Radiostorage.net

Схема мощного тиристорного регулятора напряжения

Cхемы электронных устройств

 С помощью этого устройства можно регулировать напряжения от несколько десятков вольт до 220 В, при активной нагрузке.

Тринисторы VS1 и VS2 подключены параллельно между собой, на встречу друг к другу и последовательно к нагрузке. При включении тринисторы закрыты, через R5 происходит зарядка конденсаторов C1, C2. Конденсаторы C1, C2  и переменный резистор R5 образуют фазосдвигающую цепочку.

Динисторы VS3 и VS4 образуют импульсы, с помощью которых происходит управление тринисторами.

В тот момент когда конденсаторы зарядятся напряжением равным напряжению открытия динистора, произойдет скачок напряжения который включит тринистор и через нагрузку потечет ток. В начале отрицательного полупериода напряжения сети, происходит отключение данного тринистора и происходит новый цикл зарядки конденсаторов, но уже в обратной полярности. Происходит открытие другого тринистера и динистора.

Используемые детали

  • R1, R2, R3, R4 — 51 Ом
  • R5 — 270 кОм
  • VS1 — КУ202Н
  • VS2 — КУ202Н
  • VS3 — КН102А
  • VS4 — КН102Н
  • C1 — 0,25 мкФ
  • C2 — 0,25 мкФ

Установив VS1 и VS2 на радиаторы, можно увеличить нагрузку до 1,5 кВт.

Конденсаторы необходимо использовать рассчитанные на напряжение не менее 300 В.

В схеме можно использовать динисторы КН102Б  но при этом нужно уменьшить емкость конденсаторов до 0,2 мкФ или КН102В — ёмкость уменьшить до 0,15 мкФ. Переменный резистор типа СП2-2-1

Дальше »

Схемы отечественной и зарубежной радиоаппаратуры заводского производства

Усилители мощности низкой частоты (57)Принципиальные схемы усилителей мощности низкой частоты отечественного и зарубежного производства.

Предварительные усилители НЧ (3)Предварительных усилители низкой частоты отечественного/зарубежного производства.

Пусковые и зарядные устройства (10)Схемы пусковых и зарядных устройств для автомобильных и других аккумуляторов.

Компьютеры и периферия (5)Компьютерная техника: мониторы, принтеры, сканеры, материнские платы, ноутбуки, разная периферия.

Музыкальные центры и комплексы (8)Принципиальные схемы музыкальных центров (комплексов) отечественного/зарубежного производства.

Акустические системы и агрегаты (13)Схемы усилителей и фильтров к акустическим системам отечественного и зарубежного производства.

Измерительные приборы (31)Схемотехника осциллографов, мультиметров, генераторов и других измерительных приборов отечественного/зарубежного производства.

Связная радиоаппаратура (6)Принципиальные схемы раций, радиостанций и трансиверов, приемников и передатчиков отечественного и зарубежного производства.

Приемник с прямым усилением

Следующим шагом в развитии радиотехники стало внедрение приемников прямого усиления, создание которых было связано с распространением усилителей на электронных лампах. Это решение широко использовалось в первых радио. В отличие от более поздних решений, приемники с прямым усилением не использовали преобразование частоты, поэтому задача детектора заключалась в демодуляции непосредственно принятого радиочастотного сигнала. Достоинством этой простой конструкции было, прежде всего, отсутствие влияния так называемого зеркального сигнала.

В приемниках, использующих смешение частот, это серьезная проблема, поскольку случайно принятый зеркальный сигнал ухудшает качество полезного. Каждый дополнительный резонансный контур увеличивает избирательность приемника. Но недостатком этого решения была необходимость одновременной перенастройки всех схем, что было сложной задачей при проектировании.

Другая проблема заключалась в том, что избирательность приемника снижалась с увеличением частоты. Недостатки этого решения способствовали быстрому распространению преобразователей частоты с прямым преобразованием и супергетеродинных приемников.

Прямое преобразование

Способ избежать необходимости использовать множество индивидуально настраиваемых фильтров заключался в передаче радиочастотного сигнала в полосе частот низкой частоты. Приемник с прямым преобразованием, также известный как гомодин, состоит из следующих модулей: входной цепи, смесителя, то есть элемента в котором принимаемый в антенне сигнал передается в низкочастотный диапазон, генератора, фильтра и усилителя.

