On-line калькуляторы

Теоретическое обоснование

Если в проводящем контуре течёт ток, то ток создаёт магнитное поле .

Будем вести рассмотрение в квазистатическом приближении, подразумевая, что переменные электрические поля достаточно слабы либо меняются достаточно медленно, чтобы можно было пренебречь порождаемыми ими магнитными полями.

Ток считаем одинаковым по всей длине контура (пренебрегая ёмкостью проводника, которая позволяет накапливать заряды в разных его участках, что вызвало бы неодинаковость тока вдоль проводника и заметно усложнило бы картину).

По закону Био — Савара — Лапласа, величина вектора магнитной индукции, создаваемой некоторым элементарным (в смысле геометрической малости участка проводника, рассматриваемого как элементарный источник магнитного поля) током в каждой точке пространства, пропорциональна этому току. Суммируя поля, создаваемые каждым элементарным участком, приходим к тому, что и магнитное поле (вектор магнитной индукции), создаваемое всем проводником, также пропорционально порождающему току.

Рассуждение выше верно для вакуума. В случае присутствия магнитной среды (магнетика) с заметной (или даже большой) магнитной восприимчивостью, вектор магнитной индукции (который и входит в выражение для магнитного потока) будет заметно (или даже во много раз) отличаться от того, каким бы он был в отсутствие магнетика (в вакууме). Мы ограничимся здесь линейным приближением, тогда вектор магнитной индукции, хотя, возможно, возросший (или уменьшившийся) в заметное количество раз по сравнению с отсутствием магнетика при том же контуре с током, тем не менее остаётся пропорциональным порождающему его току.

Тогда магнитный поток, то есть поток поля вектора магнитной индукции:

Φ = ∫ S B ⋅ d S \mathbf \cdot \mathbf >

через любую конкретную фиксированную поверхность S

(в частности и через интересующую нас поверхность, краем которой является наш контур с током) будет пропорционален току, так как пропорционально токуB всюду под интегралом.

Заметим, что поверхность, краем которой является контур, может быть достаточно сложна, если сложен сам контур. Уже для контура в виде просто многовитковой катушки такая поверхность оказывается достаточно сложной. На практике это приводит к использованию некоторых упрощающих представлений, позволяющих легче представить такую поверхность и приближённо рассчитать поток через неё (а также в связи с этим вводятся некоторые дополнительные специальные понятия, подробно описанные в отдельном параграфе ниже). Однако здесь, при чисто теоретическом рассмотрении нет необходимости во введении каких-то дополнительных упрощающих представлений, достаточно просто заметить, что как бы ни был сложен контур, в данном параграфе мы имеем в виду «полный поток» — то есть поток через всю сложную (как бы многолистковую) поверхность, натянутую на все витки катушки (если речь идет о катушке), то есть о том, что называется потокосцеплением. Но поскольку нам здесь не надо конкретно рассчитывать его, а нужно только знать, что он пропорционален току, нам не слишком интересен конкретный вид поверхности, поток через которую нас интересует (ведь свойство пропорциональности току сохраняется для любой

).

Итак, мы обосновали:

этого достаточно, чтобы утверждать, введя обозначение L

для коэффициента пропорциональности, что

В заключение теоретического обоснования покажем, что рассуждение корректно в том смысле, что магнитный поток не зависит от конкретной формы поверхности, натянутой на контур. (Действительно, даже на самый простой контур может быть натянута — в том смысле, что контур должен быть её краем — не единственная поверхность, а разные, например, начав с двух совпадающих поверхностей, затем одну поверхность можно немного прогнуть, и она перестанет совпадать со второй). Поэтому надо показать, что магнитный поток одинаков для любых поверхностей, натянутых на один и тот же контур.

Но это действительно так: возьмём две такие поверхности. Вместе они будут составлять одну замкнутую поверхность. А мы знаем (из закона Гаусса для магнитного поля), что магнитный поток через любую замкнутую поверхность равен нулю. Это (с учетом знаков) означает, что поток через одну поверхность и другую поверхность — равны. Что доказывает корректность определения.

Свойства катушки индуктивности

Свойства катушки индуктивности:

  • Скорость изменения тока через катушку ограничена и определяется индуктивностью катушки.
  • Сопротивление (модуль импеданса) катушки растет с увеличением частоты текущего через неё тока.
  • Катушка индуктивности при протекании тока запасает энергию в своём магнитном поле. При отключении внешнего источника тока катушка отдаст запасенную энергию, стремясь поддержать величину тока в цепи. При этом напряжение на катушке нарастает, вплоть до пробоя изоляции или возникновения дуги на коммутирующем ключе.

