Определение сопротивления кабелей на напряжение 6

Формула сопротивления

Ток обусловлен движением электронов. Классическая формула, используемая для расчёта его силы была выведена немецким физиком Омом. Он на опыте смог подтвердить зависимость между собой тока, сопротивления и напряжения. В математическом виде связь записывают в виде формулы: I = U /R.

Согласно закону Ома, сопротивление тела электрическому току прямо пропорционально его силе и обратно пропорционально напряжению: R = I / U. Это эмпирическая формула справедлива для любого участка цепи.

Подвижные носители при хаотичном движении ведут себя как молекулы газа, поэтому в первом приближении физики считают носителей зарядов своего рода электронным газом. Как было установлено эмпирически, плотность этого газа и строение кристаллической решётки зависят от рода проводника. Соответственно, проводимость, а значит и сопротивление, определяется также и родом вещества. В свою очередь, физическое тело характеризуется и геометрическими параметрами.

Влияние размеров полупроводника объясняется зависимостью от них поперечного сечения. При его уменьшении поток зарядов становится плотнее, степень взаимодействия между частицами возрастает. Полная формула сопротивления проводника с учётом поперечного сечения выглядит так: R = (p * l) / S. Из неё становится ясно, что проводимость прямо пропорциональна площади сечения и обратно пропорциональна длине проводника.

Удельное электрическое сопротивление для многих веществ было установлено во время исследований. Существуют таблицы, в которые занесены данные, измеренные при температуре 20 градусов Цельсия. Ими часто пользуются при решении различных задач, связанных с электричеством. Вот некоторые из них:

  • олово — 9,9 * 10-8 Ом * мм2/м;
  • медь — 0,01724 Ом * мм2/м;
  • алюминий — 0,0262 Ом * мм 2/м;
  • железо — 0,098 * Ом * мм2/м;
  • золото — 0,023 Ом * мм2/м.

Удельное сопротивление для неоднородного материала можно вычислить по формуле: p = E / J. Где: E и J напряжённость и плотность тока в конкретной точке.

Как рассчитать сечения кабеля по мощности

При достаточном значении сечения кабеля электрический ток будет проходить до потребителя, не вызывая нагрева. Почему происходит нагрев? Постараемся объяснить максимально доступно. К примеру, в розетку включён чайник потребляемой мощностью 2 киловатта, но идущий к розетке провод может передать для него ток мощностью только 1 киловатт. Пропускная способность кабеля связана с сопротивлением проводника — чем оно больше, тем меньший ток может передаваться по проводу. В результате высокого сопротивления в проводке и происходит нагрев кабеля, постепенно разрушающий изоляцию.

При соответствующем сечении электрический ток доходит до потребителя в полном объёме, и нагревание провода не происходит. Поэтому, проектируя электропроводку, следует учитывать потребляемую мощность каждого электрического прибора. Это значение можно узнать из технического паспорта на электроприбор или из наклеенной на нём этикетки. Суммируя максимальные значения и используя нехитрую формулу:

и получаем значение общей силы тока.

Pn обозначает указанную в паспорте мощность электроприбора, 220 — номинальный вольтаж.

Для трехфазной системы (380 В) формула выглядит так:

Полученное значение I измеряется в Амперах, и на основании него и подбирается соответствующее сечение кабеля.

Известно, что пропускная способность медного кабеля составляет 10 А/мм, для алюминиевого кабеля значение пропускной способности составляет 8 А/мм.

Для того чтоб рассчитать сечение кабеля нужно величину тока разделить на 8 или 10, в зависимости от вида кабеля. Полученный результат и будет размером сечения кабеля.

Например рассчитаем величину сечения кабеля для подключения стиральной машины, потребляемая мощность которой составляет 2400 Вт.

I=2400 Вт/220 В=10,91 А, округлив получаем 11 А.

Дальше, чтоб увеличить запас прочности, согласно правилу «пяти ампер» к полученному значению силы тока нужно прибавить еще 5 А:

11 А+5 А=16 А.

Если учитывать, что в квартирах используют трехжильные кабеля и посмотреть по таблице, то к 16 А близкое значение 19 А, поэтому для установки стиральной машины потребуется провод, сечение которого не меньше 2 мм².