Характерной особенностью этого решения является двойная роль смесителя, который также действует как детектор. Другой конфигурацией выступают так называемые супергетеродинные приемники, в которых каскад преобразования частоты отделен от блока детекторов. В группе приемников этого типа есть две основных конструкции: супергетеродинный приемник с одинарным и двойным преобразованием частоты.

Простой двухтранзисторный радиоприемник прямого усиления

Простой приемник прямого усиления показан на рис. 1 [МК 10/83-11]. Он содержит перестраиваемый входной колебательный контур — магнитную антенну и двухкаскадный усилитель НЧ.

Первый каскад усилителя одновременно является детектором ВЧ модулированного сигнала. Как и многие ему подобные простые приемники прямого усиления, этот приемник способен принимать сигналы мощных, не столь удаленных радиостанций.

Катушка индуктивности намотана на ферритовом стержне длиной 40 и диаметром 10 мм. Она содержит 80 витков провода ПЭВ-0,25 мм с отводом от 6-го витка снизу (по схеме).

Рис. 1. Схема простого радиоприемника на двух транзисторах.

Программы для разводки печатных плат

программы для радиолюбителей

На данный момент существует множество программ и онлайн сервисов для разводки печатных плат. Когда в интернете находишь интересную электронную схему то сразу хочется её собрать своими руками, но не всегда к ней прилагается рисунок печатной платы. Когда-то давно, дорожки рисовали лаком на фольгированном текстолите. Сейчас радиолюбители не рисуют дорожки от руки, а распечатывают с помощью лазерного принтера — эта технология называется ЛУТ. Можно отдать схему специалистам, которые за определённую сумму все сделают, но лучше освоить одну из программ и сделать все своими руками.

Я подобрал несколько программ для разводки (трассировки) печатной платы.

Sprint-Layout

Самая популярная программа среди радиолюбителей, почти все новички начинали именно с неё. Простой и понятный интерфейс, существует русифицированная версия. Спринт лайт имеет большую базу электронных компонентов (макросов), которые можно скачать в интернете. Огромное количество обучающих видеороликов на Ютубе, помогут освоить весь интерфейс и научат рисовать печатные платы. Программа является условно — бесплатной.

easyeda

Китайский онлайн сервис с большими возможностями. В Китае студенты создают проекты с помощью данного сервиса и его преподают в некоторых учебных заведениях. Основное удобство заключается в том что созданные проекты можно редактировать на любом компьютере с доступом в интернет, необходимо только пройти простую регистрацию для создания аккаунта. Easyeda имеет огромную базу электронных компонентов которые постоянно обновляются и добавляются самими пользователями. Данный сервис имеет функцию автоматической трассировки печатной платы и симуляцию электронных схем. Интерфейс интуитивно понятный с поддержкой русского языка. После того как печатная плата разведена на дорожки её можно заказать в этом сервисе, причем промышленного качества, а можно и не заказывать, а распечатать на принтере и сделать самому. Также можно открыть доступ к проекту и делится им с другими пользователями или совместно создавать один проект.

ZenitPCB

Простая и бесплатная программа для рисования принципиальных схем с возможностью трассировки. Минусом является ограничение контактных площадок в 800 штук. База элементов около 1000.

DesignSpark PCB

Мощная программа с возможностью автоматической трассировки печатных плат. Подходит как для новичков так и для профессионалов.
DesignSpark PCB это бесплатная программа со встроенными специализированными калькуляторами для разных расчётов облегчающими подбор компонентов. На официальном сайте можно скачать библиотеку готовых печатных плат. Единственный минус это отсутствие русского языка в интерфейсе.

Я пользуюсь двумя;
Программа Sprint-Layout
Онлайн сервис easyeda.com
Для моей деятельности, на данном этапе моего развития, этого вполне хватает. В освоении перечисленных программ, справится любой начинающий радиолюбитель.

Дальше »

Техническое состояние сайта

Возраст домена
11 лет

Молодые и новые домены плохо продвигаются в высококонкурентных тематиках. Также важна история домена и сайта. Старые домены с плохой историей сложно продвинуть. Поисковые системы любят старые, тематические домены с хорошей историей (без фильтров, спама, черного сео и т.п.).

Обновлено 31.05.2021 02:40

Окончание домена
Домен продлен до 09.09.2024

Не забывайте продлевать доменное имя. Лучше включить автоматическое продление у своего регистратора. После окончания регистрации домена есть шанс потерять доступ к домену.

