Может ли стабилизатор напряжения экономить электричество?

Оглавление

Фазы


Прежде всего, следует решить вопрос о том, какой тип стабилизатора – однофазный или трехфазный, потребуется. А так как в большинстве домов однофазная подача электроэнергии, то вопрос решается сам собой, но если для электроснабжения подведена трехфазная линия, то могут быть варианты.

Однофазные

Главная цель их использования – защита электрооборудования от возможных скачков напряжения, из-за которых приборы могут выйти из строя или даже сгореть. Обеспечивают постоянную регулировку и, соответственно, контроль выходного напряжения, подаваемого на электроприборы.

Результат – электроника работает без перебоев, реже выходит из строя, кроме того, за счет стабильности сети удается даже несколько снизить электропотребление дома. Среди характерных неудобств является их «шумность», а у некоторых моделей время срабатывания на входящее напряжение может быть немного замедленным.

Трехфазные

Предназначены для электрических сетей в 380 В и рассчитаны на большие нагрузки. Используются на промышленных объектах, а также в коттеджах, в которых существуют автономные системы отопления, различного оборудования компрессорного типа.

Одной из главных проблем использования трехфазных стабилизаторов является невозможность их эксплуатации в случае выхода одной фазы и строя.

Расчет мощности стабилизатора напряжения

Для того чтобы правильно рассчитать мощность стабилизатора напряжения необходимо последовательно сложить мощность всех потребителей включаемых одновременно с учетом пусковых токов.

Мощность каждого бытового прибора Вы можете посмотреть в паспорте или на самом приборе, как правило эта цифра указывается на задней стенке прибора.

Так же необходимо учитывать различные типы нагрузки.

Нагрузка существует как активная, так и реактивная.

Что это такое?

Активная нагрузка, потому и называется активной, что вся потребляемая электроэнергия преобразуется в другие виды энергии (тепловую, световую и др.). Многие приборы и устройства имеют только активную нагрузку. К таким приборам и устройствам можно отнести лампы накаливания, обогреватели, электроплиты, утюги и т.д. Если их указанная потребляемая мощность составляет 1 кВт, для их питания достаточно стабилизатора мощностью 1кВт.

Реактивные нагрузки. К таким устройствам можно отнести приборы и изделия имеющие электродвигатель. Среди бытовой техники, таких устройств очень много — это почти вся электронная и бытовая техника. Такие приборы имеют полную мощность и активную. Полная мощность исчисляется ВА (вольт-амперы), активная мощность исчисляется Вт (ваттах).

Полная мощность (вольт-амперы) и активная мощность ( ватты) связаны между собой коэффициентом cos ф. На электроприборах имеющих реактивную составляющую нагрузки , часто указывают их активную потребляемую мощность в ваттах и cos ф.

Для того чтобы Вам подсчитать полную мощность в ВА, нужно активную мощность в Вт разделить на cos ф.

Например: если на дрели написано «700 Вт» и » cos ф = 0,7″, это означает, что на самом деле потребляемая инструментом полная мощность будет равна 700/0,7=1000 ВА. Если cos ф не указан, то в среднем активную мощность можно разделить на 0,7.

Высокие пусковые токи.

Многие приборы в момент пуска могут потреблять энергии в несколько раз больше чем их номинальная мощность. К таким приборам относятся все устройства содержащие двигатель.

К примеру, глубинный насос, холодильник и т.д.. Указанную в паспорте потребляемую мощность необходимо умножить на 3-5 раз, иначе Вы не сможете включить эти устройства через стабилизатор, потому что будет срабатывать защита от превышения мощности.

После того как Вы получили суммарную мощность всех приборов, необходимо посчитать какие именно приборы будут включатся одновременно и у каких приборов есть пусковые токи. Только в этом случае Вы правильно рассчитаете правильную мощность стабилизатора напряжения необходимого для питания Вашей бытовой техники.

Рекомендуется выбирать модель стабилизатора с 20% запасом по мощности. Во-первых, Вы обеспечите «щадящий» режим работы стабилизатора, тем самым, увеличив его срок службы, во-вторых, создадите себе резерв мощности для дополнительного подключения нового оборудования.

