Электроника

Устройство биполярного транзистора

Биполярный транзистор представляет собой полупроводниковый прибор, имеющий два р-n-перехода, образованных в одном монокристалле полупроводника. Эти переходы образуют в полупроводнике три области с различными типами электропроводности. Одна крайняя область называется эмиттером (Э), другая — коллектором (К), средняя — базой (Б). К каждой области припаивают металлические выводы для включения транзистора в электрическую цепь.

Электропроводность эмиттера и коллектора противоположна электропроводности базы.

В зависимости от порядка чередования р- и n-областей различают транзисторы со структурой р-n-р (рис. 1, а) и n-р-n (рис. 1, б) (иногда их еще называют прямой и обратный).

Условные графические обозначения транзисторов p-n-р и n-p-n отличаются лишь направлением стрелки у электрода, обозначающего эмиттер. Принцип работы транзисторов p-n-р и n-p-n одинаков.

Рис. 1 — Структуры и условные графические обозначения биполярных транзисторов типа р-n-р (а) и n-р-n (б)

Электронно-дырочный переход, образованный эмиттером и базой, называется эмиттерным, а коллектором и базой — коллекторным. Расстояние между переходами очень мало; у высокочастотных транзисторов оно менее 10 микрометров, а у низкочастотных не превышает 50 мкм (1 мкм=0,001 мм).

Основная функция транзистора — это усиление сигнала. Если на базу транзистора подать напряжение, то транзистор начнет открываться. В транзисторе переход коллектор-эмитер открывается плавно: от полностью закрытого состояния (= 0 В) до полностью открытого (этот момент называют напряжение насыщения).

Между коллектором и эмиттером течет сильный ток, он называется коллекторный ток (), между базой и эмиттером — слабый управляющий ток базы (). Величина коллекторного тока зависит от величины тока базы. Причем, коллекторый ток всегда больше тока базы в определенное количество раз. Эта величина называется коэффициент усиления по току, обозначается . У различных типов транзисторов это значение колеблется от единиц до сотен раз.

Коэффициент усиления по току — это отношение коллекторного тока к току базы:

Для того, чтобы вычислить коллекторный ток, нужно умножить ток базы на коэффициент усиления:

Пример: Возмем источник питания, транзистор, резистор и лампочку. Если подключить всё это согласно схеме (рис. 2), то: через резистор, подключенный между источником питания и базой транзистора потечет ток базы .

Рис. 2 — Принцип работы биполярных транзисторов

Транзистор откроется и лампочка загориться. Причем яркость свечения лампочки будет зависить от сопротивления резистора и коэффициента усиления транзистора.

Напряжение, прилагаемое к базе и необходимое для открытия транзистора, называют напряжением смещения. Если вместо постоянного резистора поставить переменный резистор, то получим возможность регулировать яркость свечения лампочки.

Таким же образом можно усиливать и сигналы: подавая на базу транзистора определенный сигнал (к примеру звук), в коллекторной цепи получим тот же сигнал, но уже усиленный в раз.

Если базовое смещение транзистора застабилизировать при помощи стабилитрона (рис. 3), то мы получим простейший стабилизатор напряжения, т.у. схему, которая будет поддерживать постоянное напряжение на выходе, даже если входное напряжение будет изменяться.

Рис. 3 — Пример простого стабилизатора напряжения

Для получения повышенной мощности используются схемы последовательного включения наскольких транзисторов, так называемые схемы Дарлингтона (или составные транзисторы)

Рис. 4 — Схема Дарлингтона

Теория работы составного транзистора (СТ)

Для получения основных параметров СТ следует задаться моделью самого биполярного транзистора (БТ) для низких частот на рис. 1а.

Рис. 1. Варианты схемы замещения БТ n-p-n

Первичных расчётных параметра всего два: коэффициент усиления по току и входное сопротивление транзистора. Получив их, для конкретной схемы по известным формулам можно рассчитать коэффициент усиления по напряжению, входное и выходное сопротивления каскада.

Схемы замещения составных транзисторов Дарлингтона (СТД) и Шиклаи (СТШ) приведены на рис. 2, готовые формулы для расчёта параметров – в табл. 1.

