только один путь протекания, то сила тока (скорость течения) во всей цепи будет одинакова. Именно так происходит в схеме на рисунке 1. Согласно закону Кирхгоффа, сумма падений напряжения на всех элементах, включенных в цепь протекания одного тока, равно ЭДС этой цепи (на рисунке 1 обозначено буквой Е). Отсюда можно сделать вывод, что напряжение, падающее на токоограничивающем резисторе должно быть равным разности напряжения питания и падения его на светодиоде.
Так как ток в цепи должен быть одинаковым, то и через резистор, и через светодиод ток получается одним и тем же. Для стабильной работы полупроводникового элемента, увеличения его показателей надежности и долговечности, ток через него должен быть определенных значений, указанных в его описании. Если описание найти невозможно, можно принять приблизительное значение тока в цепи 10 миллиампер. После определения этих данных уже можно вычислить номинал сопротивления резистора для светодиода. Он определяется по закону Ома. Сопротивление резистора равно отношению падения напряжения на нем к току в цепи. Или в символьной форме:
R = U (R)/ I,
где, U (R) — падение напряжения на резисторе
I – ток в цепи
Расчет U (R) на резисторе:
U (R) = E – U (Led )
где, U (Led) — падение напряжения на светодиодном элементе.
С помощью этих формул получится точное значение сопротивления резистора. Однако, промышленностью выпускаются только стандартные значения сопротивлений так называемые ряды номиналов. Поэтому после расчета придется сделать подбор существующего номинала сопротивления. Подобрать нужно чуть больший резистор, чем получилось в расчете, таким образом, получится защита от случайного превышения напряжения в сети. Если подобрать близкий по значению элемент сложно, можно попробовать соединить два резистора последовательно, или параллельно.
Подбор мощности резистора
Если подобрать сопротивление меньшей мощности, чем нужно в схеме, оно просто выйдет из строя. Расчет мощности резистора довольно прост, нужно падение напряжения на нём умножить на ток, протекающий в этой цепи. После чего нужно выбрать сопротивление с мощностью, не меньшей рассчитанной.
Какова экономия светодиодного освещения
Светодиодные источники света – действительно экономичные осветительные приборы. Следует лишь внимательно относиться к качеству покупаемых ламп и не гнаться за недорогими моделями, которые, вероятно, быстро выйдут из строя.
В целях максимальной экономии для освещения квартир и домов светодиодами экономически целесообразно заменять лампы накаливания мощностью свыше 60 Вт. Иначе стоимость самой светодиодной лампы не окупится.
Также стоит заменять только источники света, которые работают максимальное количество часов. Светильник в кладовке, который включается раз в неделю на полчаса, вполне может остаться оснащенным лампой накаливания.
При применении этих правил светодиодное освещение оправдает себя, но не в первый месяц работы. Срок окупаемости led-ламп составляет 1-2 года. Рассчитывается окупаемость по следующему алгоритму.
Допустим, надо заменить все лампы на led. Примем число ламп за n=10 штук. Сравнительная мощность при равном световом потоке указана в таблице.
