Тепловой расчет радиаторов автомобилей

Оглавление

Как точно рассчитать количество радиаторов отопления?

За основу методики взята формула (1) с коэффициентами, учитывающими климатические особенности местности и параметры конструкций здания, от которых зависят теплопотери в рассчитываемом помещении.

Количество секций радиатора N при точном расчете определяется по формуле (5):

N = K1 х K2 х K3 х K4 х K5 х K6 х K7 х K8 х K9 х K10 х (100 х S)/Q (5)

  • N — количество секций (с округлением до ближайшего целого числа);
  • S — площадь комнаты, м²;
  • Q —тепловая мощность одной секции, Вт.
  • K1…K10 поправочные коэффициенты.

К1 — на число внешних стен в помещении

Коэффициент К1 равен:

  • 0,8 — помещение внутреннее;
  • 1,0 — комната с одной наружной стеной;
  • 1,2 — помещение угловое — две перегородки с улицей;
  • 1,4 — три стены на улицу.

К2 — на ориентацию по сторонам света

От расположения наружных перегородок в помещении зависит степень их нагрева солнечными лучами. Коэффициент К2 равен:

  • 1,1 — наружные стены ориентированы на восток или север;
  • 1,0 — стены комнаты «смотрят» на запад или юг.

К3 — на степень утепленности стен

От характеристик утеплителя зависит термическое сопротивление стены, влияющее на теплопотери помещения. Коэффициент К3 равен:

  • 1,27 — наружная стена не утеплена;
  • 1,0 — перегородки комнаты в два кирпича без утеплителя;
  • 0,85 — стена с утеплителем, расчетное значение термического сопротивления всей стены соответствует нормам по СНиП.

Проверка соответствия нормам СНиП термического сопротивления стены, как многослойной конструкции, выполняется в следующей последовательности:

  1. Для каждого слоя рассчитывается свое термическое сопротивление Ri по формуле (6):

Ri = h / λ (6)

  • h — толщина слоя, м;
  • λ — коэффициент теплопроводности одного слоя.
  1. Полученные значения сопротивлений всех слоев суммируются.
  2. Вычисленная сумма сравнивается с нормированным значением для данной местности.

К4 — на особенности климатических условий региона

Этот коэффициент зависит от того, в какой климатической зоне расположен дом. В зависимости от средней температуры Tср за пять самых холодных зимних дней коэффициент К4 равен:

  • 1,5: Тср ≤ -35°C;
  • 1,3: -30 °C ≥Тср > -35 °C;
  • 1,2: -25°C≥ Тср > -30 °C;
  • 1,1: -20°C≥ Тср > -25 °C;
  • 1,0: -15°C≥ Тср > -20 °C;
  • 0,9: -10°C≤ Тср > -15 °C;
  • 0,7: Тср > -10 °C.

К5 — коэффициент высоты потолков

В зависимости от высоты Н потолков помещения величина коэффициента К5 равна:

  • 1,0: H < 2,7 м;
  • 1,05: 2,7 м ≤ H < 3,0 м;
  • 1,1: 3,0 м ≤ H < 3,5 м;
  • 1,15: 3,5 м ≤ H < 4,0 м;
  • 1,2: H ≥ 4,0 м.

К6 — на тип помещения, расположенного выше

Величина коэффициента К6 равна:

  • 1,0 — сверху комнаты — неутепленный чердак или крыша;
  • 0,9 — выше помещения — утепленный чердак;
  • 0,8 — верхнее помещение — отапливаемое.

К7 — на виды установленных окон

В зависимости от вида остекления коэффициент К7 равен:

  • 1,27 — деревянные окна с двойным остеклением;
  • 1,0 — пластиковые или деревянные окна современной конструкции с однокамерным стеклопакетом;
  • 0,85 — окна со стеклопакетом, число камер больше одной.

К8 — на площадь остекления

Расчет коэффициента К8:

  1. Вычисляют суммарную площадь всех окон в комнате.
  2. Делят полученное число на площадь помещения, получают приведенное значение Sпр.

В зависимости от величины Sпр величина коэффициента К8 равна:

  • 0,8: 00,1;пр
  • 0,9: 0,110,2;пр
  • 1,0: 0,210,3;пр
  • 1,1: 0,310,4;пр
  • 1,2: 0,410,5.пр

К9 — на схему подключения радиаторов

Значение коэффициента К9 равно:

  • 1,0: диагональное подключение, труба подачи вверху, труба обратки внизу;
  • 1,03: одностороннее подключение, теплоноситель движется сверху вниз;
  • 1,13: прибор отопления подключен по нижним отверстиям, труба подачи входит в радиатор с одной стороны, труба обратки выходит с другой;
  • 1,25: диагональное подключение, труба подачи внизу, труба обратки вверху;
  • 1,28: одностороннее подключение, теплоноситель движется снизу вверх;
  • 1,28: труба подачи и обратки снизу прибора отопления рядом друг с другом (в специальном фитинге).

