Что такое активная и реактивная мощность переменного электрического тока?

Физика процесса

Когда мы имеем дело с цепями постоянного тока, то говорить о реактивной мощности не приходится. В таких цепях значения мгновенной и полной мощности совпадают. Исключением являются моменты включения и отключения ёмкостных и индуктивных нагрузок.

Похожая ситуация происходит при наличии чисто активных сопротивлений в синусоидальных цепях. Однако если в такую электрическую цепь включены устройства с индуктивными или ёмкостными сопротивлениями, происходит сдвиг фаз по току и напряжению (см. рис.1).

При этом на индуктивностях наблюдается отставание тока по фазе, а на ёмкостных элементах фаза тока сдвигается так, что ток опережает напряжение. В связи с нарушением гармоники тока, полная мощность разлагается на две составляющие. Ёмкостные и индуктивные составляющие называют реактивными, бесполезными. Вторая составляющая состоит из активных мощностей.

Рис. 1. Сдвиг фаз индуктивной нагрузкой

Угол сдвига фаз используется при вычислениях значений активных и реактивных ёмкостных либо индуктивных мощностей. Если угол φ = 0, что имеет место при резистивных нагрузках, то реактивная составляющая отсутствует.

Важно запомнить:

  • резистор потребляет исключительно активную мощность, которая выделяется в виде тепла и света;
  • катушки индуктивности провоцируют образование реактивной составляющей и возвращают её в виде магнитных полей;
  • Ёмкостные элементы (конденсаторы) являются причиной появления реактивных сопротивлений.

Зачем нужна компенсация реактивной мощности

Чем больше требуется энергии — тем выше становится уровень потребления топлива. И это не всегда оправдано. Компенсация мощности, т.е, её правильный расчет, поможет сэкономить в промышленных распределительных электросетях на производстве до 50 % затрачиваемого топлива, а в некоторых случаях и больше.

Нужно понимать, что тем больше ресурсов затрачено на производство, тем выше будет цена конечного продукта. При возможности снизить стоимость изготовления товара, производитель либо предприниматель, сможет снизить его цену, чем привлечь потенциальных клиентов и потребителей.

Как наглядный пример – пара диаграмм ниже. Эти векторы визуально передают полный эффект от работы установки.

Диаграмма до работы установки Диаграмма после работы установки

Кроме этого, мы также избавляемся от потерь в электросетях, от чего эффект следующий:

  • напряжение ровное, без перепадов;
  • увеличивается долговечность проводов (abb – авв, аку) и индукционной обмотки в жилых помещениях и на заводе;
  • значительная экономия на работе домашних трансформаторов и выпрямителей тока;
  • проведенная компенсация мощности и реактивной энергии значительно продлит время работы мощных устройств (асинхронный двигатель трехфазный и однофазный).
  • значительное снижение электрических затрат.

Общая схема преобразователя

Реактивная мощность и конденсаторы

Реактивная мощность запасается энергией магнитного поля индуктивностями. А конденсатор? Выступает источником возникновения реактивной составляющей. Дополним обзор теорией сложения векторов. Поймет рядовой читатель. В физике электрических сетей часто используются колебательные процессы. Всем известные 220 вольт (теперь принятые 230) в розетке частотой 50 Гц. Синусоида, амплитуда которой равна 315 вольт. Анализируя цепи, удобно представить вращающимся по часовой стрелке вектором.

Анализ цепей графическим методом

Упрощается расчет, можно пояснить инженерное представление реактивной мощности. Угол фазы тока считают равным нулю, откладывается вправо по оси абсцисс. Реактивная энергия индуктивности совпадает фазой с напряжением UL, опережает на 90 градусов ток. Идеальный случай. Практикам приходится учитывать сопротивление обмотки. Реактивной на индуктивности будет часть мощности.Угол меж проекциями важен. Величина называется коэффициентом мощности. Что означает на практике? Перед ответом на вопрос рассмотрим понятие треугольника сопротивлений.

Способы снижения потребления реактивной мощности: компенсация реактивной мощности

Принципиальная схема ступенчатого КРМ. Наиболее действенным и эффективным способом снижения потребляемой из сети реактивной мощности является применение установок компенсации реактивной мощности (конденсаторных установок).