Катушка индуктивности в электрической цепи для переменного тока имеет не только собственное омическое (активное) сопротивление, но и реактивное сопротивление переменному току, нарастающее при увеличении частоты, поскольку при изменении тока в катушке возникает ЭДС самоиндукции, препятствующая этому изменению.

Катушка индуктивности обладает реактивным сопротивлением, модуль которого XL=ωL{\displaystyle X_{L}=\omega L}, где L{\displaystyle L} — индуктивность катушки, ω{\displaystyle \omega } — циклическая частота протекающего тока. Соответственно, чем больше частота тока, протекающего через катушку, тем больше её сопротивление.

Катушка с током запасает энергию в магнитном поле, равную работе, которую необходимо совершить для установления текущего тока I{\displaystyle I}. Эта энергия равна:

Векторная диаграмма в виде комплексных амплитуд для идеальной катушки индуктивности в цепи синусоидального напряжения

Катушка индуктивности в переменном напряжении — аналог подверженного механическим колебаниям тела с массой.

Eсохр=12LI2.{\displaystyle E_{\mathrm {\text{сохр}} }={1 \over 2}LI^{2}{\mbox{.}}}

При изменении тока в катушке возникает ЭДС самоиндукции, значение которой:

ε=−LdIdt.{\displaystyle \varepsilon =-L{dI \over dt}{\mbox{.}}}

Для идеальной катушки индуктивности (не имеющей паразитных параметров) ЭДС самоиндукции равна по модулю и противоположна по знаку напряжению на концах катушки:

|ε|=−ε=U.{\displaystyle |\varepsilon |=-\varepsilon =U{\mbox{.}}}

При замыкании катушки с током на резистор происходит переходной процесс, при котором ток в цепи экспоненциально уменьшается в соответствии с формулой:

I=Iexp(−tT),{\displaystyle I=I_{0}exp(-t/T){\mbox{,}}}

где : I{\displaystyle I} — ток в катушке,

I{\displaystyle I_{0}} — начальный ток катушки,
t{\displaystyle t} — текущее время,
T{\displaystyle T} — постоянная времени.

Постоянная времени выражается формулой:

T=L(R+Ri),{\displaystyle T=L/(R+R_{i}){\mbox{,}}}

где R{\displaystyle R} — сопротивление резистора,

Ri{\displaystyle R_{i}} — омическое сопротивление катушки.

При закорачивании катушки с током процесс характеризуется собственной постоянной времени Ti{\displaystyle T_{i}} катушки:

Ti=LRi.{\displaystyle T_{i}=L/R_{i}{\mbox{.}}}

При стремлении Ri{\displaystyle R_{i}} к нулю, постоянная времени стремится к бесконечности, именно поэтому в сверхпроводящих контурах ток течёт «вечно».

В цепи синусоидального тока, ток в катушке по фазе отстаёт от фазы напряжения на ней на π/2.

Явление самоиндукции аналогично проявлению инертности тел в механике, если аналогом индуктивности принять массу, тока — скорость, напряжения — силу, то многие формулы механики и поведения индуктивности в цепи принимают похожий вид:

F =mdvdt{\displaystyle F\ =m{dv \over dt}} |ε|=LdIdt{\displaystyle |\varepsilon |=L{dI \over dt}},

где

F {\displaystyle F\ } |ε|{\displaystyle |\varepsilon |} U {\displaystyle U\ } ; m {\displaystyle m\ } L {\displaystyle L\ } ; dv {\displaystyle dv\ } dI {\displaystyle dI\ }
Ecoxp=12LI2{\displaystyle E_{\mathrm {coxp} }={1 \over 2}LI^{2}} Ekinet=12mv2{\displaystyle E_{\mathrm {kinet} }={1 \over 2}mv^{2}}

Реактивное сопротивление катушки индуктивности.

При протекании переменного тока I в катушке, магнитное поле создаёт в её витках ЭДС, которая препятствует изменению тока.
При увеличении тока, ЭДС отрицательна и препятствует нарастанию тока, при уменьшении – положительна и препятствует его убыванию,
оказывая таким образом сопротивление изменению тока на протяжении всего периода.