Таблица сечения кабеля относительно величины силы тока

Сечение токо- прово- дящей жилы(мм2) Ток(А), для проводов, проложенных
Откры- то в одной трубе
двух одно- жильных трех одно- жильных четырех одно- жильных одного двух- жильного одного трех- жильного
0,5 11
0,75 15
1 17 16 15 14 15 14
1,2 20 18 16 15 16 14,5
1,5 23 19 17 16 18 15
2 26 24 22 20 23 19
2,5 30 27 25 25 25 21
3 34 32 28 26 28 24
4 41 38 35 30 32 27
5 46 42 39 34 37 31
6 50 46 42 40 40 34
8 62 54 51 46 48 43
10 80 70 60 50 55 50
16 100 85 80 75 80 70
25 140 115 100 90 100 85
35 170 135 125 115 125 100
50 215 185 170 150 160 135
70 270 225 210 185 195 175
95 330 275 255 225 245 215
120 385 315 290 260 295 250
150 440 360 330
185 510
240 605
300 695
400 830

Что такое УЗО в электрике: разновидности, принцип работы

Подключение двухклавишного выключателя: схемы, советы, инструкция

Удельное сопротивление меди различных марок

Круглая медная проволока для проводов, кабелей и так далее бывает мягкой (марка ММ), твердой (марка МТ) и марки МС. Ее выпускают в диапазоне диаметров 0,02-9,42 мм. Удельное электрическое сопротивление проволоки постоянному току при 20℃ соответствует значениям, приведенным в таблице:

Диаметр проволоки, мм ρ при 20℃, мкОм-м
ММ МТ, МС
Меньше 1,00 0,018
1,0-2,44 0,01724 0,0178
2,50 и больше 0,0177

Преимущества меди в плане проводимости дают повод обширно применять ее на производстве проводников. Вместе с тем медь — относительно дорогой и дефицитный материал, поэтому ее все чаще заменяют другими металлами, включая алюминий.

Вам это будет интересно Как проверить мосфет (полевик)


Провод

Сплавы меди с оловом, хромом, кадмием и другие называют бронзами. Бронза при правильном подоборе состава очень выгодно отличается от чистой меди по части механических свойств.

Почему проводник “сопротивляется”?

Напряжение U, поданное на концы проводника, создает внутри него электрическое поле, которое приводит в движение свободные электроны вещества. Электроны, получив дополнительную кинетическую энергию, начинают двигаться упорядоченно в одном направлении, создавая тем самым электрический ток цепи.

В процессе движения электроны сталкиваются с нейтральными и заряженными атомами, из которых стоит проводник, теряют энергию. Масса атома превосходит массу электрона в тысячи раз, поэтому их столкновение приводит к изменению направления движения электронов и потере скорости (“торможению”).

Рис. 1. Электрический ток в проводнике ограничивается столкновением электронов с атомами.

Что такое падение напряжения на резисторе

Электрический ток, проходя по цепи, испытывает сопротивление, которое может изменяться под воздействием разнообразных условий внешней среды (экстремально низкие температуры или нагрев) и может зависеть от характеристик конкретного проводника. Например, чем тоньше проводник или длиннее – тем оно выше.

На значение его величины влияют следующие факторы:

  • сила тока;
  • длина проводящих частей;
  • напряжение;
  • материал проводниковых элементов;
  • нагрев (температура);
  • площадь поперечного сечения.

Резисторы можно разделить на постоянные, переменные и подстроечные. Главное их отличие друг от друга – возможность изменения показателя сопротивления. Чаще всего встречаются постоянные резисторы – данный показатель в них нельзя изменить, поэтому они и получили такое название. Переменные отличаются тем, что величину сопротивления в них можно настраивать. В подстроечном резисторе её также можно изменять, но отличие данной разновидности в том, что он не рассчитан на частое изменение параметра. Подстроечные резисторы выполняются в более компактном корпусе по сравнению с переменными.

Чтобы вычислить падение напряжения на резисторе, нужно помнить, что снижение нагрузки, приложенной ко всей цепи (то есть, напряжения, подключённого к контуру) может быть получено как для всего контура, так и для любого элемента цепи. Напряжение понижается за счёт сопротивления, которым обладают проводники.

Падение напряжения на резисторе зависит от силы проходящего тока и характеристик проводников. Температура и показатели тока также имеют значение. Например, напряжение, измеренное вольтметром на лампочке, подключённой к сети 220 В, будет немного ниже за счёт сопротивления, которым обладает лампочка.