Использование конденсаторных установок для компенсации реактивной мощности позволяет:

  • разгрузить питающие линии электропередачи, трансформаторы и распределительные устройства;
  • снизить расходы на оплату электроэнергии при использовании определенного типа установок, снизить уровень высших гармоник;
  • подавить сетевые помехи, снизить несимметрию фаз;
  • сделать распределительные сети более надежными и экономичными.

Из всего изложенного следует сделать вывод: предприятия, работа которых основана на использовании мощностей электродвигателей, в первую очередь должны быть укомплектованы компенсаторными установками. Затраты окупятся несомненно.

Для того чтобы произвести расчет установки компенсации реактивной мощности 0.4 кв, заполните пожалуйста поля, приведенные ниже и нажмите кнопку “Рассчитать”.

Формула расчета реактивной мощности КРМQ = Pa· ( tgφ1-tgφ2) –  реактивная мощность установки КРМ (кВАр)Q = Pa · K, гдеPa -активная мощность (кВт), K- коэффициент из таблицыPa= S· cosφ, гдеS -полная мощность(кВА)cos φ – коэффициент мощностиtg(φ1+φ2) согласуются со значениями cos φ в таблице. Таблица определения установки компенсации реактивной мощности, cos(φ):

Текущий (действующий) Требуемый (достижимый) cos (φ)
tan (φ) cos (φ)
Коэффициент K

Пример:

• Активная мощность двигателя : P=200 кВт• Действующий cos φ = 0,61 • Требуемый cos φ = 0,96• Коэффициент K из таблицы = 1,01Необходимая реактивная мощность КРМ (кВАр):

Активная мощность (P)Другими словами активную мощность можно назвать: фактическая, настоящая, полезная, реальная мощность. В цепи постоянного тока мощность, питающая нагрузку постоянного тока, определяется как простое произведение напряжения на нагрузке и протекающего тока, то естьP = U Iпотому что в цепи постоянного тока нет понятия фазового угла между током и напряжением. Другими словами, в цепи постоянного тока нет никакого коэффициента мощности.

Но при синусоидальных сигналах, то есть в цепях переменного тока, ситуация сложнее из-за наличия разности фаз между током и напряжением. Поэтому среднее значение мощности (активная мощность), которая в действительности питает нагрузку, определяется как:

P = U I CosθВ цепи переменного тока, если она чисто активная (резистивная), формула для мощности та же самая, что и для постоянного тока: P = U I.

Формулы для активной мощностиP = U I – в цепях постоянного токаP = U I cosθ – в однофазных цепях переменного токаP = √3 UL IL cosθ – в трёхфазных цепях переменного токаP = 3 UPh IPh cosθP = √ (S2 – Q2) илиP =√ (ВА2 – вар2) или Активная мощность = √ (Полная мощность2 – Реактивная мощность2) иликВт = √ (кВА2 – квар2)Реактивная мощность (Q)Также её мощно было бы назвать бесполезной или безваттной мощностью.

Мощность, которая постоянно перетекает туда и обратно между источником и нагрузкой, известна как реактивная (Q).

Реактивной называется мощность, которая потребляется и затем возвращается нагрузкой из-за её реактивных свойств. Единицей измерения активной мощности является ватт, 1 Вт = 1 В х 1 А. Энергия реактивной мощности сначала накапливается, а затем высвобождается в виде магнитного поля или электрического поля в случае, соответственно, индуктивности или конденсатора.

None Единицей измерения реактивной мощности является вольт-ампер реактивный (вар): 1 вар = 1 В х 1 А. Проще говоря, единица реактивной мощности определяет величину магнитного или электрического поля, произведённого 1 В х 1 А.

Мощность постоянного тока

Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность можно вычислить по формуле:

P = I ⋅ U {\displaystyle P=I\cdot U} .

Для пассивной линейной цепи, в которой соблюдается закон Ома, можно записать:

P = I 2 ⋅ R = U 2 R , {\displaystyle P=I^{2}\cdot R={\frac {U^{2}}{R}},} где R {\displaystyle R} — электрическое сопротивление.

Если цепь содержит источник ЭДС, то отдаваемая им или поглощаемая на нём электрическая мощность равна:

P = I ⋅ E , {\displaystyle P=I\cdot {\mathcal {E}},} где E {\displaystyle {\mathcal {E}}} — ЭДС.