Пример подбора стабилизатора по мощности

Стабилизатор приобретается для одновременной защиты трех однофазных потребителей

Не будем акцентировать внимание на конкретном виде устройств, назовем их просто: потребитель 1, потребитель 2 и потребитель 3

Согласно заводским паспортам:

  • номинальная мощность потребителя 1 составляет 600 Вт, потребителя 2 – 130 Вт, потребителя 3 – 700 Вт;
  • коэффициент мощности потребителей 1 и 2 равен 0,7, потребителя 3 – 0,95.

Определяем мощность нагрузки. Пусть потребитель 1 относится к категории оборудования, характеризующегося наличием высоких пусковых токов. При расчёте используем не его номинальную мощность, а максимальную – пусковую, равную согласно технической документации 1800 Вт. Используя вышеуказанную формулу, переведём мощность каждого потребителя из Вт в ВА:

  • 1800 / 0,7 = 2571,4 ВА – для потребителя 1;
  • 130 / 0,7 = 185,7 ВА – для потребителя 2;
  • 700 / 0,95 = 736,8 ВА – для потребителя 3.

Теперь определим суммарную потребляемую мощность планируемой нагрузки в Вт и ВА:

  • 1800 + 130 + 700 = 2630 Вт;
  • 2571,4 + 185,7 + 736,8 = 3493,9 ВА.

Дальнейший выбор стабилизатора будем проводить, учитывая, что полная мощность нагрузки на устройство составит 3493,9 ВА, а активная – 2630 Вт (обратите внимание на разницу значений в Вт и ВА). Далее определяем запас мощности

Примем рекомендованную величину запаса мощности в 30% от энергопотребления нагрузки – для получения численного значения необходимого запаса умножим на 0,3 ранее рассчитанные суммарные мощности планируемой нагрузки:

Далее определяем запас мощности. Примем рекомендованную величину запаса мощности в 30% от энергопотребления нагрузки – для получения численного значения необходимого запаса умножим на 0,3 ранее рассчитанные суммарные мощности планируемой нагрузки:

  • 2630 х 0,3 = 789 Вт – запас активной мощности;
  • 34,939 х 0,3 = 1048,17 ВА – запас полной мощности.

Следовательно мощность нагрузки с учётом запаса составит:

  • 2630 + 789 = 3419 Вт;
  • 3493,9 + 1048,17 = 4542,07 ВА.

Теперь выберем модели однофазного стабилизатора с необходимой мощностью для электропитания нашей нагрузки (с учетом запаса), используя стандартный мощностной ряд однофазных инверторных стабилизаторов производства ГК «Штиль»:

Полная мощность, ВА Активная мощность, Вт
350 300
550 400
800 600
1000 800
1500 1125
2000 1500
2500 2000
3000 2500
3500 2750
5000 4500
7000 5500
8000 7200
10000 9000
12000 11000
15000 13500
20000 18000

Ближайшая с большей стороны к расчётным значениям мощность – 5000 ВА и 4500 Вт, следовательно, именно такой стабилизатор подходит для подключения потребителя 1, потребителя 2 и потребителя 3.

Предположим, что потребителя 1, потребителя 2 и потребителя 3 необходимо подключить не к однофазному, а к трехфазному стабилизатору. Стандартный мощностной ряд ГК «Штиль» для подобных устройств следующий:

Полная мощность, ВА Активная мощность, Вт
6000 5400
10000 8000
15000 13500
20000 16000

Нагрузку со значением полной мощности в 4542,07 ВА и активной – в 3419 Вт, возможно подключить к одной фазе трехфазного стабилизатора с выходной мощностью 15000 ВА / 13500 Вт, в котором отдельная фаза выдаст максимально – 5000 ВА / 4500 Вт.

Выбрать менее мощную модель стабилизатора позволит распределение нагрузки, то есть подключение каждого потребителя к отдельной фазе. Наибольшая нагрузка будет на фазе, питающей потребитель 1, энергопотребление которого – 1800 Вт / 2571,4 ВА.

Рассчитаем необходимый потребителю 1 запас мощности (примем рекомендованное значение запаса в 30%):

  • 1800 х 0,3 = 540 Вт – запас активной мощности;
  • 2571,4 х 0,3 = 771,4 ВА – запас полной мощности;
  • 1800 + 540 = 2340 Вт – активная мощность потребителя 1 с учётом запаса;
  • 2571,4 + 771,4 = 3342,8 ВА – полная мощность потребителя 1 с учётом запаса.