К10 — на степень открытости установленных батарей

В зависимости от закрытия прибора отопления подоконником или экраном значение К10 равно:

  • 0,9: подоконник сверху радиатора и экран отсутствуют;
  • 1,0: сверху прибора расположена полка или подоконник;
  • 1,07: радиатор утоплен в стеновой нише;
  • 1,12: имеется подоконник и экран;
  • 1,2: прибор полностью закрыт декоративной панелью.

Где взять данные для расчета?

Тепловое сопротивление между кристаллом и корпусом
для силовых элементов обычно приводится в справочнике. И обозначается так:

Пусть Вас не смущает, что в справочнике написаны единицы измерения K/W или К/Вт. Это означает, что данная величина приведена в Кельвинах на Ватт, в грЦ на Вт она будет точно такой же, то есть X К/Вт = X грЦ/Вт.

Обычно в справочниках приведено максимально возможное значение этой величины с учетом технологического разброса. Она нам и нужно, так как мы должны проводить расчет для худшего случая. Для примера максимально возможное тепловое сопротивление между кристаллом и корпусом силового полевого транзистора SPW11N80C3 равно 0.8 грЦ/Вт,

Тепловое сопротивление между корпусом и радиатором
зависит от типа корпуса. Типичные максимальные значения приведены в таблице:

TO-3 1.56
TO-3P 1.00
TO-218 1.00
TO-218FP 3.20
TO-220 4.10
TO-225 10.00
TO-247 1.00
DPACK 8.33

Изоляционная прокладка.
По нашему опыту правильно выбранная и установленная изолирующая прокладка увеличивает тепловое сопротивление в два раза.

Тепловое сопротивление между корпусом / радиатором и окружающей средой
. Это тепловое сопротивление с точностью, приемлемой для большинства устройств, рассчитать довольно просто.

[Тепловое сопротивление, грЦ / Вт
] = [120, (грЦ * кв. см) / Вт
] / [Площадь радиатора или металлической части корпуса элемента, кв. см
].

Такой расчет подходит для условий, когда элементы и радиаторы установлены без создания специальных условий для естественного (конвекционного) или искусственного обдува. Сам коэффициент выбран из нашего практического опыта.

Спецификация большинства радиаторов содержит тепловое сопротивление между радиатором и окружающей средой. Так что в расчете надо пользоваться именно этой величиной. Рассчитывать эту величину следует только в случае, если табличных данных по радиатору найти не удается. Мы часто для сборки отладочных образцов используем б/у радиаторы, так что эта формула нам очень помогает.

Для случая, когда отвод тепла осуществляется через контакты печатной платы, площадь контакта также можно использовать в расчете.

Для случая, когда отвод тепла через выводы электронного элемента (типично диодов и стабилитронов относительно малой мощности), площадь выводов вычисляется, исходя из диаметра и длины вывода.

[Площадь выводов, кв. см.
] = Пи * ([Длина правого вывода, см.
] * [Диаметр правого вывода, см.
] + [Длина левого вывода, см.
] * [Диаметр левого вывода, см.
])

Формула для расчета охлаждения силового элемента

Для случая расчета теплоотвода электронного силового элемента то же самое можно сформулировать так:

[Температура кристалла силового элемента, грЦ
] = [Температура окружающей среду, грЦ
] + [Рассеиваемая мощность, Вт
] *

где [Полное тепловое сопротивление, грЦ / Вт
] = + [Тепловое сопротивление между корпусом и радиатором, грЦ / Вт
] + (для случая с радиатором),

или [Полное тепловое сопротивление, грЦ / Вт
] = [Тепловое сопротивление между кристаллом и корпусом, грЦ / Вт
] + [Тепловое сопротивление между корпусом и окружающей средой, грЦ / Вт
] (для случая без радиатора).

В результате расчета мы должны получить такую температуру кристалла, чтобы она была меньше максимально допустимой, указанной в справочнике.

Сколько нужно тепла для отопления?

Для точного расчета необходимого количества тепла для помещения следует учитывать множество факторов: климатические особенности местности, кубатуру здания, возможные теплопотери жилья (количество окон и дверей, строительный материал, наличие утеплителя и др.). Данная система вычислений достаточно трудоемкая и применяется в редких случаях.