Если ток внутри ЭДС противонаправлен градиенту потенциала (течёт внутри ЭДС от плюса к минусу), то мощность поглощается источником ЭДС из сети (например, при работе электродвигателя или заряде аккумулятора), если сонаправлен (течёт внутри ЭДС от минуса к плюсу), то отдаётся источником в сеть (скажем, при работе гальванической батареи или генератора). При учёте внутреннего сопротивления источника ЭДС выделяемая на нём мощность p = I 2 ⋅ r {\displaystyle p=I^{2}\cdot r} прибавляется к поглощаемой или вычитается из отдаваемой.

Ответы на популярные вопросы

Полная, активная и реактивная мощности являются важной темой в электричестве для любого электрика. В качестве заключения мы сделали подборку из 4 часто задаваемых вопросов на этот счёт

Какую работу выполняет реактивная мощность?

Ответ: полезной работы не выполняет, но нагрузкой на линии является полная мощность, в том числе с учетом реактивной составляющей. Поэтому чтобы снизить общую нагрузку с ней борются или говоря грамотным языком компенсируют.

Как её компенсируют?

— В этих целях используют установки для компенсации реактива. Это могут быть конденсаторные установки или синхронные компенсаторы (синхронные электродвигатели).

Из-за каких потребителей возникает реактив?

— Это в первую очередь электродвигатели – самый многочисленный вид электрооборудования на предприятиях.

Чем вредит большое потребление реактивной энергии?

— Кроме нагрузки на линии электропередач следует учитывать, что предприятия оплачивает полную мощность, а физические лица – только активную. Это приводит к повышенной сумме оплаты за электроэнергию.

На видео предоставлено простое объяснение понятий реактивной, активной и полной мощностей:

На этом мы и заканчиваем рассмотрение данного вопроса. Надеемся, теперь вам стало понятно, что такое активная, реактивная и полная мощность, какие между ними отличия и как определяется каждая величина.

Что вызывает низкий коэффициент мощности cos φ (cos фи) в электрической системе?

В разделе Техника на вопрос для чего нужен тангенс фи в электроэнергетики? При tgф<0 потребитель выдает реактивную мощность (емкостной характер) , при tgф>1 потребитель потребляет реактивную мощность (индуктивный характер).

Рассмотрев треугольник сопротивлений, можно понять смысл термина «тангенс фи». Это отношение между реактивной и активной составляющими нагрузки. Тангенс угла потерь также используется в электроэнергетике, но более привычным является показатель cos(φ).

Часть электрической мощности, пришедшая к потребителю, используется для совершения полезной работы и тепловое рассеяние на нагрузке у потребителя. Почему фазовый сдвиг приводит к потерям электроэнергии? Если активное сопротивление проводника просто рассеивает электроэнергию, переводя ее в тепловую, то фазовый сдвиг между током и напряжением приводит к повышенному расходу энергии на электростанции. Отношение активной мощности, потребляемой в нагрузке, и полной мощности, подаваемой на нагрузку по линии электропередач, численно равно cos(φ), где φ – угол фазового сдвига между током и напряжением. С другой стороны, 0% — крайне нежелательный вариант, когда φ=π/2, cos(φ)=0, при этом вся подаваемая мощность переменного тока отражается от реактивной нагрузки и рассеивается в подводящих проводах.

Р — мощность активная,Q — мощность реактивная. Главный инженер ЭнергосбытаА.

Мне тут в акте о разграничении балансовой ответственности МКС прописал Базовый коэффициент реактивной мощности тангенс Фи, который равен 0,2. Это как понимать?

Активный и реактивный токи, протекающие в проводе, складываются в один общий ток, который замеряется амперметром. Отношение активной мощности к полной называется коэффициентом мощности. Для удобства технических расчетов коэффициент мощности выражают через косинус условного угла «фи» (cosφ).

Коэффициент мощности (cos φ) это параметр, характеризующий искажения формы тока, потребляемого от электросети переменного тока. Важный показатель потребителя электроэнергии. Для оценки и расчетов цепей переменного тока используются действующие значения тока и напряжения. Вольтметры и амперметры переменного тока показывают именно действующие значения. Полная мощность в цепях переменного тока равна квадратному корню из суммы квадратов активной и реактивной мощностей. Фазового сдвига нет, cos φ = 1, вся энергия из сети переходит в активную мощность на нагрузке.