Значит, максимально возможная нагрузка на одну фазу стабилизатора при условии подключения трех потребителей к различным фазам может составить: 3342,8 ВА / 2340 Вт.

Выберем модель стабилизатора с выходной мощностью 10000 ВА / 8000 Вт, в которой допустимая нагрузка на одну фазу приблизительно равна 3333 ВА / 2666 Вт. В данном случае допустимо выбрать стабилизатор с полной мощностью чуть меньшей, чем расчётная – фактически это снизит запас по мощности для потребителя 1 на 1-2%.

Обратите внимание!

Существуют стабилизаторы топологии «3 в 1», то есть с трехфазным входом и однофазным выходом. Подобная схема позволяет равномерно нагрузить трехфазную сеть при подключении однофазной нагрузки.

Прибавляем запас по мощности

Правильно выбранный стабилизатор должен иметь выходную мощность, превышающую мощность, необходимую для электропитания нагрузки. Разница между мощностью стабилизатора и фактическим энергопотреблением нагрузки называется запасом мощности.

Рекомендуемый запас составляет 30% от величины энергопотребления нагрузки. Данное значение позволит:

  • подключить к устройству в процессе эксплуатации дополнительные приборы, мощность которых не учитывалась при изначальном расчёте нагрузки;
  • избежать перегрузки в случае сильного падения напряжения в электросети.

Дадим разъяснение по второму пункту. Дело в том, что мощность стабилизатора при выходе питающего напряжения из определённых пределов (рабочего диапазона) уменьшается. В частности, при 135 В в сети, стабилизатор вместо заявленных 500 ВА выдаст только 400 ВА и, соответственно, не сможет запитать предельную к его номиналу нагрузку.

Для некоторого оборудования рекомендуется заложить запас мощности свыше 30%. Это, например, кондиционеры или IT-техника. В первом случае, данное решение объясняйся ростом потребляемой кондиционером мощности в процессе эксплуатации устройства (вызвано неизбежным загрязнением фильтрующей сетки). Во втором случае – тенденцией к постоянному увеличению мощностей телекоммуникационного оборудования.

Ремонт релейного стабилизатора Ресанта СПН-9000

Принцип действия релейных стабилизаторов базируется на ступенчатом регулировании выходного напряжения.
Стабилизация напряжения в автоматическом режиме обеспечивается микропроцессором.
Коммутация отводов автотрансформатора производится скачкообразно с помощью мощных электрических реле,
управляемых транзисторными ключами. Дискретность переключения различных стабилизаторов колеблется от 5 до 20 В.
Соответственно, чем меньше это значение, тем стабильнее выходное напряжение.

Рассмотрим две характерные неисправности, возникающие в процессе эксплуатации электронных стабилизаторов, на примере СПН-9000.
Стабилизация не работает при снижении входного напряжения от ~220Vдо ~170V, либо при повышении его выше ~220 В.
При этом в обоих случаях отсутствия стабилизации выходное напряжение меняется синхронно с входным. Иногда при включении стабилизатора выбивает пробки, то есть срабатывает защита от короткого замыкания. Основная «болезнь» электронных стабилизаторов напряжения — обгорание и залипание контактов реле.

Из-за неисправных реле выходят из строя ключи, собранные на транзисторах 2SD882 производства NEC. Реле (все пять штук) заменяют новыми, либо реставрируют. Для этого снимают крышки с реле, затем снимают подвижный контакт, освобождают его от пружины и с помощью наждачной бумаги «нулёвка» тщательно очищают все контакты реле (верхний, подвижный и нижний). Затем окончательно очищают все контакты бензином «Галоша» и собирают реле в обратном порядке. Потом выпаивают все пять транзисторов 2SD882 и проверяют целостность переходов. При необходимости, заменяют транзисторы новыми.

Совсем недавно пришлось ремонтировать стабилизатор напряжения с периодическим дефектом. Внешне этот дефект проявлялся как хаотическое отображение включающихся сегментов дисплея, сопровождающееся хаотическим срабатыванием реле. Этот дефект получил кодовое название «вьюга». Возникает из-за холодной пайки кварцового резонатора XTA1 с рабочей частотой 8 МГц.
Понятно, что из-за этого не будет нормально работать микроконтроллер U2 (маркировка заклеена этикеткой). Необходимо учесть, что выводы проблемного кварцового резонатора плохо обслуживаются. Поэтому лучше всего его выпаять, зачистить его выводы наждачной бумагой «нулёвка», затем качественно их облудить, подпаять и установить XTA1 на место.