В результате созданного противодействия, на выводах катушки индуктивности в противофазе формируется напряжение U, подавляющее ЭДС,
равное ей по амплитуде и противоположное по знаку.

При прохождении тока через нуль, амплитуда ЭДС достигает максимального значения,
что образует расхождение во времени тока и напряжения в 1/4 периода.

Если приложить к выводам катушки индуктивности напряжение U, ток не может начаться мгновенно по причине противодействия ЭДС,
равного -U, поэтому ток в индуктивности всегда будет отставать от напряжения на угол 90°. Сдвиг при отстающем токе называют положительным.

Запишем выражение мгновенного значения напряжения u исходя из ЭДС (ε), которая
пропорциональна индуктивности L и скорости изменения тока: u = -ε = L(di/dt).
Отсюда выразим синусоидальный ток .

Интегралом функции sin(t) будет -соs(t), либо равная ей функция sin(t-π/2).
Дифференциал dt функции sin(ωt) выйдет из под знака интеграла множителем 1.
В результате получим выражение мгновенного значения тока со
сдвигом от функции напряжения на угол π/2 (90°).
Для среднеквадратичных значений U и I в таком случае можно записать .

В итоге имеем зависимость синусоидального тока от напряжения согласно Закону Ома,
где в знаменателе вместо R выражение ωL, которое и является реактивным сопротивлением:

Реактивное сопротивлениие индуктивностей называют индуктивным.

Применение катушек в технике

Явление электромагнитной индукции известно уже давно и широко применяется в технике. Примеры использования:

  • сглаживание пульсаций и помех, накопление энергии;
  • создание магнитных полей в различных устройствах;
  • фильтры цепей обратной связи;
  • создание колебательных контуров;
  • трансформаторы (устройство из двух катушек, связанных индуктивно);
  • силовая электротехника использует для ограничения тока при к. з. на ЛЭП (катушки индуктивности, называются реакторами);
  • ограничение тока в сварочных аппаратах — катушки индуктивности делают его работу стабильнее, уменьшая дугу, что позволяет получить ровный сварочный шов, имеющий наибольшую прочность;
  • применение катушек в качестве электромагнитов различных исполнительных механизмов;
  • обмотки электромагнитных реле;
  • индукционные печи;
  • установление качества железных руд, исследование горных пород при помощи определения магнитной проницаемости минералов.

Влияние расположение катушки индуктивности относительно сердечника

Довольно часто стержневые сердечники используют для точной настройки индуктивности или подстройки в небольших пределах, также длинные стержневые сердечники используют в магнитных антеннах радиоприёмников на средне- и длинноволновом диапазоне. Их объединяет то, что катушка индуктивности зачастую расположена не на средине сердечника. Ниже представлена катушка индуктивности на разомкнутом сердечнике, используемая в качестве магнитной антенны


Расположение катушки индуктивности на сердечнике в магнитной антенне.

Как я уже говорил, размагничивающий фактор не равномерно распределён по длине разомкнутого сердечника. Его значение увеличивается от середины сердечника к его краям, а магнитная проницаемость, а соответственно уменьшается от центра сердечника к его краям. Чтобы не усложнять выражение для размагничивающего фактора введем корректирующий коэффициент pl, зависящий от расположения катушки на сердечнике

где х – расстояние от середины сердечника до середины катушки,

l – длина сердечника,

β – коэффициент, зависящий от расположения катушки на сердечнике.

Расчет катушки на каркасе многоугольной формы

Довольно часто катушка наматывается на каркасе квадратной или многоугольной формы. Для расчета такой катушки можно представить ее в виде эквивалентной круглой катушки с такой же длиной намотки и числом витков. Самый простой способ — геометрический. Либо принять за эквивалент цилиндрический каркас с равной полигону площадью поперечного сечения, либо с равным периметром — истина лежит где-то посередине. Вот пример простейшего решения. Представляем полигональное сечение каркаса в виде эквивалентной окружности используя следующую формулу:

,где

  • D — диаметр окружности, описывающей многоугольник;
  • n — число граней каркаса (6 на рисунке);
  • D — диаметр эквивалентной круглой катушки;

Диаметр D далее подставляется в формулы расчета однослойной катушки. Формула использовалась в предыдущих версиях Coil32 и дает неплохое приближение, однако существует более точное решение.