Обновлено 31.05.2021 02:40

SSL-сертификат
Cайт доступен по HTTPS. Сертификат действителен до 30.07.2021.

Описание:

Для продвижения сайтов коммерческой направленности важна конфиденциальность обмена информацией междусервером и посетителями. Это повышает лояльность потенциальных клиентов к ресурсу, увеличивает уровеньдоверия, влияет на конверсию и рост позиций в выдаче практически по всем запросам.

Cтатьи по теме:

  • Заявление Google

Обновлено 31.05.2021 02:40

Технологии, которые используются на сайте

JavaScript фреймворки

jQuery

Код ответа сервера

Успешный запрос ресурса.

  • http://radiostorage.net301 Moved Permanently

  • https://radiostorage.net/200 OK

  • Успешный запрос ресурса.

Описание:

Для успешного индексирования страницы поисковыми ботами HTTP-код ответа сервера должен быть 200

Дополнительная информация:

  • Проверка ответа сервера внутренних страниц сайта
  • Список кодов состояния
  • Коды ответов сервера — подробное описание

Обновлено 31.05.2021 02:40

IP
185.52.1.27

Местоположение сервера
Соединенные Штаты

Расположение сервера имеет значение для поисковых роботов. При ранжировании они отдают предпочтение сайтам, чьи серверы находятся в той же стране, что и целевая аудитория ресурса.

Обновлено 31.05.2021 02:40

Датацентр
RouteLabel V.O.F.

Ошибки HTML кода

Найдено 0 ошибок и 0 предупреждений.

Описание:

Код без ошибок — это код, который соответствует стандартам W3C. Страницы с корректным кодом правильно отображаются в браузере, то есть имеют хорошие поведенческие факторы, и занимают более высокие позиции в выдаче.

Дополнительная информация:

Сервис W3C — проверка страниц на ошибки кода

Обновлено 31.05.2021 02:40

РАДИОСХЕМЫ, Схемы электрические принципиальные

Электрические схемы для начинающих, для любителей и профессионалов

Добро пожаловать в раздел Радиосхемы! Это отдельный раздел Сайта Радиолюбителей который был создан специально для тех кто дружит с паяльником, привык все делать сам своими руками и он посвящен исключительно электрическим схемам.

Здесь Вы найдете принципиальные схемы различной тематики как для самостоятельной сборки начинающими радиолюбителями, так и для более опытных радиолюбителей, для тех кому слово РАДИО давно уже стало не просто хобби а профессией.

Кроме схем для самостоятельной сборки, у нас здесь имеется и достаточно большая (и постоянно обновляемая!) база электрических схем различной промышленной электроники и бытовой техники- схемы телевизоров, мониторов, магнитол, усилителей, измерительных приборов, стиральных машин, микроволновок и так далее.

Специально для работников сферы ремонта, у нас на сайте имеется раздел «Даташиты», где вы сможете найти справочную информацию на различные радиоэлементы.

А если Вам необходима какая либо схема и есть желание ее скачать, то у нас здесь все и прочих сюрпризов

Если есть вопросы или не нашли то что искали- заходите к нам на ФОРУМ, подумаем вместе!!

Для облегчения поиска необходимой информации раздел разбит по категориям

Схемы для начинающих

В этом разделе собраны простые схемы для начинающих радиолюбителей. Все схемы чрезвычайно просты, имеют описание и предназначены для самостоятельной сборки.материалы в категории

Свет и музыка

устройства световых эффектов: мигалки, цветомузыки, стробоскопы, автоматы переключения гирлянд и так далее. Конечно-же все схемы можно собрать самостоятельно

Схемы источников питания

Любая радиоэлектронная аппаратура нуждается в питании. Именно источникам питания и посвящена данная категория

Электроника в быту

В этой категории представлены схемы устройств для бытового применения: отпугиватели грызунов, различные сигнализации, ионизаторы и так далее… В общем все что может быть полезно для дома

Антенны и Радиоприемники

 Антенны ( в том числе и самодельные), антенные комплектующие а также схемы радиоприемников для самостоятельной сборки

Шпионские штучки

В этом разделе находятся схемы различных «шпионских» устройств- радиожучки, глушители и прослушиватели телефонов, детекторы радиожучков