Не лишней при ремонте стабилизатора будет проверка всех электролитических конденсаторов на плате контроллера. Дело в том, что производитель использует дешёвые конденсаторы торговой марки JAKEC крайне невысокого качества. Измеряют не только их ёмкость, но и ESR. На этом ремонт стабилизатора напряжения можно считать законченным. Затем стабилизатор напряжения включают и проверяют его работоспособность.

Примеры надежных моделей стабилизаторов для котла

Примеры хороших и надежных моделей стабилизаторов для отопительных котлов по типам.

Сервоприводные:

  • Ресанта ACH1000/1-ЭМ;
  • Luxeon LDS1500 Servo;
  • RUCELF SDW-1000;
  • Энергия CHBT-1000/1;
  • Elitech ACH 1500E.

Релейные:

  • LogicPower LPT-1000RV;
  • Luxeon LDR-1000;
  • Powercom TCA-1200;
  • SVEN Neo R1000;
  • БАСТИОН Teplocom ST1300.

Электронные:

  • Штиль R 1200SPT;
  • Luxeon EDR-2000;
  • Прогресс 1000T;
  • Lider PS 1200W-30;
  • Awattom СНОПТ-1.0.

APC by Schneider Electric Line-R LS1000-RS

Современный стабилизатор напряжения электронного типа от известного бренда, защищающий технику от провалов, скачков электросети. Вход предусматривает диапазон 184–284 В, выход 230 В. Для бесперебойной службы требуется температура не ниже 0 градусов, максимум +40 градусов. Для комфортного управления установлен LED-экран со световыми индикаторами, 3 розетки с защитой от детей. Отличительной чертой является внешний вид, так как корпус представлен в благородном черном цвете.

Достоинства:

  • Небольшие габариты;
  • Недорогая цена;
  • Бесшумная работа;
  • 3 розетки;
  • Легкий монтаж, управление.

Недостатки:

  • Недостаточная длина шнура;
  • Возможны погрешности показателей на экране с реальными данными.

Некоторые отзывы говорят о том, что черный корпус не совсем вписывается в интерьер комнаты в отличие от классических светлых агрегатов. Кроме того на дисплее могут указываться одни данные входа и выхода, а при измерении несколько иные. Но в целом это эффективный и полезный помощник в доме с большим количеством техники.

Sven VR-L1000

Этот номинант пользуется огромным спросом по причине доступной цены наряду с достаточным функционалом. На корпусе установлено 2 розетки для комфортного подключения евро размера, а также кнопка для блокировки подачи тока. Принимать в качестве «удара» устройство может в пределах 184-285 В, отдавая при этом по выходу 230 В с погрешностью около 10%. На корпусе есть световая индикация о сети, перегрузке, нормализации. Также есть опция аварийного отключения при слишком больших скачках.

Достоинства:

  • Компактный размер;
  • Защитная система;
  • Невысокая цена;
  • Тихая работа;
  • Прочная фиксация всех разъемов.

Недостатки:

  • Несъемный шнур питания;
  • Щелчки при дестабилизации.

Все задачи, поставленные пользователем перед этим устройством, выполняются беспрекословно. При постоянном включении можно ощутить разницу, насколько лучше станут работать бытовые приборы в доме. Матовый пластик корпуса не маркий, все световые индикаторы четкие, понятные, для управления установлена только одна кнопка.

В том случае если отопительная система предусматривает подключение к сети 380 В, тогда речь идет о трехфазном бытовом стабилизаторе напряжения. Или же можно разместить на каждую фазу по простому стабилизатору из вышеописанных номинантов, но это займет много места, средств на покупку. Упростит задачу современный агрегат усиленной мощности и выдержки, лучшие модели будут названы дальше.

Как же правильно рассчитать мощность?

При покупке стабилизатора следует, прежде всего, определиться с тем, в каких условиях будет эксплуатировать прибор: для защиты отдельных устройств или же для всего комплекса электроприборов. Но допустим, что речь идет о покупке такого стабилизатора, который будет защищать всю технику в доме. Как действовать в этом случае?