В 1946 г. в работе «Расчет индуктивностей — рабочие формулы и таблицы» приводит табличные данные соответствия многоугольной катушки ее круглому эквиваленту, набранные из экспериментальных измерений. На основании этих таблиц , позволяющую более точно рассчитать катушку на многоугольном каркасе.

Обозначим радиус окружности, описывающей многоугольник как r. Очевидно, что 2 r = D. Площадь поперечного сечения многоугольного каркаса:

А его периметр:

Обозначим радиус окружности с длиной равной периметру многоугольника как rP, а радиус окружности с площадью круга равной площади многоугольника как rA, тогда очевидно что rP = P/2π, а rA = √(A/π)

Как известно, в случае длинного соленоида его индуктивность пропорциональна площади поперечного сечения катушки. Казалось бы нам вполне достаточно определить rA, но это не так. Для коротких катушек эквивалентный радиусrE = 2 D получается как промежуточное значение между rP и rA Его можно определить как среднее значение между этими двумя радиусами введя поправочный коэффициент kW, который меняется от единицы — когда длина катушки стремится к нулю и до нуля — когда длина катушки стремится к бесконечности. В итоге радиус намотки эквивалентной катушки определяется по следующим формулам:

,где: l — длина намотки катушки, а D — диаметр окружности описывающей многоугольник. Коэффициент 368 подобран эмпирически для соответствия расчетов с таблицами Ф.Гровера.

Этот метод расчета использует Coil32. Погрешность расчета по такому методу не превышает ±1.5% для катушек, намотанных на каркасе с треугольным поперечным сечением и становится гораздо меньше при увеличении числа граней катушки.

Назад…      

Калькулятор взаимной индукции

Этот калькулятор определяет взаимоиндукцию двух связанных катушек индуктивности.

Пример.

Рассчитать взаимную индуктивность двух расположенных рядом катушек индуктивности 10 мкГн и 5 мкГн с коэффициентом связи 0,5.

Входные данные

Индуктивность первой катушки, L1

генри (Гн)миллигенри (мГн)микрогенри (мкГн)наногенри (нГн)пикогенри (пГн) Индуктивность второй катушки, L2

миллигенри (мГн)

Коэффициент связи, k

0 ≤ k

≤ 1

Выходные данные

ВзаимоиндукцияM миллигенри (мГн)

Введите величины индуктивностей и коэффициента связи, выберите единицы индуктивности в генри (Гн), миллигенри (мГн), микрогенри (мкГн) или пикогенри (пГн) и нажмите кнопку Рассчитать

В токоизмерительных клещах с разъемным магнитопроводом для безопасного измерения тока без необходимости подключать прибор к схеме используется измерительный трансформатор. В приборе используется явление взаимной индукции. На разъемном магнитопроводе надета катушка, являющаяся вторичной обмоткой измерительного трансформатора. Первичной «обмоткой» является охватываемый магнитопроводом провод с током. Электродвижущая сила, возникающая в катушке на магнитопроводе, пропорциональна току, текущему в проводнике, охваченном клещами. Прибор измеряет напряжение на зажимах катушки и указывает на дисплее значение измеряемого тока.

Калькулятор определит взаимоиндукцию M двух связанных катушек индуктивности по формуле:

где k — коэффициент связи, L₁ — индуктивность первой катушки и L₂ — индуктивность второй катушки. Коэффициент связи определяется как отношение взаимоиндукции двух катушек к максимально возможному значению их взаимоиндукции. Коэффициент связи изменяется в пределах от 0 до 1 и зависит от близости катушек или обмоток, материала их сердечника, их взаимной ориентации, формы и количества витков. У слабо связанных катушек или обмоток коэффициент связи k 0.5. Если две катушки плотно намотаны одна над другой на общем ферромагнитном сердечнике, их связь почти идеальна и значение коэффициента связи k приближается к единице. Если же расстояние между катушками велико, значение k очень мало и приближается к нулю.