Источники питания имеют разную величину напряжения. Это значение может превышать то, которое бывает необходимо на выходе. Чтобы нагрузка, которую требуется запитать, не сгорела, часто возникает необходимость в понижении вольтажа, в том числе с помощью резисторов.

Сравнительная таблица напряжений

Источник питания Напряжение
NiCd аккумулятор 1,2 В
Литий-железо-фосфатный аккумулятор 3,3 В
Батарея типа «Крона» 9 В
Автомобильный аккумулятор 12 В
Аккумулятор для грузовых автомобилей 24 В

В этом случае резистор должен уменьшить протекающий по цепи ток. При этом ток не превращается в тепло, происходит именно его ограничение. То есть при включении резистора в цепь ток упадёт – в этом и состоит работа резистора, при совершении которой элемент нагревается.

В общем случае падения напряжения можно рассчитать, используя простую формулу, связывающее показатели между собой.

Но в ряде случаев, например, при параллельном подключении сопротивлений, посчитать необходимую величину уже сложнее. В этом случае по специальной формуле потребуется привести сопротивление параллельных веток к одному числу:

R = R1*R2 / (R1+R2)

При необходимости также учитываются другие сопротивления, суммирующиеся с этим значением (например, сопротивление провода и источника питания).

Расчет с помощью удельного сопротивления

Расчет сопротивления проводника можно произвести без измерения величин напряжения и тока. Но для этого необходимо знать дополнительную информацию о проводнике.

Рис. 3. Проводник с поперечным сечением S и длиной L, через который течет ток I.

Георг Ом и другие исследователи опытным путем определили, что сопротивление проводника прямо пропорционально длине проводника L и обратно пропорционально площади поперечного сечения проводника S. Эту закономерность можно описать формулой расчета сопротивления проводника:

$ R = ρ *{ L\over S} $ (2)

Коэффициент ρ был назван удельным сопротивлением. Эта физическая величина отражает особенности конкретного вещества, которые зависят от плотности вещества, кристаллической структуры, строения атомов и других внутренних параметров. Расчет удельного сопротивления проводника производить каждый раз необязательно, так как для большинства веществ удельные сопротивления измерены и сведены в справочные таблицы, которые можно найти в бумажных справочниках или в их интернет-версиях.

Но если такая необходимость возникнет, то из формулы (2) можно получить следующую формулу (3), и по ней рассчитать ρ:

$ ρ = R*{ S\over L } $ (3)

Серебро имеет одно из самых низких значений ρ, равное $ 0,016 {Ом*мм^2\over м} $. Этим объясняется использование такого довольно дорогого металла для пайки особенно важных радиодеталей (микросхем, микропроцессоров, электронных плат), которые должны как можно меньше нагреваться в процессе работы.

Что мы узнали?

Итак, мы узнали, что расчет сопротивления проводника можно произвести двумя способами. Первый расчет проводится с помощью формулы закона Ома после измерения величин напряжения и тока. Для второго расчета необходима информация о геометрических размерах проводника и его удельном сопротивлении.

  1. /5

    Вопрос 1 из 5

Физика для средней школы

Сопротивление проводников. Удельное сопротивление

Как уже отмечалось, сила тока в цепи зависит не только от напряжения на концах участка, но также и от свойств проводника, включенного в цепь. Зависимость силы тока от свойств проводников объясняется тем, что разные проводники обладают различным электрическим сопротивлением.

Электрическое сопротивление R — физическая скалярная величина, характеризующая свойство проводника уменьшать скорость упорядоченного движения свободных носителей зарядов в проводнике. Обозначается сопротивление буквой R. В СИ единицей сопротивления проводника является ом (Ом).

1 Ом — сопротивление такого проводника, сила тока в котором равна 1 А при напряжении на нем 1 В.

Применяются и другие единицы: килоом (кОм), мегаом (МОм), миллиом (мОм): 1 кОм = 103 Ом; 1 МОм = 106 Ом; 1 мОм = 10-3 Ом.

Физическую величину G, обратную сопротивлению, называют электрической проводимостью

Единицей электрической проводимости в СИ является сименс: 1 См — это проводимость проводника сопротивлением 1 Ом.