Для начала необходимо узнать параметры совокупного потребления всеми приборами в доме. Сделать это можно несколькими способами. Первый и самый простой заключается в том, чтобы взять разрешение по электроснабжению, в котором должны содержаться данные о выделенной на участок мощности.

Можно обратиться ко второму способу, когда в качестве указателя мощности используются данные на входных автоматах защиты. На приборах обычно указывается сила тока в амперах, которую можно без труда перевести в ватты (кол-во в амперах умножить на 220 В). Например, если мощность равна 24 А, то путем несложных подсчетов мы получим 5,5 кВт. Это касается как однофазной, так и трехфазной сети. Только в последнем случае нужно умножить силу тока на напряжение и получить результат на каждую фазу. Если в вашем случае подключается 3-фазная нагрузка, то мощность трех фаз нужно суммировать, чтобы получить общую мощность.

Наконец, вы можете воспользоваться третьим способом, который еще проще. Взять информацию по нагрузке от каждого прибора с учетом пускового тока и суммировать данные, а затем умножить на коэффициент 0,7. Почему именно 0,7? Дело в том, что на практике пользователи не включают одновременно все электроприборы, то есть параметр коэффициента указывает на типичное положение, когда работает примерно 70 % домашней аппаратуры. Для защиты отдельных приборов иногда создается выделенная линия от стабилизатора, что часто более эффективно.

Рейтинг лучших стабилизирующих устройств

Предлагаем вашему вниманию наш собственный ТОП 7 лучших стабилизаторов 220В, который мы составили, изучив многочисленные рейтинги магазинов электроприборов и отзывы покупателей. Отсортированы данные модели в порядке уменьшения качества.

  1. Powerman AVS 1000D. Тороидальный агрегат с высокими стандартами качества: низкий уровень шума, высокий КПД, небольшие габариты и вес. Мощность этой модели составляет 700 Вт, рабочая температура в пределах 0…40°C, а входное напряжение колеблется в диапазоне 140…260В. Обладает шестью ступенями регулировки и двумя выходами, а время реакции всего 7 мс.
  2. Энергия Ultra. Одна из лучших электронных моделей для газового котла buderus, baxi, viessman. Обладает высокими техническими параметрами: мощность нагрузки 5000-20 000Вт, диапазон 60В-265В, временная перегрузка до 180%, точность в пределах 3%, морозоустойчивость от -30 до +40 °С, настенный тип монтажа, абсолютная бесшумность работы.
  3. Rucelf Котел-600. Отличный аппарат в качественном металлическом корпусе, внутри которого имеется хорошо изолированный автотрансформатор. Обладает высокими техническими параметрами: мощность 600ВТ, диапазон 150В-250В, работа в пределах 0…45°C, четыре ступени регулировки, а время реакции составляет 20 мс. Имеется одна евророзетка, которая находится снизу. Настенный тип крепления.
  4. Ресанта ACH-500/1-Ц. Прибор релейного типа с мощностью 500 Вт и входным напряжением 160…240 В. Изделия марки Ресанта имеют две вариации исполнения. Время реакции составляет 7 мс, обладает четырьмя ступенями регулировки и встроенной защитой от перегрева, короткого замыкания, высокого напряжения. Подключается к розетке с заземлением.
  5. Sven AVR Slim-500. Несмотря на китайское происхождение, релейный прибор обладает достойным качеством монтажа и техническими характеристиками: мощность 400Вт, четыре ступени регулировки, входное напряжение в пределах 140…260 В. Свен способен функционировать при температуре от 0 до 40°C. Оснащен тороидальным автотрансформатором с датчиком перегрева. Время реакции всего 10 мс.
  6. Штиль R600ST. Единственный электронный стабилизатор, предназначенный специально для газовых колов. Благодаря симисторным ключам, рабочее напряжение составляет от 150 до 275В. Мощность устройства – 480Вт, температурный диапазон — 1…40°C, четырехступенчатая регулировка, время реакции составляет 40 мс. Имеется отдельный контур для каждой из двух Евророзеток. Полностью бесшумная работа.
  7. Бастион Teplocom ST-555. Еще одна модель релейного типа, но мощность которого на порядок ниже — 280 Вт, а входное напряжение составляет 145…260 В. Также в отличие от марки Ресанта, время реакции Бастиона составляет 20 мс, а количество ступеней всего три. Кроме того, прибор нагревается в процессе работы и в нем отсутствует автоматический предохранитель.