В основном, расчет тепла определяется на основании установленных ориентировочных коэффициентов: для помещения с потолками не выше 3 метров, на 10 м2 требуется 1 Квт тепловой энергии. Для северных регионов показатель увеличивается до 1,3 Квт.

К примеру, помещение, площадью 80 м2, для оптимального обогрева требует 8 КВт мощности. Для северных районов количество тепловой энергии возрастет до 10,4 КВт

Несколько элементов на одном радиаторе.

Если на одном теплоотводе установлено несколько элементов, то расчет выглядит так. Сначала рассчитываем температуру радиатора по формуле:

[Температура радиатора, грЦ
] = [Температура окружающей среды, грЦ
] + [Тепловое сопротивление между радиатором и окружающей средой, грЦ / Вт
] * [Суммарная мощность, Вт
]

[Температура кристалла, грЦ
] = [Температура радиатора, грЦ
] + ([Тепловое сопротивление между кристаллом и корпусом элемента, грЦ / Вт
] + [Тепловое сопротивление между корпусом элемента и радиатором, грЦ / Вт
]) * [Мощность, рассеиваемая элементом, Вт
]

В физике, электротехнике и атомной термодинамике есть известный закон — ток, протекающий по проводам, нагревает их. Придумали его Джоуль и Ленц, и оказались правы — так оно и есть. Всё, что работает от электричества, так или иначе часть проходящей энергии передаёт в тепло.

Так уж получилось в электронике, что самым страдающим от тепла объектом нашей окружающей среды является воздух. Именно воздуху нагревающиеся детали передают тепло, а от воздуха требуется принять тепло и куда-нибудь подевать. Потерять, к примеру, или рассеять по себе. Процесс отдачи тепла мы с вами назовем охлаждением.

Наши электронные конструкции тоже рассеивают немало тепла, одни — больше, другие — меньше. Греются стабилизаторы напряжения, греются усилители, греется транзистор, управляющий релюшкой или даже просто мелким светодиодом, разве что греется ну совсем немного. Ладно, если греется немного. Ну а если он жарится так, что руку держать нельзя? Давайте пожалеем его и попробуем как-нибудь ему помочь. Так сказать, облегчить его страдания.

Вспомним устройство батареи отопления. Да, да, та самая обычная батарея, что греет комнату зимой и на которой мы сушим носки и футболки. Чем больше батарея, тем больше тепла будет в комнате, так ведь? По батарее протекает горячая вода, она нагревает батарею. У батареи есть важная вещь — количество секций. Секции контактируют с воздухом, передают ему тепло. Так вот, чем больше секций, то есть чем больше занимаемая площадь батареи, тем больше тепла она может нам отдать. Приварив еще парочку секций, мы сможем сделать теплее нашу комнату. Правда, при этом горячая вода в батарее может остыть, и соседям ничего не останется.

Рассмотрим устройство транзистора.

На медном основании (фланце) 1
на подложке 2
закреплен кристалл 3
. Он подключается к выводам 4
. Вся конструкция залита пластмассовым компаундом 5
. У фланца есть отверстие 6
для установки на радиатор.

Вот это по сути та же самая батарея, посмотрите! Кристалл греется, это как горячая вода. Медный фланец контактирует с воздухом, это секции батареи. Площадь контакта фланца и воздуха — это место нагревания воздуха. Нагревающийся воздух охлаждает кристалл.

Как сделать кристалл холоднее? Устройство транзистора мы изменить не можем, это понятно. Создатели транзистора об этом тоже подумали и для нас, мучеников, оставили единственную дорожку к кристаллу — фланец. Фланец — это как одна-единственная секция у батареи — жарить жарит, а тепла воздуху не передается — маленькая площадь контакта. Вот тут предоставляется простор нашим действиям! Мы можем нарастить фланец, припаять к нему еще «парочку секций», то бишь большую медную пластинку, благо фланец сам медный, или же закрепить фланец на металлической болванке, называемой радиатором. Благо отверстие во фланце приготовлено под болт с гайкой.

Что же такое радиатор? Я твержу уже третий абзац про него, а толком так ничего и не рассказал! Ладно, смотрим:

Как видим, конструкция радиаторов может быть различной, это и пластинки, и ребра, а еще бывают игольчатые радиаторы и разные другие, достаточно зайти в магазин радиодеталей и пробежаться по полке с радиаторами. Радиаторы чаще всего делают из алюминия и его сплавов (силумин и другие). Медные радиаторы лучше, но дороже. Стальные и железные радиаторы применяются только на очень небольшой мощности, 1-5Вт, так как они медленно рассеивают тепло.