Косинус фи (cos φ) — это косинус угла между фазой напряжения и фазой тока. При активной нагрузке фаза напряжения совпадает с фазой тока, φ (между фазами) равен 0 (нулю). Попытаемся вычислить мощность для простоты возьмем максимальное значение напряжения равное 1(100%) в этот момент ток равен 0(нулю) соответственно их произведение, то есть мощность равны 0(нулю). И наоборот когда ток максимальный напряжение равно нулю. Получается что полезная, активная мощность равна 0(нулю). Счетчики активной мощности фиксируют соответственно только активную мощность.

Попробуем популярно объяснить причину такого уважения электриков к тригонометрической функции cos φ. «Косинус-фи» в электроэнергетике еще называют коэффициентом мощности. Численно коэффициент мощности равен косинусу этого фазового сдвига. Источниками реактивной мощности в сети переменного тока являются катушки индуктивности и конденсаторы. Большинство потребителей электрической энергии имеют обмотки на магнитопроводах, т.е. представляют собой индуктивность. Тогда в однофазной цепи cos φ = P / (U х I), где Р, U, I — показания ваттметра, вольтметра и амперметра, соответственно.

В тренде:

  • Как Путин обошел Обаму в списке «Форбс»?Если это действительно так, то Путин с легкостью попадает в первую десятку богатейших людей мира по версии журнала Forbes. Этот журнал ежегодно проводит публикацию рейтинга самых богатых
  • Когда можно съесть банан, а когда нельзяЛучше всего их кушать утром, когда ваш организм так жаден к питательным веществам. Возможно, банан – именно то, чего в этот момент так не хватает организму. Съеденный банан перед сном
  • Типичные ошибки при приготовлении пломбираЕго разводят в молоке, а после заваривают до густоты. Если в пломбир добавляют ароматизаторы или ягоды и фрукты, то делать это нужно на заключительном этапе приготовления, уже пред тем как

Активная мощность

Для начала, расскажу про наиболее привычную нам активную

мощность, за которую мы, собственно, и платим по счётчику. Эта мощность, потребляемая нагрузкой типа обычного сопротивления. Как правило, это все нагревательные приборы (бойлеры, обычные электроплитки, электро калориферы и т.п.). Потребляемая мощность этих приборов полностью активная. В этих приборах электрическая энергия безвозвратно и полностью преобразуется в другой вид энергии (тепловую и другие).

Активная мощность обозначается буквой P и измеряется в ваттах (Вт).

Величина активной мощности, потребляемой такими приборами считается просто — умножением напряжения в розетке на ток, протекающей в цепи включенного нагревательного прибора:

Тут всё просто. Нагрузка пассивна, постоянна, никаких неожиданностей.

Замечу, что в цепях постоянного

тока существует только активная мощность, поскольку значение мгновенной и средней мощности там совпадают.

Измерение мощности

Измерять мощность трёхфазных цепей позволяют ваттметры, специальные приборы, предназначенные для этой цели. Их количество и способы подключения зависят от конкретной электрической цепи: её характеристик и схемы подключения нагрузок. Трёхфазные сети различают по количеству подводящих проводов и распределением нагрузки по фазам, а именно:

  • трёхпроводная система;
  • четырёхпроводная система;
  • равномерная нагрузка;
  • асимметричная нагрузка.

Симметричная нагрузка

Если система состоит из четырёх проводов (3 фазы и «ноль»), а нагрузка равномерно распределена между фазами, то для того, чтобы узнать суммарную величину мощности, достаточно иметь один прибор для измерения. Токовую обмотку ваттметра последовательно подключают в один из линейных проводов, а между линейным и нулевым проводами включается обмотка напряжения измерительного устройства. Этот вид подключения даёт возможность узнать количество ватт на одной фазе. А поскольку нагрузка в системе распределяется равномерно, то результирующую мощность трёхфазной сети находят умножением полученных показаний на количество фаз, то есть на 3.

Неравномерное распределение потребителей

Цепи с несимметричной нагрузкой на фазах требуют использования нескольких ваттметров для определения мощностной характеристики. В системе, состоящей из четырёх проводов, нужно подключить три прибора таким образом, чтобы обмотки напряжений каждого были включены между нулевым проводом и одной из фаз. Общий результат находится путём суммирования отдельных показаний каждого ваттметра.

Трёхпроводная система потребует минимум двух ваттметров для определения мощности всей цепи. С входным токовым зажимом и оставшимся свободным линейным проводом соединяются обмотки напряжений каждого отдельного ваттметра. Полученные показания складывают и получают значение этой величины для трёхфазной цепи. Эта схема подключения измерительных приборов основана на первом законе Кирхгофа.