Допустим, мы заменяем лампы накаливания мощностью 75 Вт. Заменим на аналогичные светодиодные или люминесцентные. Стоимость замены составит:
Характеристика | Накаливания | Светодиодная Osram | Люминесцентная Osram |
---|---|---|---|
Цена, руб | 15 | 200 | 150 |
Общая стоимость замены, руб | 150 | 2000 | 1500 |
Мощность,(P), Вт | 75 | 14 | 20 |
Срок службы, час | 1000 | 15000 | 8000 |
Примем, что за год электричество горит 5000 часов. Цена одного кВт электричества – 5 руб/кВт. Тогда:
Накаливания | Светодиодная | Люминесцентная | |
---|---|---|---|
Суммарная потребляемая мощность, (n×P/1000), кВт | 0,75 | 0,14 | 0,2 |
Суммарное годовое потребление электроэнергии, кВт*ч | 3750 | 700 | 1000 |
Годовые затраты на электроэнергию, тыс.руб. | 18750 | 3500 | 5000 |
Затраты на покупку светильников, руб. | 150 | 2000 | 1500 |
Затраты на обслуживание, тыс. руб. | 750 рублей (5 раз в год заменять лампы: каждую 1000 часов) | 2000 рублей каждые 15000 часов (замена ламп примерно каждые 3 года). | 1500 руб. каждые 8000 часов (замена ламп примерно через 1,5 года.) |
Суммарные затраты за 1 год, тыс.руб. | 19,65 | 5,5 | 6,5 |
Суммарные затраты за 3 года, тыс.рублей | 58,95 | 18,5 | 22,5 |
Таким образом, капитальные затраты на покупку новых ламп выше у светодиодных моделей. Но уже за первый год эксплуатации за счет экономии электроэнергии светодиодное освещение выигрывает и у ламп накаливания, и у люминесцентных. А за три года – срок службы led-ламп – суммарные затраты на светодиодное освещение самые минимальные.
В таблице не учитаны затраты на утилизацию (если таковые будут) люминесцентных ламп при их замене каждые 1,5 года. Также не учитывается падение яркости led с течением времени, из-за чего заменять панели придется чаще, чем каждые 9 года. Однако, и лампы для расчета брались не с максимальным заложенным сроком службы.
Светодиодная матрица
Кубик или фактический полупроводниковый элемент светоизлучающего диода являются активной частью общего диода. Существуют две основные конфигурации, которые можно использовать.
- Структура светодиодных светодиодов: эта форма светодиодной структуры излучает свет в плоскости, параллельной стыку PN-перехода. В этой конфигурации свет может быть ограничен узким углом.
- Поверхностно излучающая светодиодная структура: эта форма светодиодной структуры излучает свет перпендикулярно плоскости PN-перехода.
Активные пленки светодиодной структуры обычно выращиваются эпитаксиально – часто с помощью жидкофазной или парофазной эпитаксии. Подложки выбираются так, чтобы иметь близкую решетку к активным слоям.
Обычными субстратами являются GaAs, GaP, InP. PN-соединение может быть создано либо диффузией примеси, ионной имплантацией, либо может быть введено во время фазы эпитаксиального роста.
Коммерчески светодиоды существуют в самых разных формах: от отдельных светодиодных индикаторов, где есть только один светодиод на упаковке, через различные дисплеи, вплоть до огромных массивов светодиодов на светодиодных экранах.
Для некоторых ограниченных приложений можно использовать различные типы светодиодных диодных диодов. Они могут включать контакты Шоттки и соединения MIS (металл-искробезопасный полупроводник). Однако они, как правило, менее эффективны и иногда сложнее сформировать надежно.
Способы подключения
Существует несколько стандартных вариантов подключения диода в электрическую цепь. Все они используются в определённых схемах и позволяют достичь требуемого результата.
Прямой вариант
Этот способ включения диода в электрическую цепь называют наиболее простым и часто используемым. В его основе лежит подсоединение положительного полюса к области p-типа, а отрицательного — к n-типа.
Описание работы диода при прямом подключении:
- На устройство подаётся электрический ток, под воздействием которого образуется электрическое поле в области между двумя электродами. Его направление будет противоположным по отношению к внутреннему диффузионному полю.
- Затем происходит резкое сужение запирающего слоя, которое получается из-за значительного снижения напряжения электрического поля.
- Следствием этого станет способность большинства электронов свободно перемещаться из одной области (n-типа) в другую (p-типа).
- Во время этого процесса показатели дрейфового тока не изменятся, так как они зависят только от количества заряженных частиц, находящихся в области p-n перехода.
- Электроны способны перемещаться из n-области в p-область, что приводит к дисбалансу их концентрации. В одной из областей будет недостаток частиц, а в другой — избыток.
- Из-за этого часть электронов перемещается вглубь полупроводника, что становится причиной разрушения его электронейтральности.