Авто- Мото- Вело электроника

Принципиальные схемы различных вспомогательных устройств к автомобилям: зарядные устройства, указатели поворотов, управление светом фар и так далее

Измерительные приборы

Электрические принципиальные схемы измерительных приборов: как самодельных так и промышленного производства

Отечественная техника 20 Века

Подборка электрических принципиальных схем бытовой радиоаппаратуры выпущенной в СССР

Схемы телевизоров LCD (ЖК)

Электрические принципиальные схемы телевизоров LCD (ЖК)

Схемы программаторов

Схемы различных программаторов

Аудиотехника

Схемы устройств связанных со звуком: усилители транзисторные и на микросхемах, предварительные и ламповые, устройства преобразования звука

Схемы мониторов

Принципиальные электрические схемы различных мониторов: как стареньких кинескопных, так и современных ЖК

Схемы автомагнитол и прочей авто-аудиотехники

 Подборка схем автомобильной аудиотехники: автомагнитолы, усилительные устройства и автомобильные телевизоры

Схемы автомагнитол

устройства на микроконтроллерах

материалы в категории

Схемы музыкальных центров

Электрические принципиальные схемы и инструкции по реонту музыкальных центров

материалы в категории

Схемы DVD плееров и домашних кинотеатров

материалы в категории

Схемы усилителей и ресиверов

материалы в категории

Схемы Блоков питанияиинверторов ЖК телевизорови мониторов

Электрические принципиальные схемы инверторов и источников питания телевизоров

Схемы инверторов и источников питания ЖК телевизоров и мониторов

Схемы телефонов и для телефонов

 Схемы радиотелефонов и различных самодельных устройств к телефонам- антипираты, блокираторы и так далее

материалы в категории

Схемы инверторовСварочных

Схемы сварочного оборудования- сварочные источники, полуавтоматы и инверторы

Схемы сварочных инверторов

Справочные материалы

Различные справочники в помощь радиолюбителям

материалы в категории

Приемник AM

Одной из основных, базовых исторически схем является приемник, предназначенный для обработки амплитудно-модулированного сигнала, то есть несущей волны, в которой изменение значения амплитуды отражает передаваемую информацию. Демодуляции такого сигнала можно добиться с помощью простого диодного детектора. Принципиальная схема базового AM-приемника включает в себя: антенну, фильтр, диодный детектор и усилитель, обеспечивающий соответствующий уровень демодулированного (уже звукового) сигнала. Диодный детектор в простейших решениях AM-приемников работает как односторонний выпрямитель, который отслеживает изменения огибающей модулированного сигнала путем зарядки и разрядки конденсатора.

Есть различные модификации амплитудной модуляции, возникшие из-за недостатков базовой версии. Спектр амплитудно-модулированного сигнала, помимо несущей частоты, также включает компоненты, частоты которых являются суммой и разностью частоты несущей волны и частоты информационного сигнала. Это так называемые боковые полосы, они называются так потому, что на самом деле сигнал, которым модулируется несущая волна, может содержать множество компонентов с разными частотами. Для воссоздания исходного сигнала нужна только одна полоса. Получение узкой полосы излучения и высокой энергоэффективности достигается за счет подавления одной боковой полосы и несущей волны — технология SSB.

Сверхрегенеративный радиоприемник на FM диапазон

Сверхрегенеративный радиоприемник обладает высокой чувствительностью (до ед. мкВ) при достаточной простоте. На рис. 4 приведен фрагмент схемы сверхрегенеративного радиоприемника Е. Солодовникова (без УНЧ, который может быть выполнен по одной из приводимых ранее схем — Простейшие усилители низкой частоты на транзисторах) [Рл 3/99-19].

Рис. 4. Схема сверхрегенеративного радиоприемника Е. Солодовникова.

Высокая чувствительность приемника обусловлена наличием глубокой положительной обратной связи, благодаря которой коэффициент усиления каскада после включения радиоприемника довольно быстро возрастает до бесконечности, схема переходит в режим генерации.

Для того чтобы самовозбуждение не происходило, а схема могла работать как высокочувствительный усилитель высокой частоты, используют очень оригинальный прием. Как только коэффициент усиления каскада усиления возрастет выше некоторого заданного уровня, его резко снижают до минимума.