Тепло, выделяемое в кристалле, определяется по очень простой формуле

Теплопроводность и плотность алюминия

В таблице представлены теплофизические свойства алюминия Al в зависимости от температуры. Свойства алюминия даны в широком диапазоне температуры — от минус 223 до 1527°С (от 50 до 1800 К).

Как видно из таблицы, теплопроводность алюминия при комнатной температуре равна около 236 Вт/(м·град), что позволяет применять этот материал для изготовления радиаторов и различных теплоотводов.

Кроме алюминия, высокой теплопроводностью обладает также медь. У какого металла теплопроводность больше? Известно, что теплопроводность алюминия при средних и высоких температурах все-таки меньше, чем у меди, однако, при охлаждении до 50К, теплопроводность алюминия существенно возрастает и достигает значения 1350 Вт/(м·град). У меди же при такой низкой температуре значение теплопроводности становится ниже, чем у алюминия и составляет 1250 Вт/(м·град).

Алюминий начинает плавиться при температуре 933,61 К (около 660°С), при этом некоторые его свойства претерпевают значительные изменения. Значения таких свойств, как температуропроводность, плотность алюминия и его теплопроводность значительно уменьшаются.

Плотность алюминия в основном определяется его температурой и имеет зависимость от агрегатного состояния этого металла. Например, при температуре 27°С плотность алюминия равна 2697 кг/м3, а при нагревании этого металла до температуры плавления (660°С), его плотность становится равной 2368 кг/м3. Снижение плотности алюминия с ростом температуры обусловлено его расширением при нагревании.

Абсолютное термическое сопротивление

Абсолютное тепловое сопротивление — это разница температур в конструкции, когда через нее протекает единица тепловой энергии за единицу времени . Это величина, обратная теплопроводности . СИ единица абсолютного теплового сопротивления Кельвинов на ватт (K / W) или эквивалентные градусов по Цельсию на ватт (° C / Вт) — два являются одинаковыми , так как интервалы равны: Δ Т = 1 К = 1 ° С .

Термостойкость материалов представляет большой интерес для инженеров-электронщиков, потому что большинство электрических компонентов выделяют тепло и нуждаются в охлаждении. Электронные компоненты работают со сбоями или выходят из строя, если они перегреваются, и некоторые детали обычно требуют мер, принимаемых на этапе проектирования, чтобы предотвратить это.

Конструкция светодиода, варианты исполнения

Светодиод COB 10 W представляет собой компактный модуль, выполненный по технологии chip-on-board. Принципиальное отличие от SMD заключается в том, что несколько кристаллов вместе размещаются на плате и покрываются общим слоем люминофора. Это значительно снижает стоимость матрицы. Состоит она из 9 кристаллов: три параллельные цепочки по три последовательно подключенных кристалла в каждой. Внешне LED 10 W могут отличаться формой токопроводящей подложки. Например, светодиод фирмы Cree выглядит, как показано на рисунке. Подложка его имеет форму звезды и выполнена из алюминия.

Корпус модуля изготовлен из термостойкого пластика, а линза – из эпоксидной смолы. Классические LED 10 W выглядят так, как показано на схеме, но на практике габаритные размеры варьируются в зависимости от производителя.

Не забывайте, что светодиод является полярным элементом, поэтому обращайте внимание на маркировку при монтаже. Обязательным условием адекватного функционирования светодиода 10 Вт является наличие теплоотвода. Организовать его можно с помощью алюминиевого или медного радиатора

Смазывайте подложку светодиода термопроводящей пастой или термоклеем для лучшей теплоотдачи. Иногда дополнительно монтируется кулер, который обеспечивает циркуляцию воздуха для охлаждения радиаторных пластин

Организовать его можно с помощью алюминиевого или медного радиатора. Смазывайте подложку светодиода термопроводящей пастой или термоклеем для лучшей теплоотдачи. Иногда дополнительно монтируется кулер, который обеспечивает циркуляцию воздуха для охлаждения радиаторных пластин.

На видео вы можете увидеть испытание светодиода 10Вт и рекомендации при подключении такого элемента. Вот, как должна выглядеть схема подключения светодиода 10 Вт.

Источником питания может выступать автомобильный аккумулятор, компьютерный блок питания, или специально приобретенный 12-ти вольтовый источник. Для того чтобы избежать перегрева (несмотря на радиатор) и защиты светодиода, крайне необходимо подключать его не напрямую к источнику, а через любой стабилизатор напряжения. На схеме показан интегральный стабилизатор напряжения LM-317, но можно использовать и другой с подходящими параметрами. С помощью обычной кренки и резистора вы обеспечите себя гарантированными 12 В на выходе и ток не превысит 1 А, что является залогом долговечности работы вашего устройства.