- В этом случае полупроводник стремится к восстановлению своей нейтральности и начинает получать заряд от подключённого источника питания. Всё это приводит к образованию тока во внешней электроцепи.
Обратный метод
Этот способ подключения диода к общей схеме используется гораздо реже. В его основе лежит изменение полярности внешнего источника питания, который участвует в процессе передачи напряжения.
Особенности функционирования диода при обратном включении:
- После включения источника питания в области p-n перехода образуется электрическое поле. Его направление будет одинаковым с внутренним диффузионным полем.
- Из-за этого будет происходить расширение запирающего слоя.
- Находящееся в области p-n перехода поле будет ускорять движение электронов, но оставлять неизменными показатели дрейфующего тока.
- Из-за всех этих действий будет постепенно нарастать обратное напряжение, которое поспособствует стремлению электрического тока к максимальным значениям.
Вам это будет интересно Принцип работы реле тока и виды устройств
Как появилась специфическая светотехника?
Прежде чем рассмотреть принцип работы светодиодов, предлагается изучить информацию о том, каким образом они были созданы. Самое первое сообщение о возможности излучения света посредством твердотельного диода принадлежит одному британскому экспериментатору. Он сделал его еще в 1907 году, когда описал процесс электролюминесценции.
Эксперименты повторно проводились и в российской лаборатории, но тогда им не придали особого значения. В 1961 году первая светодиодная технология была запатентована сотрудниками американской компании. С тех пор процессы разработки совершенствовались. И через какое-то время удалось выпустить элемент высокой яркости для использования в телекоммуникационной сфере.
Светодиоды типа COB
Подобные элементы начали использоваться для лампочек и фонарей с мощным светодиодом. Принцип работы изделий остается тем же, но к алюминиевой основе в данном случае крепятся десятки кристаллов при помощи диэлектрического клеевого состава. Полученная матрица обрабатывается одним слоем люминофора, в результате чего образуется световой источник с равномерным распределением основного потока.
Одной из разновидностей технологии является вариант с распределением большого количества кристаллов по стеклянной поверхности. По этой схеме изготавливаются филаментные лампы, у которых в качестве базового источника выступает центральный стержень из стекла, покрытый мелкими светодиодами и обработанный люминофором.
Светодиоды типа DIP
Полупроводниковые элементы данной категории относятся к слаботочным изделиям, поэтому они в основном применяются для дополнительной подсветки. Обычно они устанавливаются в качестве индикаторов или основных источников в гирляндах. С появлением более совершенных технологий их производство существенно сократилось.
Принцип работы светодиода малой мощности сравнительно прост. В качестве основы выступает корпус, имеющий цилиндрическую форму. Он изготавливается из эпоксидной смолы. Во внутренней части находятся специальные выводы, вставленные в печатную плату. Закругленный цилиндр позволяет создать направленный световой поток.
Излучающий элемент в виде кристалла размещен на катоде, который напоминает небольшой флажок. Он при помощи сверхтонкого провода соединен с анодом. Встречаются изделия сразу с двумя или тремя кристаллами, имеющими разные цвета. При необходимости в корпус внедряется управляющий чип, необходимый для контроля над свечением.
Для наращивания уровня светового потока в таких светодиодах начали делать четыре вывода вместо двух. Однако при таком варианте нагрев кристалла значительно увеличился, что привело к ограничению возможной сферы применения.
Как коротко сказать о том что такое светодиод и в чем суть светодиода?
Суть светодиода – Излучение световых фотонов (излучение света) возникает при рекомбинации электронов и дырок в области p-n-перехода светодиодного кристалла.
p-n-переход – контакт двух полупроводников с разными типами проводимости. В любом светодиоде один из полупроводников это акцептор, а другой донор.
Светоизлучающие диоды, светодиоды используются для многих работ. Они не только используются в качестве панельных индикаторов для всего: от телевизоров, радиоприемников и других форм отечественного электронного и промышленного оборудования, но они также заменяют более традиционные технологии освещения. Чтобы удовлетворить все эти потребности, существует множество различных типов светодиодов, которые доступны. С разработкой и внедрением органических светодиодных технологий светодиодные технологии оказывают еще большее влияние на сегодняшние технологии.