График изменения коэффициента усиления от времени напоминает пилу. Именно по этому закону изменяют коэффициент усиления усилителя. Усредненный же коэффициент усиления может доходить до миллиона. Управлять коэффициентом усиления можно при помощи специального дополнительного генератора пилообразных импульсов.

На практике поступают проще: в качестве такого генератора используется по двойному назначению сам высокочастотный усилитель. Генерация пилообразных импульсов происходит на неслышимой ухом ультразвуковой частоте, обычно десятки кГц. Для того чтобы ультразвуковые колебания не проникали на вход последующего каскада УНЧ, используют простейшие фильтры, выделяющие сигналы звуковых частот (R6C7, рис. 4).

Сверхрегенеративные приемники обычно используют для приема высокочастотных (свыше 10 МГц) сигналов с амплитудной модуляцией. Прием сигналов с частотной модуляцией возможен за счет преобразования частотной модуляции в амплитудную и последующего детектирования эмиттерным переходом транзистора полученного таким образом амплитудно-модулированного сигнала.

Преобразование частотной модуляции в амплитудную происходит в случае, если приемник, предназначенный для приема амплитудно-модулированных сигналов, настроить неточно на частоту приема частотно-модулированного сигнала.

При такой настройке изменение частоты принимаемого сигнала постоянной амплитуды вызовет изменение амплитуды сигнала, снимаемого с колебательного контура: при приближении частоты принимаемого сигнала к частоте резонанса колебательного контура амплитуда выходного сигнала растет, при удалении от резонансной — снижается.

Наряду с неоспоримыми достоинствами, схема «сверхрегенератора» обладает массой недостатков. Это — невысокая избирательность, повышенный уровень шумов, зависимость порога генерации от частоты приема, от напряжения питания и т.д.

При приеме радиовещательных ЧМ-сигналов в диапазоне FM —  100…108 МГц или сигналов звукового сопровождения телевидения, катушка L1 представляет собой полувиток диаметром 30 мм с линейной частью 20 мм. Диаметр провода — 1 мм. L2 имеет 2…3 витка диаметром 15 мм из провода диаметром 0,7 мм, расположенных внутри полувитка.

Для диапазона 66…74 МГц катушка L1 содержит 5 витков диаметром 5 мм из провода 0,7 мм с шагом 1…2 мм. L2 имеет 2…3 витка такого же провода. Обе катушки не имеют каркасов и расположены параллельно друг другу. Антенна выполнена из отрезка монтажного провода длиной 50… 100 см. Настройку устройства осуществляют потенциометром R2.

Поисковые запросы

Яндекс

#####

Эффективных показов

487  +503

Запросов Топ-3

745  +760

Топ-5

1 395  +1 417

Топ-10

2 362  +2 426

Топ-20

4 802  +5 073

Топ-50

Ключевое слово Позиция Показов URL
радиотехника 7111 ### не число #######
антенный усилитель схема ### не число #######
разрешенные частоты в россии ### не число #######
к174ха54 ### не число #######
диод обозначение ### не число #######
усилитель звука на транзисторах ### не число #######
ласпи 005 ### не число #######
ласпи-005 ### не число #######
программа расчета импульсного трансформатора ### не число #######
справочник по светодиодам ### не число #######

Как самому продвинуть сайт в ТОП Яндекса и GoogleПопробовать

Аудиоаппаратура

Транзисторные УНЧ (112)Собрание схем усилителей мощности низкой частоты на биполярных и полевых транзисторах.

УНЧ на микросхемах (350)Схемы усилителей мощности НЧ, собранных на интегральных микросхемах (интегральные УНЧ).

Схемы УНЧ на лампах (54)Ламповые усилители мощности звуковой частоты, УМЗЧ на электронных лампах — радиолампах.

Предусилители НЧ (62)Самодельные предусилители, микрофонные усилители, корректоры для аудио аппаратуры.

Регуляторы тембра и эквалайзеры (55)Принципиальные схемы регуляторов тембра, эквалайзеров, темброблоков на микросхемах и транзисторах.

Коммутация и индикация аудиосигналов (32)Простые индикаторы выходной мощности УНЧ, анализаторы спектра, коммутаторы и селекторы сигнала.

Аудио эффекты и приставки (84)Подборка схем приставок к аудиоаппаратуре, микшеры, для гитары, квадро-эффекты, сурраунд, аудио-процессоры.

Акустические системы (10)Конструкции акустических систем, сабвуферов, схемы фильтров низких, средних и высоких частот.

