Трансформатор

Как оценивается механическая прочность обмоток: о чем говорят показатели?

учитывается состояние расчета поля рассеяния в магнитостатических полях;
определяются соответствующие параметры типа используемой обмотки;
узнаются особенности конструкции обмотки, и главное, ее месторасположение;
обращается внимание на расположение витков в обмотке, конструктивные особенности катушки, так как этого зависит расчет и соотношение механической силы, возникающей в обмотке, и механической стойкости элемента трансформатора. Идеально, если первый параметр будет минимизирован, а второй – будет соответствовать нормам агрегата и не подводить в процессе эксплуатации.

Защита силовых трансформаторов

В первую очередь необходимо постоянно контролировать уровень масла, циркулирующего внутри бака. На его температуру оказывает влияние целый комплекс различных факторов. В связи с этим происходит постоянное изменение объема и главной задачей становится поддержание уровня масла в установленных границах. Важную роль в этом играет использование расширительного бачка, компенсирующего все объемные отклонения. Кроме того, он позволяет вести наблюдения за текущим уровнем масла.

Данные о состоянии уровня снимаются с помощью маслоуказателя, подключаемого параллельно с расширительным бачком.

Силовые трансформаторы должны быть защищены от проникновения влаги, поскольку расширительный бак своей верхней частью плотно контактирует с окружающей средой. С этой целью устанавливается осушитель воздуха, создающий препятствия попаданию влаги в масло, что существенно снижает его диэлектрические свойства.

Важной составляющей масляной системы считается газовое реле, защищающее трансформатор от внутренних повреждений. Оно монтируется внутри трубопровода, который соединяет между собой основной и расширительный баки

Во время нагрева масло и органическая изоляция выделяют газы, попадающие в емкость газового реле, содержащую внутри чувствительный элемент.

В некоторых случаях может возникнуть аварийное повышение давления внутри бака. В целях защиты на крышке трансформатора выполняется монтаж выхлопной трубы. Ее нижний конец должен сообщаться с емкостью бака, а масло – поступать внутрь до необходимого уровня в расширителе. Над расширителем возвышается верхняя часть трубы, которая отводится в сторону и незначительно загибается вниз. Ее конец герметично закрывает стеклянная предохранительная мембрана, разрушающаяся в случае аварийного повышения давления.

Силовые трансформаторы, имеющие обмотку высокого напряжения свыше 1000 В, оборудуются релейной защитой от основных повреждений и неисправностей. Непосредственными защитными устройствами являются вторичные реле прямого или косвенного действия. Их подключение осуществляется не напрямую, а через измерительные трансформаторы напряжения и тока.

Трансформаторы. Режимы работы

Трансформатор, как любое электромагнитное устройство, имеет несколько устойчивых режимов, в которых может (и должен) работать неограниченно долго.

Режимы работы трансформатора

Существует пять характерных режимов работы трансформатора:

  1. Рабочий режим;
  2. Номинальный режим;
  3. Оптимальный режим;
  4. Режим холостого хода;
  5. Режим короткого замыкания;

Рабочий режим

Режим характеризуется следующими признаками:

  • Напряжение первичной обмотки близко к номинальному значению или равно ему (dot_1 ≈ dot_<1ном>);
  • Ток первичной обмотки меньше своего номинального значения или равен ему (dot_1 ≤ dot_1ном).

В рабочем режиме эксплуатируются большинство трансформаторов. Например, силовые трансформаторы работают с напряжениями и токами обмоток отличными от номинальных. Так происходит из-за переменчивого характера их нагрузки.

Измерительные, импульсные, сварочные, разделительные, выпрямительные, вольтодобавочные и другие трансформаторы, также обычно эксплуатируются в рабочем режиме просто из-за того, что напряжение сети к которой они подключены отличается от номинального.

Номинальный режим работы

Характерные признаки режима:

  • Напряжение первичной обмотки равно номинальному (dot_1 = dot_<1ном>);
  • Ток первичной обмотки равен номинальному (dot_1 = dot_<1ном>).

Номинальный режим работы является частным случаем рабочего режима. В таком режиме могут работать все трансформаторы, но как правило, с б&#243льшими в сравнении с рабочим режимом потерями и как следствие, с меньшим КПД (коэффициентом полезного действия). Из-за этого при эксплуатации трансформатора его избегают.

Оптимальный режим работы

Режим характеризуется условием:

Где (P_<хх>) — потери холостого хода; (P_<кз>) — потери короткого замыкания; (k_<нг>) — коэффициент нагрузки трансформатора, определяемый по формуле:

Где (P_2) — ток нагрузки вторичной обмотки; (P_<2ном>) — номинальный ток вторичной обмотки.