Комплекс из резистора и стабилизатора называют драйвером светодиода.

Расчет площади радиатора

В самом начале нужно выяснить, сколько грунтующего раствора и краски нужно использовать для покраски батареи. Это можно узнать, вычислив площадь радиатора отопления. Далее смотрят на рекомендации, указанные на банке с краской. В них всегда указывается, сколько краски может пойти на 1 кв. м. Самостоятельно измерить площадь батареи невозможно. Это не нужно делать, ведь производители указывают площадь поверхности нагрева секции. Поскольку прогревается каждый квадратный сантиметр секции, то эта площадь и площади всей поверхности секции.

Одно ребро батареи МС-140-500 имеет площадь 0,244 кв. м. Модификация этой модели с межосевым расстоянием 300 мм имеет секции с площадью 0,208 кв. м.

Чтобы определить общую площадь поверхности чугунной батареи, необходимо:

  • Узнать название модели установленной батареи и желательно производителя (это потому, что секции, выпущенных производителями одних и тех же моделей, имеют разную глубину и ширину).
  • Установить площадь нагрева 1 ребра .
  • Умножить количество секций на площадь. Если в радиаторе МС-140-500 является 10 ребер, то площадью поверхности будет 2,44 кв. м.

Сделав расчет, определяют количество состава и грунтовки, покупают их и выполняют покраску. Краску следует брать с запасом, ведь каждый наносит слой с разной толщиной.

Информация

При строительстве или ремонте жилого помещения важнейшим вопросом является его обогрев. Расчет эффективной системы отопления – ответственная задача для строителя-теплотехника. Однако, можно самостоятельно сделать расчет радиаторов отопления по площади помещения с помощью онлайн калькулятора. Необходимо только ввести известные данные в программу.

Функции калькулятора

Калькулятор для расчета радиаторов отопления на квадратный метр или по мощности секций является онлайн программой и состоит из:

  • блока окон «Вид радиатора»;
  • десяти строк ввода данных;
  • блока окон «Тип подключения»;
  • четырех строк с выводом готовых расчетов.

Программа произведет расчет количества секций радиаторов отопления; тепловых потерь помещения; удельных теплопотерь помещения; количества тепла, выделяемого одной секцией. Всю полученную информацию можно сохранить в файле PDF или вывести на печать.

Принцип работы на калькуляторе

Для получения готовых расчетов следуйте нижеуказанному алгоритму:

Выберете необходимый вид радиатора. В строке ниже автоматически появится мощность одной секции выбранного вида радиатора, в ваттах.
В строках 2-4 укажите размеры комнаты: длину, ширину, высоту в метрах.
Выберете качество остекления.
Выберете площадь остекления (равна отношению площади окна к площади помещения), в %.
Укажите степень утепления.
Выберете климатическую зону – регион проживания.
Укажите количество внешних углов и стен комнаты.
Выберете вариант помещения, которое находится над комнатой.
Укажите температуру теплоносителя, в ℃

Это очень важно, например центральное отопление дает 70-80 градусов, а котел на твердом топливе если есть дома тёплый пол настраивают на 50-60
Выберете планируемый тип подключения.

После этого появится следующая информация:

  • Количество секций, в штуках.
  • Тепловые потери помещения, в ваттах.
  • Удельные теплопотери помещения, в Вт/м2.
  • Количество тепла, выделяемого 1 секцией, в ваттах.

Полезная информация

Важнейшими техническими характеристиками различных моделей радиаторов отопления являются:

  • Мощность секций радиатора. Чем больше мощность радиатора, тем выше теплоотдача и эффективность отопительного прибора.
  • Рабочее давление радиатора. Высокий порог данного параметра позволяет выдерживать гидравлические удары и перепады давления в системе, увеличивает срок службы изделия.
  • Материал и вес радиатора. Вид материала (металла, сплава) напрямую влияет на прочность и долговечность отопительного прибора, его коррозионную стойкость. Вес изделия важен при монтаже, особенно, если устанавливать радиаторы будет один человек.

На рынке радиаторов отопления присутствуют четыре основных вида: стальные, чугунные, алюминиевые и биметаллические радиаторы.

Стальные радиаторы – имеют хорошую теплоотдачу и относительно невысокую стоимость. Однако, они не достаточно устойчивы к гидроударам и высокому давлению, подвержены коррозии. Различают панельные и трубчатые радиаторы из стали.