Подобные нюансы очень важны при проектировании трёхфазной сети для частного сектора. А также их стоит учитывать при правильном обслуживании уже действующих систем электропитания.

Энергия и мощность электрического тока

а) Энергия электрического тока.

Для создания электрического тока в цепи источник должен обладать необходимой энергией.

Величина этой энергии определяется по формуле:

или

Где: W – энергия электрического тока, Вт·ч

U – напряжение на зажимах цепи, В.

R – сопротивление цепи, Ом.

t – время протекания тока, час.

б) мощность электрического тока

Различные источники электрической энергии могут за один и тот же промежуток времени выдавать различное количество электрической энергии.

Способность источника выдавать в единицу времени определенное количество электрической энергии, а потребитель, соответственно, – потреблять эту энергию характеризуется мощностью источника (потребителя).

Значение мощности электрического тока определяется из выражения:

или

Где: W – энергия электрического тока, Вт·ч

t — время работы источника (потребителя), час.

Р – мощность источника (потребителя), Вт.

U – напряжение, В

R – сопротивление цепи, Ом.

Мощность, развиваемая источником тока во всей цепи, называется полной мощностью .

Она определяется по формуле:

где: Pобщ — полная мощность, развиваемая источником тока во всей цепи, Вт;

Е — э. д. с. источника, В;

I — величина тока в цепи, А.

В общем виде электрическая цепь состоит из внешнего участка (нагрузки) с сопротивлением R и внутреннего участка с сопротивлением R (сопротивлением источника тока).

Заменяя в выражении полной мощности величину э. д. с. через напряжения на участках цепи, получим

Величина UI соответствует мощности, развиваемой на внешнем участке цепи (нагрузке), и называется полезной мощностью Pпол=UI

Величина UoI соответствует мощности, бесполезно расходуемой внутри источника, её называют мощностью потерь Po = UoI.

Таким образом, полная мощность равна сумме полезной мощности и мощности потерь

в) Коэффициент полезного действия электрической цепи

Отношение полезной мощности к полной мощности, развиваемой источником, называется коэффициентом полезного действия, сокращенно к. п. д.,и обозначается η

Из определения следует:

При любых условиях коэффициент полезного действия η ≤ 1.

Рис.13.1 Энергетическая диаграмма электрической цепи

Рассмотрим элементарную электрическую цепь, содержащую источник ЭДС с внутренним сопротивлением r, и внешним сопротивлением R

Рис.13.2. Схема электрической цепи

КПД определяется как отношение полезной мощности к затраченной:

Обычно электрический к. п. д. принято выражать в процентах.

Источник

Нормируемые требования к показателям

В РФ требования к качеству работы энергосистемы стандартизированы.

Анализируя зависимость силы тока от частоты, можно сделать вывод, что если подключаемая нагрузка имеет чисто активный характер (к примеру, резистор), то в широком диапазоне сила тока от частоты иметь зависимость не будет. В случае достаточно высоких частот, когда индуктивность и ёмкость подключаемой нагрузки будут характеризоваться сопротивлением, сравнимым с активным, то сила тока будет иметь определенную зависимость от частоты.

Другими словами, при варьировании частоты тока происходит изменение ёмкостного сопротивления, изменение которого, в свою очередь, приводит к изменению тока, протекающего по цепи.

Математическое выражение зависимости будет иметь следующий вид: I = UCω;

Зависимость при учете активного сопротивления будет определяться следующим выражением: I (ω) = UCω √(R2 • C2 • ω2 + 1).

§ 2.9. Закон Ома для электрической цепи переменного тока

Рассмотрим теперь более общий случай электрической цепи, в которой последовательно соединены проводник с активным сопротивлением R и малой индуктивностью, катушка с большой индуктивностью L и малым активным сопротивлением и конденсатор емкостью С (рис. 2.20).

Рис. 2.20

Чему равна амплитуда силы тока в такой цепи (колебательном контуре), если на ее концах поддерживается напряжение u(t) = U sin ωt?