В оптимальном режиме работы трансформатор работает с максимальным КПД, поэтому выражение (1) по существу представляет собой условие максимального КПД (Смотри «Трансформаторы. Оптимальный режим работы»).

Режим холостого хода

Характерные признаки режима:

  • Вторичная обмотка трансформатора разомкнута или к ней подключена нагрузка с сопротивлением гораздо большим сопротивления номинальной нагрузки обмотки (1) трансформатора;
  • К первичной обмотке приложено напряжение (dot_ <1хх>= dot_<1ном>);
  • Ток вторичной обмотки (dot_2 ≈ 0) (для трехфазного трансформатора — (dot_ <2ф>≈ dot_ <2л>≈ 0).

На рисунке 1 изображена схема опыта холостого хода однофазного, а на рисунке 2 — трехфазного двухобмоточных трансформаторов.

Рисунок 1 — Схема опыта холостого хода однофазного двухобмоточного трансформатора

Рисунок 2 — Схема опыта холостого хода трехфазного двухобмоточного трансформатора

По существу в режиме холостого хода трансформатор представляет собой катушку на магнитопроводе, к которой подключен источник напряжения. Режим холостого хода является рабочим для трансформаторов напряжения. Кроме того, этот режим служит для определения тока (i_х), мощности (ΔQ_хх) холостого хода и ряда других параметров (смотри «Опыт холостого хода трансформатора»).

Примечание:
Под сопротивлением номинальной нагрузки обмотки понимается величина (R_<Нном>), равная отношению номинального напряжения обмотки (U_<ном>) к её номинальному току обмотки (I_<ном>)

Режим короткого замыкания

Режим короткого замыкания характеризуется:

  • Вторичная обмотка замкнута накоротко или к ней подключена нагрузка сопротивлением гораздо меньшим внутреннего сопротивления трансформатора;
  • К первичной обмотке приложена такая величина напряжения (dot_1), что ток первичной обмотки равен её номинальному току (dot_1 = dot_<1ном>)
  • Напряжение вторичной обмотки (dot_2 = 0) (для трехфазного трансформатора — (dot_ <2ф>= dot_ <2л>= 0).

Схема опыта короткого замыкания изображена на рисунке 3 для однофазного, а на рисунке 4 — для трехфазного двухобмоточных трансформаторов.

Рисунок 3 — Схема опыта короткого замыкания однофазного двухобмоточного трансформатора

Рисунок 4 — Схема опыта короткого замыкания трехфазного двухобмоточного трансформатора

Режим короткого замыкания является рабочим режимом для трансформаторов тока и сварочных трансформаторов, в тоже время являясь аварийным для других трансформаторов. Также он используется для определения напряжения (u_к), мощности (ΔP_кз) короткого замыкания и других параметров трансформатора (смотри «Опыт короткого замыкания трансформатора»).

Виды силовых трансформаторов

Силовые трансформаторы можно разделить на несколько видов, основываясь на следующих характеристиках и показателях:

  • Тип охлаждения. Различают сухие и масляные трансформаторы. Первый вариант имеет воздушное охлаждение, используется там, где повышены требования к экологии и пожаробезопасности. Второй вариант представляет собой корпус, заполненный маслом с диэлектрическими свойствами, в который погружен сердечник с обмотками;
  • Климатическое исполнение: наружные и внутренние варианты;
  • Количество фаз. Бывают трехфазные (наиболее распространенные) и однофазные;
  • Количество обмоток. Различают двухобмоточные и многообмоточные варианты;
  • Назначение: повышающие и понижающие.

Дополнительным критерием служит наличие или отсутствие регулятора выходного напряжения.

Что делает трансформатор

У трансформатора много полезных и важных функций:

Передает электричество на расстояние. Он способен повышать переменное напряжение. Это помогает передавать переменный ток на большие расстояния. Так как у проводов тоже есть сопротивление, от источника тока требуется высокое напряжение, чтобы преодолеть сопротивление проводов. Поэтому, трансформаторы незаменимы в электросетях, где они повышают напряжение до десятки тысяч вольт. Еще возле электростанций, которые вырабатывают электрический ток, стоят распределительные трансформаторы. Они повышают напряжение для передачи их потребителям. А возле потребителей стоит понижающий трансформатор, который уменьшает напряжение до 220 В 50 Гц.

Питает электронику. Трансформатор — это часть блока питания. Он понижает входное сетевое напряжение, которое затем выпрямляется диодным мостом, фильтруется и подается на плату. По сути, он используется практически в любом блоке питания и преобразователе.