Что такое светодиод
Внешне светоизлучающий диод выглядит как кристалл на металлической основе, покрытый пластиковой линзой. Осветительный элемент состоит из таких частей:
- основа из алюминия или меди;
- полупроводниковый кристалл;
- катод (-) и анод (+);
- слой силикона;
- линза из пластика;
- защитный корпус.
На металлической основе зафиксирован катод и анод. На первом электроде закреплен полупроводниковый чип (кристалл). Контакты имеют проводники, которые подсоединяются к чипу p-n-переходом (электронно-дырочный переход). На этом участке с помощью соединительной проволоки объединяются 2 полупроводника с дырочным и электронным типом проводимости. Сверху конструкция покрыта слоем силикона и пластиковой колбой и помещена в корпус с выводами для подключения к цепи.
Светодиоды типа DIP
Полупроводниковые элементы данной категории относятся к слаботочным изделиям, поэтому они в основном применяются для дополнительной подсветки. Обычно они устанавливаются в качестве индикаторов или основных источников в гирляндах. С появлением более совершенных технологий их производство существенно сократилось.
Принцип работы светодиода малой мощности сравнительно прост. В качестве основы выступает корпус, имеющий цилиндрическую форму. Он изготавливается из эпоксидной смолы. Во внутренней части находятся специальные выводы, вставленные в печатную плату. Закругленный цилиндр позволяет создать направленный световой поток.
Излучающий элемент в виде кристалла размещен на катоде, который напоминает небольшой флажок. Он при помощи сверхтонкого провода соединен с анодом. Встречаются изделия сразу с двумя или тремя кристаллами, имеющими разные цвета. При необходимости в корпус внедряется управляющий чип, необходимый для контроля над свечением.
Для наращивания уровня светового потока в таких светодиодах начали делать четыре вывода вместо двух. Однако при таком варианте нагрев кристалла значительно увеличился, что привело к ограничению возможной сферы применения.
Разновидности светодиодов
Последовательное совершенствование открытой в 1962 году технологии привело к созданию разнообразных базовых элементов и моделей светодиодов на их основе. На сегодняшний день классификация проводится по расчётной мощности, типу соединения и типу корпуса.
В первом случае различаются осветительные и индикаторные варианты. Первые предназначены для использования в осветительных целях. Их уровень мощности приблизительно соответствует аналогичным вольфрамовым и люминесцентным лампам. Индикаторные светодиоды не излучают сильный поток света и используются в электронном оборудовании, приборных и навигационных панелях и т.д.
Индикаторные светодиоды между собой различают по типу соединения на тройные AlGaAs, тройные GaAsP и двойные GaP. Аббревиатуры, соответственно, означают алюминий-галлий-мышьяк, галлий-мышьяк-фосфор и галлий-фосфор. AlGaAs светят жёлтым и оранжевым в пределах видимого спектра, GaAsP- красным и жёло-зелёным, а GaP – зелёным и оранжевым.
По типу корпуса представленные в широком применении светодиодные светильники сейчас делятся на:
- DIP. Это старый форм-фактор из линзы, пары контактов и кристалла. Такие светодиоды применяются в световых табло и игрушках для подсветки;
- «Пиранья» или Superflux. Это доработанная модель DIP, которая имеет не два, а четыре контакта. Выделяет меньше тепловой энергии и, соответственно, меньше греется. Сейчас применяется в автомобильной подсветке;
- SMD. Самая популярная технология на современном рынке LED-светильников. Это универсальный чип, монтаж которого был произведён непосредственно на плате. Используется в большинстве источников света, осветительных линий, лент и т.п;
- COB. Это результат совершенствования технологии SMD. У таких светодиодов есть несколько чипов, монтированных на одной плате на алюминиевом или керамическом основании.