Таблица 1 – Формулы для расчёта параметров СТ

Здесь rэ  – сопротивление эмиттера, вычисляемое по формуле:

Рис. 2 Варианты составных транзисторов

Известно, что b зависит от тока коллектора (график зависимости указывается в даташите). Если ток базы VT2 (он же – эмиттерный или коллекторный ток VT1) окажется слишком мал, реальные параметры СТ окажутся намного ниже расчётных. Поэтому для поддержания начального коллекторного тока VT1 достаточно воткнуть в схему дополнительный резистор Rдоп (рис. 2в). Например, если в СТД в качестве VT1 использован КТ315 с минимальным необходимым током Ik.min , то дополнительное сопротивление будет равно

можно поставить резистор номиналом 680 Ом.

Шунтирующее действие Rдоп снижает параметры СТ, поэтому в микросхемах и иных навороченных схемах его заменяют источником тока. 

Как видно из формул в табл. 1, усиление и входное сопротивление СТД больше, чем у СТШ. Однако последний имеет свои преимущества:

  1. на входе СТШ падает меньшее напряжение, чем у СТД (Uбэ против 2Uбэ);
  2. коллектор VT2 соединён с общим проводом, т.е. в схеме с ОЭ для охлаждения VT2 можно посадить прямо на металлический корпус устройства.

Основные параметры

  • Коэффициент передачи по току.
  • Входное сопротивление.
  • Выходная проводимость.
  • Обратный ток коллектор-эмиттер.
  • Время включения.
  • Предельная частота коэффициента передачи тока базы.
  • Обратный ток коллектора.
  • Максимально допустимый ток.
  • Граничная частота коэффициента передачи тока в схеме с общим эмиттером.

Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, независимо от схемы его включения. В качестве основных собственных параметров принимают:

  • коэффициент усиления по току α;
  • сопротивления эмиттера, коллектора и базы переменному току rэ, rк, rб, которые представляют собой:
    • rэ — сумму сопротивлений эмиттерной области и эмиттерного перехода;
    • rк — сумму сопротивлений коллекторной области и коллекторного перехода;
    • rб — поперечное сопротивление базы.

Эквивалентная схема биполярного транзистора с использованием h-параметров.

Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h».

Входное сопротивление — сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.

h11 = Um1/Im1, при Um2 = 0.

Коэффициент обратной связи по напряжению показывает, какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока, и изменение напряжения на входе происходит только в результате изменения выходного напряжения.

h12 = Um1/Um2, при Im1 = 0.

Коэффициент передачи тока (коэффициент усиления по току) показывает усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.

h21 = Im2/Im1, при Um2 = 0.

Выходная проводимость — внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.

h22 = Im2/Um2, при Im1 = 0.

Зависимость между переменными токами и напряжениями транзистора выражается уравнениями:

Um1 = h11Im1 + h12Um2;
Im2 = h21Im1 + h22Um2.

В зависимости от схемы включения транзистора к цифровым индексам h-параметров добавляются буквы: «э» — для схемы ОЭ, «б» — для схемы ОБ, «к» — для схемы ОК.

Для схемы ОЭ: Im1 = I, Im2 = I, Um1 = Umб-э, Um2 = Umк-э. Например, для данной схемы:

h21э = I/I = β.

Для схемы ОБ: Im1 = I, Im2 = I, Um1 = Umэ-б, Um2 = Umк-б.

Собственные параметры транзистора связаны с h-параметрами, например для схемы ОЭ:

h11∍=rδ+r∍1−α{\displaystyle h_{11\backepsilon }=r_{\delta }+{\frac {r_{\backepsilon }}{1-\alpha }}};

h12∍≈r∍rκ(1−α){\displaystyle h_{12\backepsilon }\approx {\frac {r_{\backepsilon }}{r_{\kappa }(1-\alpha )}}};

h21∍=β=α1−α{\displaystyle h_{21\backepsilon }=\beta ={\frac {\alpha }{1-\alpha }}};

h22∍≈1rκ(1−α){\displaystyle h_{22\backepsilon }\approx {\frac {1}{r_{\kappa }(1-\alpha )}}}.