Регенеративные радиоприемники на транзисторах КП303

Регенеративные приемники, или приемники, использующие для увеличения чувствительности положительные обратные связи, в промышленных разработках не встречаются. Однако для освоения всевозможных вариантов реализации приемной техники можно рекомендовать ознакомиться с работой двух таких устройств конструкции И. Григорьева (рис. 5 и 6) [Рл 9/95-12; 10/95-12].

Рис. 5. Схема приемника для приема сигналов AM в диапазоне КВ, СВ и ДВ.

Приемник (рис. 5) предназначен для приема сигналов AM в диапазоне коротких, средних и длинных волн. Его чувствительность на частоте 20 МГц достигает 10 мкВ. Для сравнения: чувствительность наиболее совершенного приемника прямого усиления примерно в 100 раз ниже.

Рис. 6. Схема простого регенеративного радиоприемника на диапазоны частот 1,5…40 МГц.

Приемник (рис. 6) способен работать в диапазоне 1,5…40 МГц. Для диапазона 1,5…3,7 МГц катушка L1 имеет индуктивность 23 мкГн и содержит 39 витков провода диаметром 0,5 мм на каркасе диаметром 20 мм при ширине намотки 30 мм. Катушка L2 имеет 10 витков такого же провода и намотана на этом же каркасе.

Для диапазона 3…24 МГц катушка L1 индуктивностью 1,4 мкГн содержит 10 витков провода диаметром 2 мм, намотанного на каркасе диаметром 20 мм, при ширине намотки 40 мм. Катушка L2 имеет 3 витка с диаметром провода 1,0 мм.

В диапазоне 24…40 МГц L1 (0,5 мкГн) содержит 5 витков, ширина намотки — 30 мм, a L2 имеет 2 витка. Рабочую точку приемников (рис. 5, 6) устанавливают потенциометром R4.

Зеркальный радиосигнал

Недостатком приемников с преобразованием частоты является необходимость подавления так называемого зеркального сигнала. Объяснение неблагоприятного влияния зеркального сигнала можно увидеть на примере. Предполагаем, что модулированный сигнал имеет частоту 100 МГц, а гетеродин генерирует сигнал с частотой 110,7 МГц. В результате смешивания обоих сигналов создается сигнал с частотой f h – f RF = 10,7 МГц. Фильтр ПЧ настроен на эту частоту, но сигнал с частотой 121,4 МГц также достигает антенны. Это зеркальный сигнал, то есть форма волны с частотой, которая отличается от частоты полезного сигнала на величину, равную удвоенной промежуточной частоте.

Если сигнал этот не подавляется входными цепями, то смешивание этого сигнала и сигнала от генератора также даст форму волны 10,7 МГц. Это будет мешать правильному приему полезного сигнала. Решением проблемы помех при приеме зеркальных сигналов является использование супергетеродинного приемника с двойным преобразованием.

Входные цепи супергетеродина и приемника прямого преобразования

Наконец, на рис. 11 показана схема входной цепи простейшего супергетеродинного приемника, а на рис. 12 приемника с нулевой промежуточной частотой — приемника прямого преобразования.

Рис. 11. Схема конвертера В. Беседина.

Конвертер В. Беседина (рис. 11) «переносит» входной сигнал из полосы частот 2…30 МГц на более низкую «промежуточную» частоту, например, 1 МГц [Р 4/95-19]. Если на диоды VD1 и VD2 подать сигнал частотой 0,5…18 МГц от ГВЧ, то на выходе LC-фильтра L2C3 выделится сигнал, частота которого f3 равна разности частоты входного сигнала f1 и удвоенной частоты гетеродина f2: f3=f1-2f2 или Af3=Af1-2f2.

А если эти частоты кратны друг другу (f1=2f2), рис. 2, то к выходу устройства можно подключить УНЧ и принимать телеграфные сигналы и сигналы с однополосной модуляцией.

Рис. 12. Схема конвертера на транзисторах.

Заметим, что схема на рис. 12 легко преобразуется в схему на рис. 11 заменой транзисторов в диодном включении непосредственно диодами, и наоборот.