Чугунные радиаторы – самый популярный и долговечный вид радиаторов в России для централизованного отопления. Обладают отличной теплоотдачей, стойкостью к коррозии и гидроударам. В то же время, радиаторы из чугуна долго нагреваются и долго остывают; имеют большой вес, что является недостатком при монтаже одним специалистом.

Алюминиевые радиаторы – одни из самых популярных современных видов радиаторов. Изготавливают литые и экструзионные радиаторы из алюминия

Отличаются высокой теплоотдачей и небольшим весом, что важно при установке приборов. При этом, они чувствительны к гидроударам и перепадам давления в системе отопления, быстро нагреваются и быстро остывают

Биметаллические радиаторы – обладают относительно лучшими характеристиками среди всех видов радиаторов. Изготавливаются из двух материалов: внешней алюминиевой оболочки и внутренних стальных или медных труб. Обладают высокой теплоотдачей и прочностью, хорошей стойкостью к коррозии и гидроударам, имеют сравнительно небольшой вес.

Справка

Радиатор отопления – отопительный прибор, конструктивно состоящий из отдельных элементов трубчатого или вытянутого вида – секций, с внутренними каналами, по которым циркулирует теплоноситель, как правило, вода. Тепло от радиатора отопления отводится конвекцией, излучением и теплопроводностью.

Расчёт в зависимости от типа радиатора

При изучении составляющих частей комплексов обогрева в интернет магазине расчёт батарей отопления на площадь калькулятор производит в сети.

Данные приводятся в отношении каждой модели. Цифра приводится иногда не в Вт, а в качестве расхода теплоносителя. Пересчитать можно: 1 л/мин считают как 1 кВт мощности.

Однотрубная система

При использовании системы с однотрубным подключением имеются особенности. На установленный далее прибор доходит более холодный теплоноситель. Чтобы не считать температуру индивидуально, используют упрощённую процедуру.

Если у Вас в доме однострубная система, у бренда Gibax есть специальные модули подключения Радиплект Терм и Радиплект, которые, благодаря минимальному количеству соединений, сделают систему максимально надежной. Это модули с автоматическим или ручным режимами температуры. Также, эти модули помогут Вам в поддержании оптимальной температуры воздуха в помещении благодаря автоматическому или ручному управлению.

Цельная конструкцияИсточник highlogistic.ru

Сначала считают как для двухтрубной системы, а затем добавляют нужное число радиаторных секций. Процент снижения тепла на соединительных стыках определяет количество добавочных секций. Падение температуры нагрева шаблонно принимается 20% на более удалённом стыке.

Видео описание

Дополнительно смотрите, как подключить радиаторы к однотрубной системе:

Использование старых показателей

При производстве ремонтных работ и замене предыдущего отопительного оборудования, можно воспользоваться предыдущими данными. Если уровень температуры в отопительный сезон устраивал, то тепловая мощность остаётся прежней. Старые батареи со временем на 10-15% потеряют теплопроводность за счёт внутренней коррозии. Поэтому новые потребуют меньшее количество секций при аналогичном материале батареи.

При установке приборов в дизайнерских вариантах следует подходить к монтажу с особой внимательностью. Нетрадиционные решения существенно меняют систему прогрева воздуха.

Угловая конструкцияИсточник remkasam.ru

Заключение

В итоге, перед совершением покупки, пользователь может самостоятельно просчитать предварительную потребность в приборах по упрощённой или детальной формуле или воспользоваться калькулятором в интернете.

Дополнительно

Выставка домов «Малоэтажная страна» выражает искреннюю благодарность специалистам компании «Миралекс» за помощь в создании материала.

Компания «Миралекс» – поставщик систем водоснабжения и теплоснабжения на любых объектах, от ведущих мировых брендов. Так же компания занимается разработкой и монтажом систем автоматизированного учета потребления энергоресурсов.

Если Вам нужна более подробная консультация, то можете воспользоваться следующими контактами:

Охлаждение своими руками

Это банальный радиатор из подручных средств, он получается довольно тонким и использовать его для более серьёзных светильников нельзя.

Если если оставить кулер, активное охлаждение светодиодов позволит использовать и более мощные LED. Такое решение создаст дополнительный шум от вентилятора и потребует дополнительного питания, плюс периодическое ТО кулера.

Сделав сборку нужной площади из таких профилей, вы можете получить неплохое охлождение, не забудьте все стыки промазать хотя бы тонким слоем термопасты. Стоит сказать, что есть специальный профиль для охлаждения, который выпускается промышленно самых разнообразных видов.