Питает радиолампы и электронно-лучевые трубки. Для радиоламп нужен большой спектр напряжений. Это и 12 В и 300 В и др.

Для этих целей и делают трансформаторы, которые понижают и повышают сетевое напряжение. Это делается за счет разных обмоток на одном сердечнике. Разновидностью ламп являются электронно-лучевые трубки (ЭЛТ). Они используются в электронных микроскопах, где с помощью пучка электронов можно получить детальные изображения микроскопических поверхностей. Для них нужны высокие напряжения, порядка нескольких десятков тысяч киловольт. Это нужно для того, чтобы в вакуумной трубке можно было разогнать пучок электронов до больших скоростей. Электрон в вакууме может повышать скорость своего передвижения за счет повышения напряжения. И здесь, кстати, используется импульсный трансформатор. Он повышает напряжение за счет работы ШИМ (широтно-импульсной модуляции). Такие трансформаторы называются строчными (или развертки).

Это название неспроста, так как такой трансформатор выполняет функцию строчной развертки. По сути кинескоп — это и есть электронно-лучевая трубка. Поэтому, для работы телевизоров, где используется кинескоп, нужен строчный трансформатор.

  • Согласует сопротивления. В усилителях звука согласование источника и потребителя играет важную роль. Поэтому, есть согласующие трансформаторы, которые позволяют передать максимум мощности в нагрузку. Если бы не было такого трансформатора, то лаповые усилители, которые были рассчитаны на 100 Вт, выдавали бы менее 50 Вт в нагрузку.

Например, выход усилителя 2 кОм, а трансформатор согласует сопротивление и понижает напряжение для щадящей работы динамиков. А на его вторичной обмотке сопротивление всего несколько десятков Ом.

Для безопасности. Трансформатор создает гальваническую развязку между сетью и блоком питания. Это последний рубеж безопасности в блоке питания, если что-то пойдет не так. Будет время для срабатывания предохранителя. Или же катушки и магнитопровод расплавятся, но потребителю не дадут сетевую нагрузку. Он физически не связан с сетью 220 В. Связь есть только с помощью магнитного поля (взаимоиндукции). И если трансформатор рассчитан на 100 Вт, то он сможет выдать только 100 Вт.

Поэтому, потребитель будет защищен от опасных высоких токов. Именно из-за этого бестрансформаторные блоки питания считаются опасными.

Деталь оружия. В электрошокерах используются высокие напряжения. И их помогает форматировать высоковольтный трансформатор. А еще он используется в некоторых схемах Гаусс пушки.

Область применения

Бытовые приборы имеют контакт с заземлением посредством нейтрального провода. Одновременное касание потребителем тока фазы и нулевой цепи ведет к замыканию контура и травме. Подключение через разделительный трансформатор позволяет обезопасить человека, т. к. вторичная обмотка не контактирует с землей.

Импульсные агрегаты используются при передаче прямоугольного толчка и трансформации коротких сигналов при нагрузке. На выходе изменяется полярность и амплитуда тока, но остается неизменным напряжение.

Измерительное оборудование постоянного тока является магнитным усилителем. Изменять переменное напряжение помогает направленное движение электронов небольшой мощности. Выпрямитель поставляет постоянную энергию и зависит от значений входного электричества.

Силовые агрегаты широко используются в генераторах тока малой величины, мощности, показатели в дизелях имеют средние значения. Трансформаторы монтируют последовательно с нагрузкой, прибор подключается к источнику первичной обмоткой, вторичный контур выдает преобразованную энергию. Значение выходного тока прямо пропорционально нагрузке. Используется оборудование с 3 магнитными стержнями, если генератор трехфазного тока.

Инвертирующие агрегаты имеют транзисторы одинаковой проводимости и на выходе усиливают только часть сигнала. Для полного преобразования напряжения импульс подается на оба транзистора.

Согласующее оборудование используют для подсоединения к электронным приборам с высоким сопротивлением на входе и выходе нагрузки с низким показателем прохождения электричества. Агрегаты полезны в высокочастотных линиях, где разница величин ведет к потерям энергии.

Watch this video on YouTube

Конструкция и принцип работы

Трансформатор — название слова происходит от латинского transformare, что в переводе означает превращать. Общепринятое определение для него следующее: трансформатор — это устройство, которое, используя явление электромагнитной индукции, способно изменять амплитуду напряжения без изменения формы и частоты сигнала.