Тороидальные трансформатор и дроссель в импульсном блоке питания

Пример расчетов. Коэффициент связи двух катушек с индуктивностью 2 мкГн и 3 мкГн равен 0,5. Взаимоиндукция в микрогенри определяется как

Две катушки с взаимной индукцией на принципиальной схеме

При увеличении электрического тока, протекающего через катушку индуктивности L₁ от внешней цепи, вокруг катушки создается увеличивающееся магнитное поле, в котором сохраняется энергия. При уменьшении тока магнитное поле также уменьшается. При этом на выводах катушки возникает напряжение (ЭДС самоиндукции) в направлении, противоположном направлению тока, и сохраняемая в магнитном поле энергия отдается обратно во внешнюю цепь. Если рядом с первой катушкой поместить вторую катушку L₂, то магнитное поле, возникшее в первой катушке, создаст напряжение во второй катушке. Если общее магнитное поле пронизывает несколько катушек, говорят, что у них имеется взаимная индукция. Она обычно обозначает буквой M и измеряется в единицах индуктивности (генри).

Взаимоиндукция в вашем автомобиле: для создания искры в свечах зажигания используется катушка зажигания, представляющая собой трансформатор с высоким коэффициентом трансформации. Когда ток через первичную обмотку с малым числом витков прерывается, очень большая ЭДС возникает во вторичной обмотке с большим числом витков, которая достаточна для создания искры в зазоре автомобильной свечи зажигания

В обратной ситуации, если ток течет в катушке L₂, а наводится ток в катушке L₁, взаимоиндукция будет той же. Отметим, что электродвижущая сила (ЭДС) возникает только при изменении тока, причем чем быстрее изменяется ток, тем больше будет ЭДС. То есть, ЭДС взаимной индукции прямо пропорциональна скорости изменения тока

Явление взаимной индукции используется в трансформаторах, электродвигателях, генераторах и других устройствах, в которых для функционирования необходимо взаимодействие с магнитным полем. В то же время взаимоиндукция часто бывает нежелательной, когда возникает паразитная индуктивная связь между проводниками в схеме или даже между силовыми кабелями и металлическими кабельными каналами, в которых они помещены.

Какие параметры есть у катушки

От того, где будет применяться индуктивный элемент и на какой частоте работать, зависит его исполнение. Имеются общие параметры:

  • L – индуктивность;
  • R пот – сопротивление потерь;
  • Q – добротность;
  • свой резонанс и паразитарная ёмкость;
  • коэффициенты ТКИ и ТКД.

От чего зависит индуктивность

Индуктивность (коэффициент самоиндукции) L – это главная электрическая характеристика элемента, которая показывает количество накапливаемой дросселем энергии при передвижении тока. Величина энергии в катушки тем выше, чем больше её индуктивность. Единица измерений L – 1 Гн.

При взаимодействии тока и магнитного поля в обмотке возникают вредные явления. Они способствуют возникновению потерь, которые обозначают R пот. Формула потерь имеет вид:

R пот = rω + rd + rs + re.

Слагаемые формулы – это потери:

  • rω – в проводах;
  • rd – в диэлектрике;
  • rs – в сердечнике;
  • re – на вихревые токи.

В результате таких потерь импеданс индуктивного двухполюсника нельзя назвать целиком реактивным.

Добротность двухполюсника определяется по формуле:

Q = ω*L/R пот,

где ω*L = 2π*L – реактивное сопротивление.

При наматывании витков элемента между ними возникает ненужная ёмкость. Из-за этого дроссель превращается в колебательный контур с собственным резонансом.

ТКИ – показатель, описывающий зависимость L от Т0С.

ТКД – показатель, описывающий зависимость добротности от Т0С.

Информация. Изменение основных параметров индуктивного двухполюсника зависит от коэффициентов ТКИ, ТКД, а также от времени и влажности.

Плагин Ferrite: Расчет индуктивности на ферритовом стержне

В отличии от тороидальной индуктивности на ферритовом кольце, магнитный поток катушки на ферритовом стержне не замкнут целиком внутри феррита и каждая силовая линия проходит и по ферритовому стержню и по воздуху, поэтому расчет такой катушки представляет довольно сложную задачу. Индуктивность зависит от:

  • магнитной проницаемости ферритового стержня и его размеров;
  • размеров самой катушки;
  • взаимного соотношения размеров катушки и стержня;
  • положения катушки относительно центра стержня.