Мы видели, что при включении по отдельности в цепь проводника с активным сопротивлением R, конденсатора емкостью С или катушки с индуктивностью L амплитуда силы тока определяется соответственно формулами (2.6.2), (2.7.3) и (2.8.4). Амплитуды же напряжений на резисторе, катушке индуктивности и конденсаторе связаны с амплитудой силы тока так:

В цепях постоянного тока напряжение на концах цепи равно сумме напряжений на отдельных последовательно соединенных участках цепи. Однако, если измерить результирующее напряжение на контуре и напряжения на отдельных элементах цепи переменного тока, окажется, что напряжение на контуре (действующее значение) не равно сумме напряжений на отдельных элементах.

Почему это так? Дело в том, что гармонические колебания напряжения на различных участках цепи сдвинуты по фазе друг относительно друга.

Действительно, квазистационарный ток в любой момент времени одинаков во всех участках цепи. Это значит, что одинаковы амплитуды и фазы токов, протекающих по участкам с емкостным, индуктивным и активным сопротивлением. Однако только на участке с активным сопротивлением колебания напряжения и силы тока совпадают по фазе. На конденсаторе колебания напряжения отстают по фазе от колебаний силы тока на π/2 (см. § 2.7), а на катушке индуктивности колебания напряжения опережают колебания силы тока на π/2 (см. § 2.8).

Векторная диаграмма электрической цепи

Для вывода закона Ома в случае электрической цепи переменного тока, изображенной на рисунке 2.20, нужно уметь складывать мгновенные колебания напряжений, сдвинутых по фазе друг относительно друга. Проще всего выполнять сложение нескольких гармонических колебаний с помощью векторных диаграмм, о которых было рассказано в § 1.11. Векторная диаграмма электрических колебаний в цепи позволит нам определить амплитуду силы тока в зависимости от амплитуды напряжения и сдвиг фаз между силой тока и напряжением.

Так как сила тока одинакова во всех участках цепи, то построение векторной диаграммы удобно начать с вектора силы тока m. Этот вектор изобразим в виде вертикальной стрелки (рис. 2.21). Напряжение на резисторе совпадает по фазе с силой тока. Поэтому вектор mR должен совпадать по направлению с вектором m. Его модуль равен UmR = ImR.

Рис. 2.21

Колебания напряжения на катушке индуктивности опережают колебания силы тока на π/2 и соответствующий вектор и mL должен быть повернут относительно вектора m на π/2. Его модуль равен UmL = IωL. Если считать, что положительному сдвигу фаз соответствует поворот вектора против часовой стрелки, то вектор mL следует повернуть налево на π/2. (Можно было бы, конечно, поступить и наоборот.)

Вектор напряжения на конденсаторе mC отстает по фазе от вектора m на π/2 и поэтому повернут на этот угол относительно вектора m направо. Его модуль равен .

Для нахождения вектора суммарного напряжения m нужно сложить три вектора: mR, mL и mC. Вначале удобнее сложить два вектора mL и mC (рис. 2.22).

Рис. 2.22

Модуль этой суммы равен , если . Именно такой случай изображен на рисунке. После этого, сложив вектор mL + mC с вектором mR, получим вектор m, характеризующий колебания напряжения в сети.

По теореме Пифагора (из треугольника АОВ):

или

Из равенства (2.9.2) можно найти амплитуду силы тока в цепи:

Это и есть закон Ома для электрической цепи переменного тока, изображенной на рисунке 2.20.

Благодаря сдвигу фаз между напряжениями на различных участках цепи полное сопротивление Z цепи (см. рис. 2.20) выражается так:

От амплитуд силы тока и напряжения можно перейти к действующим значениям этих величин. Они связаны друг с другом точно так же, как и амплитуды в формуле (2.9.3):

Мгновенное значение силы тока меняется со временем гармонически:

где φc, — разность фаз между силой тока и напряжением в сети. Она зависит от частоты со и параметров цепи R, L, С.

Сдвиг фаз между током и напряжением

Сдвиг фаз φc, между колебаниями силы тока и напряжения равен по модулю углу φ между векторами m и m (см. рис. 2.22). Как следует из этого рисунка,

Согласно рисунку 2.22, сила тока отстает от напряжения по фазе при условии . Поэтому сдвиг фаз φc = -φ и

В частных случаях цепей с активным, емкостным и индуктивным сопротивлениями из этой формулы получаются правильные значения сдвига фаз.

Реактивная мощность в электрической сети:

Понятие электрической мощности описывается скоростью, с которой генерируется, передается либо потребляется электроэнергия за определенный период. С ее ростом увеличивается и работа, совершаемая электроустановкой.