Трансформатор — это электротехнический прибор, с помощью которого происходит уменьшение или увеличение переменного электрического напряжения. Такие трансформаторы называют понижающими или повышающими. При этом следует отметить, что существуют и такие приборы, которые оставляют величину синусоидального сигнала без изменения, они называются гальваническими или дроссельными.

Любой трансформатор в своей конструкции содержит следующие компоненты:

  • магнитопровод (сердечник);
  • обмотки;
  • каркас для расположения обмоток;
  • изолятор;
  • различные дополнительные элементы (скобы для крепления, планки для вывода контактов и т. п. ).

Трансформатор в своей конструкции имеет две или более обмотки с индуктивной связью. Выпускаются они как проволочного, так и ленточного типа и всегда покрываются слоем изоляции. Обмотки закрепляются на магнитопроводе, изготовленном из мягкого ферромагнитного материала. Первичная обмотка подсоединяется к источнику напряжения, а вторичная к нагрузке.

Общий принцип работы устройства, независимо от его вида и назначения, заключается в следующем. На первичную обмотку прибора подаётся переменный сигнал, что приводит к появлению в ней переменного тока. Этот ток, в свою очередь, наводит в сердечнике переменное магнитное поле, под действием, которого происходит возникновение переменной электродвижущей силы (ЭДС) в обмотках. При подключении нагрузки к вторичной обмотке по ней начинает протекать переменный ток. Обмотка, на которую подаётся сигнал, называется первичкой. Обмотка, подключённая к нагрузке, называется вторичкой.

По способу охлаждения тороидальные устройства различаются на использующие воздушное и жидкостное охлаждение. Кроме этого, существуют трансформаторы с совмещённым охлаждением — жидкостно-воздушным. К главным техническим параметрам устройства относятся:

  1. Величина входного напряжения: допустимое значение напряжения, подаваемое на первичку.
  2. Величина выходного напряжения. Определяется коэффициентом трансформации.
  3. Тип трансформации. Существует с повышением или понижением уровня сигнала.
  4. Число фаз. В зависимости от сети, в которой используются трансформаторы, они делятся на однофазные или трехфазные.
  5. Число обмоток. Существуют двухобмоточные или многообмоточные устройства.

К основным параметрам устройства относят: номинальную мощность и коэффициент трансформации. Единица измерения мощности вольт-ампер (ВА). Коэффициент трансформации показывает соотношение уровней напряжения на входе устройства к его выходу. Его значение прямо пропорционально отношению количества витков первички к вторичке.

В тороидальном трансформаторе в качестве основы используется кольцевой сердечник, геометрически представляющий собой тор. Преимущество такого вида магнитопровода заключается в простой перемотке трансформатора своими руками и получении наибольшего коэффициента полезного действия (КПД) по сравнению с другими типами трансформаторов при тех же габаритных значениях. К недостаткам торов относят повышенный нагрев при работе.

Зачем это нужно?

Трансформатор служит для повышения или понижения подаваемой электроэнергии. Зачем нужно преобразовывать ток? Смысл в том, что согласно закону Джоуля-Ленца тепло, которое выделяет проводник при прохождении по нему электрического тока выделяется в зависимости от силы тока. Причем зависимость эта квадратичная, так как сила тока в формуле имеет вторую степень.

На практике это означает, что увеличение силы тока в 2 раза приведет к увеличению тепловыделений в 4 раза. Все бы ничего, но закон сохранения энергии пока никто не отменял. На нагрев проводника расходуется электроэнергия, которую с таким трудом добывает человечество. Единственный выход: повысить напряжение до максимум.

Согласно закону Ома всегда сохраняется некое равенство: произведение силы тока на сопротивление равняется напряжению в сети. Предположим, что сопротивление не изменяется, так как оно зависит от свойств проводящего материала. Тогда единственным выходом будет максимально задрать напряжение, чтобы уменьшить силу тока в сети.

Высоковольтные линии придумали не ради развлечения. Единственная цель столь сложной системы с трансформаторами: максимальное сокращение потерь.

Режим холостого хода

Данный режим характеризуется отсутствием нагрузки во вторичной обмотке или же бесконечно большой величиной сопротивления ZH = ∞, то есть разомкнутая цепь вторичной обмотки.

Тогда ток во вторичной обмотке будет равен нулю I2 = 0. Тогда в соответствии с первым законом Кирхгофа (закон баланса токов) получим

где I1 – ток в первичной обмотке трансформатора,

I0 – ток намагничивания магнитопровода,

I’2 – приведённый ток вторичной обмотки трансформатора.