Если у вас нет возможности сделать радиатор охлаждения светодиодов своими руками вы можете поискать подходящие экземпляры в старой электронной аппаратуре, даже в компьютере. На материнской плате расположены несколько. Они нужны для охлаждения чипсетов и силовых ключей цепей питания. Отличный пример такого решения изображен на фото ниже. Их площадь обычно от 20 до 60см2. Что позволяет охлаждать светодиод мощностью 1-3 Вт.

Еще один интересный вариант изготовления радиатора из листов алюминия. Такой метод позволит набрать практически любую необходимую площадь охлаждения. Смотрим видео:

Технические параметры конструкций

Вполне логично, что теплосопротивление конструкции во многом зависит от количества установленных в нем камер

При этом важно понимать, что влияние оказывает именно количество камер, а не толщина каждого отдельного стекла. Подводя итоги, нужно сказать, что у тех стеклопакетов, которые оборудованы большим количеством камер, будут иметь куда более высокие показатели сохранения тепла. К чести современных производителей продукции в данном рыночном сегменте, их товары обладают достаточно высокими показателями во всех отношениях

Благодаря современным технологиям производители получили возможность не просто проектировать конструкции с оптимальным количеством камер, но и заполнять межкамерное пространство газообразными веществами, которые положительно сказываются на общих технико-эксплуатационных характеристиках изделий. Камеры заполняются разнообразными инертными газами, а на их поверхность специально наносятся покрытия низкоэмиссионной категории.Остекление – эффектное дизайнерское решение

К чести современных производителей продукции в данном рыночном сегменте, их товары обладают достаточно высокими показателями во всех отношениях. Благодаря современным технологиям производители получили возможность не просто проектировать конструкции с оптимальным количеством камер, но и заполнять межкамерное пространство газообразными веществами, которые положительно сказываются на общих технико-эксплуатационных характеристиках изделий. Камеры заполняются разнообразными инертными газами, а на их поверхность специально наносятся покрытия низкоэмиссионной категории.Остекление – эффектное дизайнерское решение

Стоит отметить, что наиболее успешные на сегодняшний день компании-производители оконных конструкций светопрозрачного типа наращивают теплоизоляционные свойства своих изделий по большей мере за счет использования в рамках технологического процесса специфических методик. Это, например, могут быть покрытия с энергосберегающими, солнцезащитными и магнетронными свойствами, а также обеспечение высокого уровня герметизации камер и прочее.Двухкамерный стеклопакет в разрезе

Радиатор для светодиода своими руками

Сделать алюминиевый радиатор для светодиодов 1, 3 или 10 Вт своими руками несложно. Сначала рассмотрим простую конструкцию, на изготовление которой потребуется около полчаса времени и круглая пластина толщиною 1-3 мм. По окружности через каждые 5 мм делают надрезы к центру, а получившиеся сектора слегка загибают, чтобы готовая конструкция напоминала крыльчатку. Для крепления радиатора к корпусу в нескольких секторах делают отверстия. Немного сложнее сделать самодельный радиатор для 10 ваттного светодиода. Для этого понадобиться 1 метр алюминиевой полосы шириной 20 мм и толщиной 2 мм. Сначала полосу распиливают ножовкой на 8 равных частей, которые затем складывают стопкой, просверливают насквозь и стягивают болтом с гайкой. Одну из боковых граней шлифуют под крепление светодиодной матрицы. С помощью стамески полосы разгибают в разные стороны. В местах крепления светодиодного модуля сверлят отверстия. На отшлифованную поверхность наносят термоклей, сверху прикладывают матрицу, фиксируя её саморезами.

А зачем он нужен?

Наравне с другими полупроводниковыми приборами светодиод не является идеальным элементом со 100% коэффициентом полезного действия (КПД). Большая часть потребляемой им энергии рассеивается в тепло. Точное значение КПД зависит от типа излучающего диода и технологии его изготовления. Эффективность слаботочных светодиодов составляет 10-15%, а у современных белых мощностью более 1 Вт её значение достигает 30%, а значит, остальные 70% расходуются в тепло.

Каким бы ни был светодиод, для стабильной и продолжительной работы ему необходим постоянный отвод тепловой энергии от кристалла, то есть радиатор. В слаботочных led функцию радиатора выполняют выводы (анод и катод). Например, в SMD 2835 вывод анода занимает почти половину нижней части элемента. В мощных светодиодах абсолютная величина рассеиваемой мощности на несколько порядков больше. Поэтому нормально функционировать без дополнительного теплоотвода они не могут. Постоянный перегрев светоизлучающего кристалла в разы снижает срок службы полупроводникового прибора, способствует плавной потере яркости со смещением рабочей длины волны.