    Как подключить устройство к котлу?

Теперь необходимо изучить схему правильного подключения стабилизирующего прибора.

Прежде всего, чтобы защитить свой газовый котел, непосредственно перед ним необходимо сетевой фильтр, а сразу после входящей автоматики – реле контроля напряжения.

Как правило в местах использования отопительных котлов, электропитание передается при помощи двухпроводной воздушной линии которая оборудована системой заземления ТТ. В такой ситуации необходимо добавить УЗО с током уставки до 30 мА.

Таким получается следующая схема:

Внимание! И стабилизатор, и газовый котел должны быть оборудованы заземлением!

Для того чтобы заземлить котел (а также и остальные электроприборы), в системе ТТ требуется обустроить отдельный заземляющий контур, который полностью изолирован от нулевого рабочего проводника, а также и от остальной сети. Сопротивление заземляющего контура рассчитывается согласно нормативам Правил устройства электроустановок.

Вывод: какой стабилизатор для газового котла выбрать

Из всего описанного выше можно подвести итог, какое стабилизирующее устройство подойдет для газового котла наилучшим образом:

  • однофазный;
  • с мощностью от 400 Вт или на 30-40% больше мощности котла;
  • любого вида, кроме электромеханического, либо электромеханический прибор установить в другом помещении.

Для потребителей главным критерием выбора стабилизаторов напряжения является цена изделия. Одна по одной и той же стоимости можно купить прибор, который не подходит для газового оборудования вовсе или же приобрести надежную модель, которое обеспечит достойную защиту. Поэтому при выборе стабилизирующего устройства необходимо учитывать перечисленные параметры, а не только цену.

Основные технические характеристики LM338

Простой регулируемый источник питания

Первая схема — типовое подключение обвязки LM338. Схема обеспечивает регулируемое выходное напряжение от 1,25 до максимума подаваемого входного напряжения, которое не должно быть более 35 вольт.

Переменный резистор R1 используется для плавного регулирования выходного напряжения.

Простой 5 амперный регулируемый источник питания

Эта схема создает выходное напряжение, которое может быть равно напряжению на входе, но ток хорошо изменяется и не может превышать 5 ампер. Резистор R1 точно подобран таким образом, чтобы поддерживать безопасные 5 ампер предельного тока ограничения, которые могут быть получены из цепи.

Регулируемый источник питания на 15 ампер

Как уже было сказано ранее микросхема LM 338 в одиночку может осилить только 5А максимум, однако, если необходимо получить больший выходной ток, в районе 15 ампер, то схема подключения может быть модифицирована следующим образом:

В данном случае используются три LM338 для обеспечения высокой токовой нагрузки с возможностью регулирования выходного напряжения.

Переменный резистор R8 предназначен для плавной регулировки выходного напряжения

Источник питания с цифровым управлением

В предыдущей схеме источника питания, для осуществления регулировки напряжения использовался переменный резистор. Ниже приведенная схема позволяет посредством цифрового сигнала подаваемого на базы транзисторов получать необходимые уровни выходного напряжения.

Величина каждого сопротивления в цепи коллектора транзисторов подобрана в соответствии с необходимым выходным напряжением.

Схема контроллера освещения

Кроме питания, микросхема LM338 также может быть использована в качестве светового контроллера. Схема показывает очень простую конструкцию, где фототранзистор заменяет резистор, который используется в качестве компонента для регулировки выходного напряжения.

Лампа, освещенность которой необходимо держать на стабильном уровне, питается от выхода LM338. Ее свет падает на фототранзистор. Когда освещенность возрастает сопротивление фоторезистора падает и выходное напряжение уменьшается, а это в свою очередь уменьшает яркость лампы, поддерживая ее на стабильном уровне.

Зарядное устройство 12В на LM338

Следующую схему можно использовать для зарядки 12 вольтовых свинцово-кислотных аккумуляторов. Резистором RS можно задать необходимый ток зарядки для конкретного аккумулятора.

Схема плавного включения (мягкий старт) блока питания

Некоторые чувствительные электронные схемы требуют плавного включения электропитания. Добавление в схему конденсатора С1 дает возможность плавного повышения выходного напряжения до установленного максимального уровня.