Расчет индуктивности катушки на ферритовом стержне основан на определении относительной эффективной проницаемости стержня. Другими словами, нам нужно определить насколько возрастет индуктивность катушки с «воздушным сердечником» если внутрь нее вставить ферритовый стержень. Основная формула выглядит вот так:

,где Lf / Lair — отношение индуктивности катушки с ферритом к индуктивности той же катушки без феррита, а коэффициенты x, k и μfe вычисляются по следующему алгоритму:

  1. l’ = lc + 0.45 dc;
  2. φ_φmax ≈ 1 / [ 1 + { ( ( lf — lc ) / df )1.4 } / ( 5 μ ) ];
  3. Canf = 0.5 π ε ( lf — lc ) / [ ln { 2 ( lf + df) / df } — 1 ];
  4. k = [ (φ_φmax Canf / ε ) + 2 df ] / 2 dc
  5. x = 5.1 [ l’ / dc ] / [1+ 2.8 ( dc / l’ )];
  6. μfe = ( μ -1) ( df /dc)2 +1;

где ε = 8,8542*10-12 Ф/м — электрическая постоянная, μ — начальная магнитная проницаемость материала стержня. Основные размеры в метрах, обозначения понятны из рисунка:

Немного теории обосновывающей этот алгоритм.

  • Можно считать что воздушная катушка имеет магнитную цепь состоящую из двух частей. Снаружи катушки и внутри нее. Они отличаются плотностью силовых линий и . Если магнитное сопротивление внутренней части магнитной цепи выше, чем наружной части (а это так, поскольку ее площадь поперечного сечения намного меньше), тогда применение феррита уменьшает это сопротивление и имеет эффект увеличения индуктивности. Это отношение двух частей магнитных сопротивлений магнитной цепи воздушной катушки обозначено в основной формуле как x и вычисляется на 5-ом шагу алгоритма.
  • Параметр μfe учитывает случай, когда обмотка не плотно прилегает к стержню, т.е. между стержнем и обмоткой существует радиальный зазор.
  • Параметр Canf учитывает влияние частей стержня, которые выступают за пределы катушки. Эти части уменьшают магнитное сопротивление внешней части магнитной цепи и также увеличивают индуктивность.
  • Параметр φ_φmax учитывает конечное магнитное сопротивление феррита. Этот параметр, наряду с параметром Canf используется для расчета коэффициента k из основного уравнения

При смещении катушки относительно стержня индуктивность катушки уменьшается, это обстоятельство учитывается с помощью поправочного коэффициента K:

,где

sh — относительное смещение = смещение s деленное на половину длины сердечника [sh = s / ( lf / 2 )].

Эта формула получена методом регрессионного анализа и справедлива при s = 0,05 — 0,75

В итоге индуктивность катушки на ферритовом стержне определяется по следующей формуле:

Индуктивность катушки  «воздушным» сердечником Lair рассчитывается по алгоритму расчета однослойной катушки с учетом шага намотки. Длину намотки можно определить по следующей формуле:

,где

  • N — число витков.
  • dw — диаметр провода.
  • p — шаг намотки.

Алгоритм имеет следующие ограничения в расчетах:

  • шаг намотки не может превышать удвоенного диаметра провода;
  • диаметр катушки не может быть больше удвоенного диаметра стержня;
  • длина намотки должна быть меньше 3/4 длины стержня;
  • длина стержня должна быть не менее чем в 12 раз больше его диаметра;
  • при смещении катушки она не должна доходить до края стержня на 1/8 его длины;
  • начальная магнитная проницаемость стержня должна быть больше 100;

Также как и в дросселе на ферритовом кольце с немагнитным зазором, при больших значениях начальной магнитной проницаемости стержня его эффективная магнитная проницаемость слабо зависит от начальной и составляет величину не более нескольких десятков.

Кроме того, вы можете воспользоваться онлайн-калькулятором катушки на ферритовом стержне.

Особая благодарность за конструктивную помощь и соавторство в разработке методики расчета.

Соленоид

Соленоид отличается от обычной катушки по двум признакам:

  • Длина обмотки превышает диаметр в несколько раз;
  • Толщина обмотки меньше диаметра катушки также в несколько раз.

Соленоидальный тип катушки

Параметры соленоида можно узнать из такого выражения:

L=µ0N2S/l,

где:

  • µ0 – магнитная постоянная;
  • N – количество витков;
  • S – площадь поперечного сечения обмотки;
  • l – длина обмотки.

Важно! Приведенное выражение справедливо для соленоида без сердечника. В противном случае необходимо дополнительно внести множитель µ, который равен магнитной проницаемости сердечника

Чем большую магнитную проницаемость будет иметь сердечник, тем больше увеличится итоговое значение.