Чувствительность даже простых схем прямого преобразования может достигать 1 мкВ. Катушка L1 (рис. 11, 12) содержит 9 витков провода ПЭВ 0,51 мм, намотанных виток к витку на каркасе диаметром 10 мм. Отвод от 3-го витка снизу.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

УКВ ЧМ радиоприемник на транзисторе ГТ311

Для приема сигналов ЧМ можно использовать УКВ приемники прямого преобразования с фазовой автоподстройкой частоты. Такие приемники содержат преобразователь частоты с совмещенным гетеродином, выполняющим одновременно функции синхродетектора.

Рис. 7. Схема УКВ ЧМ радиоприемника А. Захарова на диапазон частот 66…74 МГц.

Входной контур устройства настроен на частоту приема, контур гетеродина — на частоту приема, деленную пополам. Преобразование сигнала происходит на второй гармонике гетеродина, поэтому промежуточная частота находится в звуковом диапазоне. Схема приемника А. Захарова показана на рис. 7 [Р 12/85-28]. Для диапазона частот 66…74 МГц бескаркасные катушки с внутренним диаметром 5 мм и шагом намотки 1 мм содержат, соответственно, 6 витков с отводом от середины (И) и 20 витков (L2) провода ПЭВ-0,56 мм.

Архивы статей

Архивы статейВыберите месяц Сентябрь 2021  (1) Август 2021  (4) Июль 2021  (5) Июнь 2021  (4) Май 2021  (5) Апрель 2021  (5) Март 2021  (4) Февраль 2021  (5) Январь 2021  (5) Декабрь 2020  (6) Ноябрь 2020  (5) Октябрь 2020  (6) Сентябрь 2020  (6) Август 2020  (5) Июль 2020  (4) Июнь 2020  (5) Май 2020  (5) Апрель 2020  (7) Март 2020  (5) Февраль 2020  (5) Январь 2020  (6) Декабрь 2019  (5) Ноябрь 2019  (6) Октябрь 2019  (5) Сентябрь 2019  (4) Август 2019  (5) Июль 2019  (5) Июнь 2019  (5) Май 2019  (6) Апрель 2019  (7) Март 2019  (8) Февраль 2019  (6) Январь 2019  (7) Декабрь 2018  (8) Ноябрь 2018  (5) Октябрь 2018  (7) Сентябрь 2018  (7) Август 2018  (7) Июль 2018  (7) Июнь 2018  (6) Май 2018  (7) Апрель 2018  (7) Март 2018  (7) Февраль 2018  (7) Январь 2018  (8) Декабрь 2017  (9) Ноябрь 2017  (8) Октябрь 2017  (9) Сентябрь 2017  (9) Август 2017  (7) Июль 2017  (8) Июнь 2017  (7) Май 2017  (10) Апрель 2017  (8) Март 2017  (8) Февраль 2017  (7) Январь 2017  (6) Декабрь 2016  (10) Ноябрь 2016  (7) Октябрь 2016  (5) Сентябрь 2016  (7) Август 2016  (9) Июль 2016  (8) Июнь 2016  (8) Май 2016  (7) Апрель 2016  (7) Март 2016  (7) Февраль 2016  (6) Январь 2016  (8) Декабрь 2015  (7) Ноябрь 2015  (8) Октябрь 2015  (8) Сентябрь 2015  (8) Август 2015  (5) Июль 2015  (6) Июнь 2015  (10) Май 2015  (6) Апрель 2015  (10) Март 2015  (8) Февраль 2015  (9) Январь 2015  (11) Декабрь 2014  (10) Ноябрь 2014  (9) Октябрь 2014  (8) Сентябрь 2014  (13) Август 2014  (10) Июль 2014  (8) Июнь 2014  (6) Май 2014  (7) Апрель 2014  (8) Март 2014  (21) Февраль 2014  (13) Январь 2014  (14) Декабрь 2013  (11) Ноябрь 2013  (16) Октябрь 2013  (12) Сентябрь 2013  (13) Август 2013  (11) Июль 2013  (10) Июнь 2013  (11) Май 2013  (14) Апрель 2013  (10) Март 2013  (11) Февраль 2013  (11) Январь 2013  (18) Декабрь 2012  (23) Ноябрь 2012  (25) Октябрь 2012  (31) Сентябрь 2012  (32) Август 2012  (33) Июль 2012  (16) Июнь 2012  (15) Май 2012  (32) Апрель 2012  (44) Март 2012  (49) Февраль 2012  (44) Январь 2012  (34) Декабрь 2011  (5)