Проводник содержит не только свободные заряженные частицы — электроны, но и нейтральные частицы и связанные заряды. Все они участвуют в хаотическом тепловом движении, равновероятном в любых направлениях. При включении электрического поля под действием электрических сил будет преобладать направленное упорядоченное движение свободных зарядов, которые должны двигаться с ускорением и их скорость должна была бы со временем возрастать. Но в проводниках свободные заряды движутся с некоторой постоянной средней скоростью. Следовательно, проводник оказывает сопротивление упорядоченному движению свободных зарядов, часть энергии этого движения передается проводнику, в результате чего повышается его внутренняя энергия. Из-за движения свободных зарядов искажается даже идеальная кристаллическая решетка проводника, на искажениях кристаллической структуры рассеивается энергия упорядоченного движения свободных зарядов. Проводник оказывает сопротивление прохождению электрического тока.

Сопротивление проводника зависит от материала, из которого он изготовлен, длины проводника и площади поперечного сечения. Для проверки этой зависимости можно воспользоваться той же электрической схемой, что и для проверки закона Ома (рис. 2), включая в участок цепи MN различные по размерам проводники цилиндрической формы, изготовленные из одного и того же материала, а также из разных материалов.

Результаты эксперимента показали, что сопротивление проводника прямо пропорционально длине l проводника, обратно пропорционально площади S его поперечного сечения и зависит от рода вещества, из которого изготовлен проводник:

где — удельное сопротивление проводника.

Удельное сопротивление проводника — скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника, изготовленного из данного вещества и имеющего длину 1 м и площадь поперечного сечения 1 м2, или сопротивлению куба с ребром 1 м. Единицей удельного сопротивления в СИ является ом-метр (Ом·м).

Удельное сопротивление металлического проводника зависит от

  1. концентрации свободных электронов в проводнике;
  2. интенсивности рассеивания свободных электронов на ионах кристаллической решетки, совершающих тепловые колебания;
  3. интенсивности рассеивания свободных электронов на дефектах и примесях кристаллической структуры.

Наименьшим удельным сопротивлением обладает серебро и медь. Очень велико удельное сопротивление у сплава никеля, железа, хрома и марганца — «нихрома». Удельное сопротивление кристаллов металлов в значительной степени зависит от наличия в них примесей. Например, введение 1 % примеси марганца увеличивает удельное сопротивление меди в три раза.

Активное сопротивление

Определение 1

Пусть источник переменного тока включен в цепь, в которой индуктивностью и емкостью можно пренебречь. Переменный ток изменяется в соответствии с законом:

Рисунок 1.

Тогда, если применить к участку цепи ($а R в$) (рис.1) закон Ома получим:

где $U$ — напряжение на концах участка. Разность фаз между током и напряжением равна нулю. Амплитудное значение напряжения ($U_m$) равно:

где коэффициент $R$ — называется активным сопротивлением. Наличие активного сопротивления в цепи всегда приводит к выделению тепла.

Электрическое сопротивление

Электрическое сопротивление — это физическая величина, характеризующая противодействие проводника или электрической цепи электрическому току.

Электрическое сопротивление определяется как коэффициент пропорциональности $R$ между напряжением $U$ и силой постоянного тока $I$ в законе Ома для участка цепи.

Единица сопротивления называется омом (Ом) в честь немецкого ученого Г. Ома, который ввел это понятие в физику. Один ом ($1$ Ом) — это сопротивление такого проводника, в котором при напряжении $1$ В сила тока равна $1$ А.

Удельное сопротивление

Сопротивление однородного проводника постоянного сечения зависит от материла проводника, его длины $l$ и поперечного сечения $S$ и может быть определено по формуле:

$R=ρ{l}/{S}$

где $ρ$ — удельное сопротивление вещества, из которого изготовлен проводник.

Удельное сопротивление вещества — это физическая величина, показывающая, каким сопротивлением обладает изготовленный из этого вещества проводник единичной длины и единичной площади поперечного сечения.

Из формулы $R=ρ{l}/{S}$ следует, что

$ρ={RS}/{l}$

Величина, обратная $ρ$, называется удельной проводимостью $σ$:

$σ={1}/{ρ}$

Так как в СИ единицей сопротивления является $1$ Ом, единицей площади $1м^2$, а единицей длины $1$ м, то единицей удельного сопротивления в СИ будет $1$ Ом$·м^2$/м, или $1$ Ом$·$м. Единица удельной проводимости в СИ — $Ом^{-1}м^{-1}$.