Часть 1: Расчет тепловыделения и радиатора при постоянном токе

Сначала простой случай, расчет радиатора по данным тепловыделения при постоянном токе.

Для примера рассмотрим расчет радиатора для MOSFET-а IRLR024N

В этом примере предполагается, что MOSFET включается и долгое время находится в полностью открытом состоянии. Например, переключение производится не чаще чем с частотой 1 Гц.

В даташите нас интересуют параметры теплового сопротивления Junction-to-Case (сопротивление переход-корпус), Junctione-to-Ambient (PCB mount) (переход-окружающая среда при монтаже на 1кв.дюйм медной заливки на плате), Junction-to-Ambient (корпус-окружающая среда).

RθJC = 3.3 К/Вт
RθJApcb= 50 К/Вт
RθJA = 110 К/Вт
(Кельвины и Цельсии не играет роли, так как речь о разницах).

Цифра 110 К/Вт означает, то при выделяемой мощности 1Вт разница температур между внешней средой и переходом будет 110 градусов. Например, если границе корпус-воздух будет 40 градусов, то это значит, что переход внутри транзистора имеет температуру 40+110=150 градусов. Если выделяется 2Вт, то внутри будет 40+110*2=260 градусов.

Предположим, что напряжение на затворе будет 3.3В. А ток будет 3А. Из графика «Typical Transfer Characteristics» находим, что при напряжении 3.5В ток составляет 8А. Т.е. сопротивление составляет 0,4375 Ом. При этом смотрим на график «Normalized On-Resistance Vs. Temperature» и видим, что при 90 градусах сопротивление растет в 1.5 раза.

Допускаем по дизайну нагрев до 90 градусов, а сопротивление считаем 0.4375*1.5= 0,6563 Ом.

Получаем, что рассеиваться на транзисторе будет P=I^2*R=3*3*0,6563=5,9067 = 6 Вт.

Предполагается, что транзистор будет работать в окружении, где температура воздуха будет до 30 градусов (что очень оптимистично, так как он греет воздух вокруг себя).

Итак, запас по температуре составляет 90-30=60 градусов. Получается что максимальное общее теплового сопротивления равно (90-30)/6Вт=10 К/Вт

При этом сопротивление переход-корпус уже съело 3.3 К/Вт. У нас остается 8.3 К/Вт.

Монтаж радиатора будет производится на силиконовый клей. Предположим, что наш клей — HC910. Проводимость его 1.7 Вт/м*К.

У нас площадь приклеивания будет 0.25д*0.24д=0.01м*0.009м=0,0000054 кв.м.

Толщина слоя нанесения 0.0001м (0.1 мм). Эта оценка подтверждена документацией на подобные клеи.

Тепловое сопротивление слоя клея равно = толщина/(площадь*проводимость)=0,53 К/Вт

Остается 7.77 К/Вт на сам радиатор. Выбираем в магазине каком-нибудь.

И это будет довольно крупный радиатор. Примерно 10х10х5 см за нормальные деньги.

Теперь решим вопрос, а какой допустимый ток, при котором можно обойтись без радиатора вообще.

Возьмем вариант, когда транзистор припаян к площадке на плате площадью 1кв. дюйм. RθJApcb= 50 К/Вт. Предположим, что все устройство работает в коробочке и воздух в ней, за счет других компонентов и этого MOSFET-а, может нагреваться до 50 градусов. Предел нагрева для выбранного транзистора 175 градусов. Но мы возьмем максимум 125. Тогда максимальная допустимая мощность будет (125К-50К) / 50К/Вт= 1,5 Вт.

Если же он не припаян к площадке, то RθJA = 110 К/Вт, и получаем максимальную мощность (125К-50К) / 110К/Вт= 0,6 Вт.

Расчет по корпусу приведенный здесь более реалистичный, чем с радиатором. Однако, если устройство должно работать в различных условиях, то требуется внесение понижающего коэффициента для высот. Например, для высоты 2000м коэффициент 0.8 (т.е. не 0.6Вт, а 0,5Вт) для высоты 3500м – 0.75.

При 125 градусах Rds(on) будет составлять 1.75 * Rds(on) при 20 градусах, т.е. 0,4375 * 1,75=0,765625 Ом.
P=I^2*R => I=SQRT(P/R)

Получаем, что при припайке на площадку на плате максимальный ток будет Imax=корень(1.5/0.765625)=1.4A
Без площадки Imax=корень(0,6/0,765625)=0,9A