Полная мощность (S) в цепях переменного тока имеет активную (P) и реактивную (Q) составляющую. При первой (полезной) током совершается эффективная работа, вторая (паразитная) – ничего не выполняет, но разогревает провода и излучается в окружающее пространство.

Формула взаимосвязи мощностей может быть представлена в виде треугольника мощностей:

S2 = P2 + Q2

Где S измеряется в Вольт-амперах (ВА), P – в Ваттах (Вт), а Q – в Вольт амперах реактивных (Вар).

Для работы и синхронизации генераторных установок, вырабатывающих и передающих ток в линию, используются реактивные нагрузки (катушки либо конденсаторы). Но они сдвигают фазу тока на опережение либо отставание от напряжения. То же делают реактивные нагрузки на предприятиях-потребителях электричества. Этот угол между фазами принимают, как косинус фи (cos φ = P/S) и измеряют при помощи фазометра. В результате возникает реактивная составляющая мощности, способствующая появлению электромагнитных полей, поддерживающих функциональность оборудования. Она же способствует и перегрузкам электроподстанций, увеличению сечений передающих линий, снижению сетевого напряжения, так как все сети нагружаются полной мощностью без учета, что ее реактивная составляющая не выполняет полезной работы.

Реактивная мощность может и должна компенсироваться, за счет чего повышается эффективность работы сетей и улучшается качество транспортируемой энергии.

Возникновение реактивная мощность

Допустим, цепь содержит источник питания постоянного тока и идеальную индуктивность. Включение цепи порождает переходный процесс. Напряжение стремится достичь номинального значения, росту активно мешает собственное потокосцепление индуктивности. Каждый виток провода согнут круговой траекторией. Образуемое магнитное поле будет пересекать соседствующий сегмент. Если витки расположены один за другим, характер взаимодействия усилится. Рассмотренное называется собственным потокосцеплением.

Характер процесса таков: наводимая ЭДС препятствует изменениям поля. Ток пытается стремительно вырасти, потокосцепление тянет обратно. Вместо ступеньки видим сглаженный выступ. Энергия магнитного поля потрачена, чтобы воспрепятствовать процессу создавшему. Случай возникновения реактивной мощности. Фазой отличается от полезной, вредит. Идеально: направление вектора перпендикулярно активной составляющей. Подразумевается, сопротивление провода нулевое (фантастический расклад).

При выключении цепи процесс повторится обратным порядком. Ток стремится мгновенно упасть до нуля, в магнитном поле запасена энергия. Пропади индуктивность, переход пройдет внезапно, потокосцепление придает процессу иную окраску:

  1. Уменьшение тока вызывает снижение напряженности магнитного поля.
  2. Произведенный эффект наводит противо-ЭДС витков.
  3. В результате после отключения источника питания ток продолжает существовать, понемногу затухая.

Реактивная мощность некое звено инерции, постоянно запаздывающее, мешающее. Первый вопрос: зачем тогда нужны индуктивности? О, у них хватает полезных качеств. Польза заставляет мириться с реактивной мощностью. Распространенным положительным эффектом назовем работу электрических двигателей. Передача энергии идет через магнитный поток. Меж витками одной катушки, как было показано выше. Взаимодействию подвержены постоянный магнит, дроссель, все, способное захватить вектором индукции.

Случаи нельзя назвать в смысле описательном всеобъемлющими. Иногда применяется поток сцепления в виде, показанном для примера. Принцип используют пускорегулирующие аппараты газоразрядных ламп. Дроссель снабжен несметным количеством витков: отключение напряжения вызывает не плавное снижение тока, но выброс большой амплитуды противоположной полярности. Индуктивность велика: отклик поистине потрясающий. Превышает исходные 230 вольт на порядок. Достаточно, чтобы возникла искра, лампочка зажглась.

Выводы и полезное видео по теме

Вычисление силы тока по мощности для подбора сечения кабеля:

Определение потребляемой мощности групп электроприборов на примере частного дома:

Вычисление силы тока для определения параметров проводки или определение допустимой мощности в уже существующей цепи можно сделать самостоятельно. Для правильного решения поставленной задачи необходимо учесть нюансы, возникающие на практике, а не только использовать известные формулы, которые работают при “идеальных” условиях.

Если появились вопросы по теме статьи или вы можете дополнить этот материал интересной информацией, пожалуйста, оставляйте свои комментарии в расположенном ниже блоке.