На практике площадь сечения тонких проводов часто выражают в квадратных миллиметрах (м$м^2$). В этом случае более удобной единицей удельного сопротивления является Ом$·$м$м^2$/м. Так как $1 мм^2 = 0.000001 м^2$, то $1$ Ом$·$м $м^2$/м$ = 10^{-6}$ Ом$·$м. Металлы обладают очень малым удельным сопротивлением — порядка ($1 ·10^{-2}$) Ом$·$м$м^2$/м, диэлектрики — в $10^{15}-10^{20}$ раз большим.

Зависимость сопротивления от температуры

С повышением температуры сопротивление металлов возрастает. Однако существуют сплавы, сопротивление которых почти не меняется при повышении температуры (например, константан, манганин и др.). Сопротивление же электролитов с повышением температуры уменьшается.

Температурным коэффициентом сопротивления проводника называется отношение величины изменения сопротивления проводника при нагревании на $1°$С к величине его сопротивления при $0°$С:

$α={R_t-R_0}/{R_0t}$

Зависимость удельного сопротивления проводников от температуры выражается формулой:

$ρ=ρ_0(1+αt)$

В общем случае $α$ зависит от температуры, но если интервал температур невелик, то температурный коэффициент можно считать постоянным. Для чистых металлов $α=({1}/{273})K^{-1}$. Для растворов электролитов $α < 0$. Например, для $10%$-го раствора поваренной соли $α=-0.02K^{-1}$. Для константана (сплава меди с никелем) $α=10^{-5}K^{-1}$.

Зависимость сопротивления проводника от температуры используется в термометрах сопротивления.

Сопротивление кабелей с бумажной, резиновой и поливинилхлоридной изоляцией на напряжение 6 — 35 кВ

3. Справочник по проектированию электроснабжению. Ю.Г. Барыбина. 1990 г. Таблица 2.63, страницы 175-176.

4. Справочная книга электрика. Григорьева В.И. 2004г. Таблицы 3.9.7; 3.9.11; страницы 448-449

Если значения активных и реактивных сопротивлений кабелей, вы не нашли в приведенных таблицах. В этом случае, сопротивление кабеля можно определить по приведенным формулам с подстановкой в них фактических параметров кабелей.

Методика расчета представлена в книге: «Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г, страницы 45-48».

Активное сопротивление кабеля

1. Активное сопротивление однопроволочной жилы, определяется по формуле 2-1, Ом:

где:

  • l — длина жилы, м;
  • s – поперечное сечение жилы, мм2, определяется по формуле: π*d2/4;
  • d – диаметр жилы кабеля;
  • α20 – температурный коэффициент сопротивления, равный при 20 °С:
  • 0,00393 1/град – для меди;
  • 0,00403 1/град – для алюминия;
  • ρ20 – удельное сопротивление материала жилы при 20 °С (температура изготовления жилы), можно принять согласно книги «Справочная книга электрика. Григорьева В.И. 2004г.» Таблица 1.14, страница 30.

tж – допустимая температура нагрева жилы, согласно ПУЭ п.1.3.10 и 1.3.12.

2. Активное сопротивление многопроволочной жилы определяется также по формуле 2-1, но из-за конструктивных особенностей многопроволочной жилы, вместо значений ρ20 вводиться в формулу ρр равное:

  • 0,0184 Ом*мм2/м – для медных жил;
  • 0,031 Ом*мм2/м – для алюминиевых жил.

3. Удельное активное сопротивление жилы, отнесенное к единице длины линии 1 км, определяется из следующих зависимостей, Ом/км:

Индуктивное сопротивление кабеля

1. Удельное реактивное (индуктивное) сопротивление кабеля определяется по формуле 2-8, Ом/км:

где:

  • d – диаметр жилы кабеля.
  • lср – среднее геометрическое расстояние между центрами жил кабеля определяется по формуле :

где:

  • lА-В — расстояние между центрами жил фаз А и В;
  • lВ-С — расстояние между центрами жил фаз В и С;
  • lС-А — расстояние между центрами жил фаз С и А.

Пример

Определить активное и индуктивное сопротивление кабеля марки АВВГнг(А)-LS 3х120 на напряжение 6 кВ производства «Электрокабель» Кольчугинский завод». Длина кабельной линии L = 300 м.

Решение

1. Определяем поперечное сечение токопроводящей жилы кабеля имеющую круглую форму:

S = π*d2/4 = 3,14*13,52/4 = 143 мм2

Расчет поперечного сечение секторной жилы, а также размеры секторных жил на напряжение 0,4 — 10 кВ представлен в статье: «Расчет поперечного сечения секторной жилы кабеля«.