Возникновение тока намагничивания I0 связанно с потерями энергии: на создание основного магнитного потока, замыкающегося через магнитопровод (мощность намагничивания PL) и потери мощности в сердечнике РА, а так же вследствие потерь в первичной обмотке магнитопровода от протекания тока намагничивания. Так как трансформатор в режиме холостого хода не создает тока во вторичной обмотке I2 = 0, то такой ток называют током холостого хода.

Очевидно, что ток холостого хода имеет активную Ia и реактивную IL составляющие, которые определяются следующими выражениями

где Е1 – ЭДС самоиндукции, возникающая в первичной обмотке,

RC – сопротивление активных потерь в сердечнике,

LC – сопротивление реактивных потерь в сердечнике.

Так как сопротивления RC и LC имеют нелинейных характер, то в инженерных расчётах пользуются графическими зависимостями параметров сердечников, в первую очередь кривой намагничивания материала магнитопровода (зависимость магнитной индукции В от напряженности магнитного поля Н Dynamic magnetization curves). Кроме того необходимо знать геометрические параметры используемого сердечника: эквивалентную площадь сечение Se(Ae), эквивалентную длину магнитной силовой линии l­e и эквивалентный объем сердечника Ve. Кроме того для нахождения потерь мощности в сердечнике РА необходимо воспользоваться графической зависимостью магнитных потерь в сердечнике (Relative core losses) от различных факторов: индукции B, температуры T и частоты f.

Что делает трансформатор

Принцип работы основан на электромагнитной индукции. Переменный ток создает вокруг проводника переменное магнитное поле, а оно, изменяясь, создает электродвижущую силу.

Когда мы подаем напряжение на первичную обмотку, ток в этой обмотке создает переменный магнитный поток. Он действует как на первую обмотку, так и на вторую, создавая в ней ЭДС. При включении в сеть потребителя в обмотке появляется электрический ток.

Схема эта работает только на переменном токе. При постоянном токе магнитный поток не меняется, и если вторичную обмотку в поле такого тока не вращать руками (что в нашем случае и не получится), то никакой ЭДС оно создавать не будет.

Упрощенное математическое выражение работы

Когда-то М. Фарадей проводил эксперимент, который показал, что напряжение в петле, представляющей собой проводник, зависит от изменения магнитного потока через эту петлю за единицу времени:

U=-ΔΦ/Δt

Когда у нас таких петель много, к примеру, N, то и равенство будет выглядеть немного по-другому:

U=-N*ΔΦ/Δt

Соответственно, на первой и на второй обмотках напряжения будут:

U1=-(N1)*ΔΦ/Δt

U2=-(N2)*ΔΦ/Δt

Поскольку магнитный поток и время для наших обмоток — одна и та же величина, то можно найти соотношение между напряжениями в обмотках:

U1/U2=N1/N2=n

И это n называется коэффициентом трансформации напряжения.

Если принять в качестве допущения, что всю свою мощность первая обмотка трансформирует в магнитный поток, а тот, в свою очередь, создает такую же мощность во второй, то получим следующее:

P1=(U1)*I1

P2=(U2)*I2

А если у нас P1=P2, то U1/U2=I2/I1

Представленные выше закономерности работают как идеальные. В реальности же работа трансформатора осложнена рядом побочных явлений, которые влияют и на работу самого устройства, и на работу сети в целом. Перечислим эти явления:

  1. Ток холостого хода. Наблюдается при включении трансформатора в виде резкого скачка и может привести к выходу из строя коммутационного оборудования, поэтому его учитывают при проектировании.
  2. Паразитные емкости и индуктивности. Образуются они в результате соседства проводников под напряжением в обмотке. В принципе, ими можно пренебречь, пока речь не идет о высоких частотах или перегрузках в цепи. Они ярко себя показывают во время грозы, приводя к неравномерным колебаниям напряжения с разным итогом — от падения напряжения до пробоя и выхода из строя. В высокочастотных трансформаторах паразитная индуктивность вносит уже существенные изменения в работу устройства, в котором такие трансформаторы стоят. Борются с этим явлением заземлением экрана между обмотками, применением хороших изоляторов для обмотки проводника.
  3. Побочные эффекты работы магнитного поля в ферромагнетиках сердечника. В железе, кобальте и никеле существует такое явление, как остаточная намагниченность, которое вносит свои коррективы в изменение напряжения в обмотках, вплоть до того, что оно все меньше напоминает по графику синусоиду. Помимо этого, магнитное поле индуцирует в сердечнике паразитные токи Фуко, что ведет к перегреву трансформатора. Проблемы эти отчасти решаются слоистой структурой сердечника, но не до конца.

Это интересно: Производство полимерно-песчаной плитки — оборудование и изготовление