Схема термостата на LM338

LM338 также может быть настроен для поддержания температуры обогревателя на определенном уровне.

Здесь в схему добавлен еще один важный элемент — датчик температуры LM334. Он используется как датчик, который подключен между adj LM338 и землей. Если тепло от источника возрастает выше заданного порога, сопротивление датчика понижается, соответственно, и выходное напряжение LM338 уменьшается, впоследствии уменьшая напряжение на нагревательном элементе.

Информация взята с joyta.ru

Купить Регулируемые стабилизаторы напряжения LM338 за $2.65

↑ Второй вариант расчета параметрического стабилизатора [3 — 5]

Итак, исходными данными являются: стабилизированное напряжение на нагрузке Uвых, токи нагрузки Iн min, Iн max, номинальное входное напряжение Uвх и его отклонения ΔUвх н и ΔUвх в.

Параметры стабилитрона те же, что и в предыдущем расчете: Uст= Uвых, Iст max, Iст min, rд.

Вычисляем максимальное и минимальное значения рабочего тока стабилитрона:

Iст р max=0,8 Iст max,Iст р min=1,2 Iст min.

Если стабилизатор должен работать режиме холостого хода (Iн min=0), выбираем Iст р min=Iст min.

Проверяем пригодность выбранного по напряжению стабилизации стабилитрона заданных пределах тока нагрузки и питающего напряжения:

(Iст р max+ Iн min)(1- ΔUвх н)-(Iст min+ Iн max)(1+ ΔUвх в)>0,где ΔUвх н=(Uвх- Uвх min)/ Uвх, ΔUвх в=(Uвх max-Uвх)/ Uвх.

Номинальное напряжение Uвх, которое должен обеспечить выпрямитель, вычисляем по формуле:

Uвх= Uст/.

Сопротивление балластного резистора:

R= Uвх(ΔUвх в+ΔUвх н)/.

Также вычисляем мощность резистора с двукратным запасом:

Po=2(Uвх(1+ ΔUвх н)- Uст) 2 /R.

По приведенным в первом варианте расчета формулам находим Kст, КПД и Kф.

↑ Пример расчета №3

Рассчитаем параметрический стабилизатор напряжения со следующими характеристиками: стабилизированное напряжение на нагрузке Uн=9 В; ток Iн min =0, Iн max =10 мА; изменение входного ΔUвх н=10%, ΔUвх в=15%.

Выберем стабилитрон типа Д814Б, для которого Uст= Uн; rд=10 Ом; Iст max=36 мА, Iст min=3 мА.

После занесения исходных данных листе таблицы «Второй вариант расчета» получаем следующие результаты (рис. 4):

Uвх=14 В, R=221 Ом, Po=0,45 Вт, Kст=14,2.

Выбираем резистор сопротивлением 220 Ом мощностью 0,5 Вт.

Стабилизатор приобретается для одновременной защиты трех однофазных потребителей

Не будем акцентировать внимание на конкретном виде устройств, назовем их просто: потребитель 1, потребитель 2 и потребитель 3

Согласно заводским паспортам:

  • номинальная мощность потребителя 1 составляет 600 Вт, потребителя 2 – 130 Вт, потребителя 3 – 700 Вт;
  • коэффициент мощности потребителей 1 и 2 равен 0,7, потребителя 3 – 0,95.

Определяем мощность нагрузки. Пусть потребитель 1 относится к категории оборудования, характеризующегося наличием высоких пусковых токов. При расчёте используем не его номинальную мощность, а максимальную – пусковую, равную согласно технической документации 1800 Вт. Используя вышеуказанную формулу, переведём мощность каждого потребителя из Вт в ВА:

  • 1800 / 0,7 = 2571,4 ВА – для потребителя 1;
  • 130 / 0,7 = 185,7 ВА – для потребителя 2;
  • 700 / 0,95 = 736,8 ВА – для потребителя 3.

Теперь определим суммарную потребляемую мощность планируемой нагрузки в Вт и ВА:

  • 1800 + 130 + 700 = 2630 Вт;
  • 2571,4 + 185,7 + 736,8 = 3493,9 ВА.