где: d = 13,5 мм – диаметр жилы кабеля (многопроволочные уплотненные жилы), определяется по ГОСТ 22483— 2012 таблица С.3 для кабеля с токопроводящей жилой класса 2. Класс токопроводящей жилы указывается в каталоге завода-изготовителя кабельной продукции.

Ниже представлена классификация жил кабелей, согласно ГОСТ 22483— 2012:

2. Определяем удельное активное сопротивление кабеля марки АВВГнг(А)-LS 3х120, отнесенное к единице длины линии 1 км, Ом/км:

где:

  • l = 1000 м – длина жилы, м;
  • α20 – температурный коэффициент сопротивления, равный при 20 °С:
  • 0, 00393 1/град – для меди;
  • 0,00403 1/град – для алюминия;
  • ρр – удельное сопротивление материала многопроволочной жилы, равное:
  • 0,0184 Ом*мм2/м – для медных жил;
  • 0,031 Ом*мм2/м – для алюминиевых жил;
  • tж = 65 °С — допустимая температура нагрева жилы, для кабеля напряжением 6 кВ, согласно ПУЭ п.1.3.10.

3. Определяем удельное активное сопротивление кабеля, исходя из длины кабельной трассы:

где: L = 0,3 км – длина кабельной трассы, км;

4. Определяем среднее геометрическое расстояние между центрами жил кабеля, учитывая что жилы кабеля расположены в виде треугольника.

где:

  • lА-В = 20,3 мм — расстояние между центрами жил фаз А и В;
  • lВ-С = 20,3 мм — расстояние между центрами жил фаз В и С;
  • lС-А = 20,3 мм — расстояние между центрами жил фаз С и А.

Что бы определить расстояние между центрами жил кабеля, нужно знать диаметр жил кабеля d = 13,5 мм и толщину изоляции жил из поливинилхлоридного пластиката dи.ж = 3,4 мм, согласно ГОСТ 16442-80 таблица 4. Определяем расстояние между центрами жил фаз равное 20,3 мм (см.рис.1).

5. Определяем удельное реактивное (индуктивное) сопротивление кабеля марки АВВГнг(А)-LS 3х120, Ом/км:

где: d = 13,5 мм – диаметр жилы кабеля;

6. Определяем удельное реактивное сопротивление кабеля, исходя из длины кабельной трассы:

Формула

Ток обусловлен движением электронов. Классическая формула, используемая для расчёта его силы была выведена немецким физиком Омом. Он на опыте смог подтвердить зависимость между собой тока, сопротивления и напряжения. В математическом виде связь записывают в виде формулы: I = U /R.

Согласно закону Ома, сопротивление тела электрическому току прямо пропорционально его силе и обратно пропорционально напряжению: R = I / U. Это эмпирическая формула справедлива для любого участка цепи.

Подвижные носители при хаотичном движении ведут себя как молекулы газа, поэтому в первом приближении физики считают носителей зарядов своего рода электронным газом. Как было установлено эмпирически, плотность этого газа и строение кристаллической решётки зависят от рода проводника. Соответственно, проводимость, а значит и сопротивление, определяется также и родом вещества. В свою очередь, физическое тело характеризуется и геометрическими параметрами.

Влияние размеров полупроводника объясняется зависимостью от них поперечного сечения. При его уменьшении поток зарядов становится плотнее, степень взаимодействия между частицами возрастает. Полная формула сопротивления проводника с учётом поперечного сечения выглядит так: R = (p * l) / S. Из неё становится ясно, что проводимость прямо пропорциональна площади сечения и обратно пропорциональна длине проводника.

Удельное электрическое сопротивление для многих веществ было установлено во время исследований. Существуют таблицы, в которые занесены данные, измеренные при температуре 20 градусов Цельсия. Ими часто пользуются при решении различных задач, связанных с электричеством. Вот некоторые из них:

  • олово — 9,9 * 10-8 Ом * мм2/м;
  • медь — 0,01724 Ом * мм2/м;
  • алюминий — 0,0262 Ом * мм 2/м;
  • железо — 0,098 * Ом * мм2/м;
  • золото — 0,023 Ом * мм2/м.

Удельное сопротивление для неоднородного материала можно вычислить по формуле: p = E / J. Где: E и J напряжённость и плотность тока в конкретной точке.