Понятия: индукция и индуктивность

В 1820 году датским ученым Хансом Эрстедом была найдена зависимость магнитного поля от тока: при протекании электрического тока по проводу вокруг него образовывается магнитное поле. С целью охарактеризовать магнитное поле был введен некий критерий – это магнитная индукция. Поскольку магнитная индукция имеет свою ориентацию, то она является векторной величиной и описывает силу поля в конкретной точке пространства и объясняет влияние поля на контур (катушку) или элементарные заряженные частицы. Используя закон правого винта, находится ориентация трасс поля В.

В физике величина модуля вектора магнитной индукции В прямо пропорционально зависит от максимальной силы, действующей на участок провода, и обратно пропорционально зависит от силы тока в проводнике и длины участка провода:

B=Fmax/Il.

Исходя из формулы индукции, ее величина измеряется в особых мерах:

В=Н/Ам=Тл (Тесла).

Величина магнитной индукции в один Тесла представляет собой максимальную силу в один Ньютон, которая действует на некий отрезок шунта длиной один Метр, с протекающим в нем током силой один Ампер.

В зависимости от используемой модели, применяются разные методы вычисления модуля вектора магнитной индукции:

  1. Магнитное поле бесконечного прямого провода определяется как:

B=µ0I/2πr, где:

  • µ0 – магнитная постоянная, численно равная µ0=4π10-7 Тл×м/А;
  • I – ток проводника;
  • r – расстояние от измеряемой точки до проводника.

Магнитное поле бесконечного проводника

  1. Магнитное поле соленоида:

B= µ0IN/l, где:

  • N – число витков соленоида;
  • l – длина соленоида.

Соленоидом является катушка с равномерно распределенными витками, длина которой намного больше радиуса.

Магнитное поле соленоида

  1. Магнитное поле в центре кругового тока формулируется как:

B= µ0I/2r.

Магнитное поле кругового тока в контуре

Исходя из формул, независимо от выбора источника, генерирующего магнитное поле, модуль вектора магнитной индукции пропорционален силе тока в проводе B~I. Ток, протекающий в контуре, создает магнитное поле, которое также пронизывает и сам контур. Если в контуре поместить некоторую площадку, то эту площадку будет пронизывать магнитное поле, созданное круговым током в контуре. Соответственно, через площадку будет проходить некоторый магнитный поток.

Магнитный поток контура

Определение величины магнитного потока сквозь плоскую площадку выглядит как:

Φ=BScosα, где:

  • B – вектор магнитной индукции;
  • S – площадка (площадь);
  • α – угол между направлением нормали к площадке S и направлением вектора магнитной индукции В.

Учитывая пропорциональную зависимость вектора магнитной индукции от силы тока в контуре, можно прийти к выводу о такой же зависимости силы тока в контуре и магнитного потока Ф~I.

Поскольку отношение Ф/I зависит не только от тока контура, но и от площадки S, то данное отношение является характеристикой самого контура и называется индуктивностью контура:

L=Ф/I.

Индуктивностью контура (катушки) называется физическая величина, равная отношению магнитного потока, созданного током в этом контуре (катушке), к силе тока.

Единицей измерения индуктивности контура (катушки) является отношение Вб(вебер)/А(ампер), называется Гн (генри). Величиной один Генри является индуктивность такого контура (катушки), в котором курсирует ток с силой один ампер, и создается поток в один вебер.

Конструкция катушки

По конструктивному исполнению индуктивные элементы различаются:

  • видом намотки: винтоспиральная, винтовая; кольцевая;
  • количеством слоёв: однослойные или многослойные;
  • типом изолированного провода: одножильный, многожильный;
  • наличием каркаса: каркасные или бескаркасные (при небольшом количестве витков толстого провода);
  • геометрией каркаса: прямоугольный, квадратный, тороидальный;
  • наличием сердечника: ферритовый, из карбонильного железа, электротехнической стали, пермаллоевый (магнитомягкий сплав), металлический (латунный);
  • геометрией сердечника: стержневой (разомкнутый), кольцо-образный или ш-образный (замкнутый);
  • возможностью изменять L в узких интервалах (движение сердечника по отношению к обмотке).

Индуктивность проводника

Существуют плоские катушки, в печатном исполнении устанавливаемые на платах цифровых устройств.

К сведению. Намотка провода может быть как рядовой (витком к витку), так и в навал. Последний способ укладки провода снижает паразитную ёмкость.


Конструкция катушек