С повышением частоты заметное влияние на работу транзистора начинает оказывать ёмкость коллекторного перехода Cк. Его реактивное сопротивление уменьшается, шунтируя нагрузку и, следовательно, уменьшая коэффициенты усиления α и β. Сопротивление эмиттерного перехода Cэ также снижается, однако он шунтируется малым сопротивлением перехода rэ и в большинстве случаев может не учитываться. Кроме того, при повышении частоты происходит дополнительное снижение коэффициента β в результате отставания фазы тока коллектора от фазы тока эмиттера, которое вызвано инерционностью процесса перемещения носителей через базу от эммитерного перехода к коллекторному и инерционностью процессов накопления и рассасывания заряда в базе.
Частоты, на которых происходит снижение коэффициентов α и β на 3 дБ, называются граничными частотами коэффициента передачи тока для схем ОБ и ОЭ соответственно.

В импульсном режиме ток коллектора изменяется с запаздыванием на время задержки τз относительно импульса входного тока, что вызвано конечным временем пробега носителей через базу. По мере накопления носителей в базе ток коллектора нарастает в течение длительности фронта τф. Временем включения транзистора называется τвкл = τз + τф.

Динамический режим работы ключа

Переходные процессы в ключах на биполярных транзисторах определяются следующими причинами.

  1. Наличием емкостей эмиттерного и коллекторного переходов. При переключениях происходит заряд и разряд этих емкостей.
  2. Накоплением и рассасыванием неосновных носителей в базе при переходе транзистора в режимы насыщения и отсечки.

Рассмотрим упрощенно процессы в транзисторе при действии на входе прямоугольного импульса (рис. 8.1.5). На интервале времени  ключ закрыт. Процесс открывания ключа можно разделить на три этапа: задержка фронта, формирование фронта и накопление избыточного заряда в базе.
Задержка фронта коллекторного тока  – это интервал времени между моментом начала действия импульса   и моментом, когда ток коллектора достигает значения, равного . Задержка фронта обусловлена зарядом барьерной емкости эмиттерного перехода.
С момента начала отпирания транзистора начинается  формирование фронта выходного импульса (интервал  на рис. 8.1.4). Когда ток коллектора достигает уровня , напряжение на коллекторе уменьшается до величины . Ток базы достигает величины  и продолжает увеличиваться, а в базе происходит накопление неосновных носителей.

Рис. 8.1.5

Общее время включения  складывается из времени задержки и длительности фронта:

.

После окончания действия входного импульса начинается рассасывание избыточного заряда в базе. За счет этого коллекторный ток не меняется в течение времени . Затем начинается спад коллекторного тока. Одновременно растет напряжение коллектора. Общая длительность выключения

 .

Здесь  – время спада коллекторного тока.
Для уменьшения задержки, связанной с перезарядкой емкостей биполярного транзистора, сопротивление резисторов выбирают небольшим (порядка нескольких килоом). Однако основным фактором, ограничивающим быстродействие ключа на рис. 8.1.2, является насыщение транзистора. Время рассасывания  существенно превышает остальные временные интервалы. Поэтому для увеличения быстродействия ключа используют различные способы предотвращения глубокого насыщения транзистора.
Для исключения глубокого насыщения транзистора коллекторный переход шунтируют диодом Шоттки (рис. 8.1.6), имеющим малое время переключения, низкое напряжение отпирания (0.2–0.3 В) и малое сопротивление в открытом состоянии.
Когда транзистор открыт и находится в активном режиме, напряжение коллектор-база положительно (), и к диоду приложено обратное напряжение. С ростом коллекторного тока напряжение на коллекторном переходе уменьшается и диод открывается. Последующее увеличение тока базы приводит к увеличению тока через диод. Поскольку напряжение отпирания диода Шоттки меньше напряжения отпирания коллекторного перехода, последний остается закрытым и накопление неосновных носителей в базе транзистора не происходит.
Таким образом, увеличение быстродействия транзисторного ключа с диодом Шоттки происходит в результате уменьшения времени нарастания тока коллектора при включении и времени рассасывания при выключении. Следует заметить, что выходное напряжение такого ключа в открытом состоянии больше, чем напряжение насыщенного ключа.

Рис. 8.1.6

Изготавливаются диоды Шоттки на общем кристалле одновременно
с остальными элементами в едином технологическом процессе. Транзисторы с диодами Шоттки часто называют транзисторами с барьером Шоттки или транзисторами Шоттки.