Дальнейший выбор стабилизатора будем проводить, учитывая, что полная мощность нагрузки на устройство составит 3493,9 ВА, а активная – 2630 Вт (обратите внимание на разницу значений в Вт и ВА). Далее определяем запас мощности

Примем рекомендованную величину запаса мощности в 30% от энергопотребления нагрузки – для получения численного значения необходимого запаса умножим на 0,3 ранее рассчитанные суммарные мощности планируемой нагрузки:

Далее определяем запас мощности. Примем рекомендованную величину запаса мощности в 30% от энергопотребления нагрузки – для получения численного значения необходимого запаса умножим на 0,3 ранее рассчитанные суммарные мощности планируемой нагрузки:

  • 2630 х 0,3 = 789 Вт – запас активной мощности;
  • 34,939 х 0,3 = 1048,17 ВА – запас полной мощности.

Следовательно мощность нагрузки с учётом запаса составит:

  • 2630 + 789 = 3419 Вт;
  • 3493,9 + 1048,17 = 4542,07 ВА.

Теперь выберем модели однофазного стабилизатора с необходимой мощностью для электропитания нашей нагрузки (с учетом запаса), используя стандартный мощностной ряд однофазных инверторных стабилизаторов производства ГК «Штиль»:

Полная мощность, ВА Активная мощность, Вт
350 300
550 400
1000 750
1500 1125
2500 2000
3500 2500
6000 5400
8000 7200
10000 8000
15000 13500
20000 16000

Ближайшая с большей стороны к расчётным значениям мощность – 6000 ВА и 5400 Вт, следовательно, именно такой стабилизатор подходит для подключения потребителя 1, потребителя 2 и потребителя 3.

Если взять модель с мощностью, ближайшей к расчетному значению в меньшую сторону (3500 ВА/ 2500 В), то стабилизатор окажется перегружен, так как выходная активная мощность устройства окажется меньше потребляемой активной мощности нагрузки: 2500 Вт

Расчёт мощности и вольт-амперной характеристики

Важно учесть, что мощность прибора зависит и от типа нагрузки на него. Различают два вида: активную и реактивную

Если на этом этапе прочтения статьи информация перестала усваиваться – не переживайте! Буквально через абзац мы предложим вам вариант более упрощённого подсчёта необходимой мощности стабилизатора сети

Многие приборы и устройства имеют только активную нагрузку: электроплиты, обогреватели, утюги, лампы накаливания и т.д. Если их указанная потребляемая мощность составляет 1 кВт, для их питания достаточно стабилизатора мощностью в 1 кВт. Однако, есть ещё второй вид нагрузок, о которых часто забывают пользователи приборов, или реактивная нагрузка. Пылесосы, компьютеры, холодильники, стиральные машины – все приборы, которые имеют двигатель и такое понятие, как «разгон мощности».

Именно в момент разгона мощности лучше убрать от пылесоса маленький детей и животных!

У каждого типа мощности свои обозначения: полная мощность измеряется в ВА (вольт-амперы), активная мощность в ваттах (Вт)

При работе приборов важно учитывать как активную, так и реактивную нагрузку

Какой стабилизатор лучше выбрать для частного дома, если в нём достаточно много разных приборов? Обратить внимание на обозначение мощности. И второе, в устройствах с реактивной нагрузкой обычно указывается «cos ф» (косинус «фи», или коэффициент мощности)

Для того чтобы подсчитать полную мощность в ВА, нужно активную мощность в Вт разделить на cos ф.

Расчёт мощности стабилизатора напряжения для дома

Например, если на пылесосе указано, что его мощность, к примеру, 700 Вт, и «cos ф» равен 0,7. Это значит, что фактически полная мощность прибора равна 700/0,7=1000 вольт-ампер. Некоторые приборы, к примеру, холодильник, в момент включения могут потреблять энергии несколько больше, чем его номинальная мощность. В этом случае указанную в паспорте потребляемую мощность необходимо умножить, как минимум, на пять. Тогда вы получите реальную нагрузку на сети.

Если обозначения на приборах для Вас напоминают «филькину грамоту», лучше ещё раз внимательно прочитать инструкцию

Онлайн-калькулятор расчёта вольт-амперной характеристики стабилизатора напряжения

Для удобства расчёта активной нагрузки предлагаем воспользоваться специальным онлайн-калькулятором расчёта вольт-амперной характеристики. В алгоритм его работы уже заложены все необходимые формулы и всё, что от вас требуется, это ввести необходимые данные в соответствующие поля и нажать кнопку «Рассчитать».