Статический режим.

В статическом режиме ключ может быть закрыт  (транзистор находится в режиме отсечки) либо открыт (транзистор находится в режиме насыщения). Ключ закрыт, когда напряжение на входе меньше напряжения логического нуля . Для кремниевого транзистора оно составляет  0.4–0.5 В.
Если входное напряжение равно нулю, транзистор находится в состоянии отсечки. В этом режиме , . Сопротивление закрытого ключа составляет сотни кОм.
Если на входе действует импульс напряжения такой величины, чтобы  транзистор находился в режиме насыщения, то ток базы

.

В режиме насыщения оба  перехода смещены в прямом направлении и ток коллектора возрастает до наибольшего значения:

.

Напряжение  в режиме насыщения составляет 0.2–0.3 В, а выходное сопротивление – несколько десятков ом. Для насыщения транзистора необходимо, чтобы ток базы стал больше минимального значения, при котором начинается насыщение транзистора:

 .

Глубину насыщения транзистора характеризуют коэффициентом (степенью) насыщения, который определяет, во сколько раз реальный ток базы  превосходит минимальное значение, при котором имеет место режим насыщения:

.

Величину коэффициента насыщения выбирают от 1.5 до 3.
Транзистор должен входить в режим насыщения, когда входное напряжение превышает напряжение логической единицы . Для ключей на биполярных транзисторах .
Основной статической характеристикой транзисторного ключа служит передаточная характеристика – зависимость его выходного напряжения от входного. Она приведена на рис. 8.1.4. Рабочими являются участки переходной характеристики, соответствующие отсечке и насыщению.

Рис. 8.1.4

Пример расчета инвертора на БТ.  Рассчитать сопротивление в цепи базы транзисторного ключа на рис. 8.1.3, при котором транзистор находится в состоянии насыщения. Значения элементов:, , , . Коэффициент насыщения .Решение.  Поскольку транзистор находится в состоянии насыщения, . Ток коллектора

.

Минимальный ток базы, при котором транзистор переходит в насыщение,

.

Сопротивление резистора в цепи базы, обеспечивающее коэффициент насыщения ,

.

IGBT-транзистор

IGBT – гибридный полупроводниковый прибор. В нем совмещены два способа управления электрическим током, один из которых характерен для полевых транзисторов (управление электрическим полем), а второй – для биполярных (управление инжекцией носителей электричества).

Обычно в IGBT используется структура МДП-транзистора с индуцированным каналом n-типа. Структура этого транзистора отличается от структуры ДМДП-транзистора дополнительным слоем полупроводника р-типа.

Обратим внимание на то, что для обозначения электродов IGBT принято использовать термины «эмиттер», «коллектор» и «затвор». Добавления слоя р-типа приводит к образованию второй структуры биполярного транзистора (типа p-n-p)

Таким образом, в IGBT имеется две биполярные структуры – типа n-p-n и типа p-n-p

Добавления слоя р-типа приводит к образованию второй структуры биполярного транзистора (типа p-n-p). Таким образом, в IGBT имеется две биполярные структуры – типа n-p-n и типа p-n-p.

УГО и схема выключения IGBT показаны на рисунке:

Типичный вид выходных характеристик показаны на рисунке:

Устройство

Биполярный транзистор состоит из трёх полупроводниковых слоёв с чередующимся типом примесной проводимости: эмиттера (обозначается «Э», англ. E), базы («Б», англ. B) и коллектора («К», англ. C). В зависимости от порядка чередования слоёв различают n-p-n (эмиттер — n-полупроводник, база — p-полупроводник, коллектор — n-полупроводник) и p-n-p транзисторы. К каждому из слоёв подключены проводящие невыпрямляющие контакты.

Обозначение биполярных транзисторов на схемах и их структура. Направление стрелки показывает направление тока через эмиттерный переход, и служит для идентификации n-p-n и p-n-p транзисторов. Наличие окружности символизирует транзистор в индивидуальном корпусе, отсутствие — транзистор в составе микросхемы.

С точки зрения типов проводимостей эмиттерный и коллекторный слои не различимы, но при изготовлении они существенно различаются степенью легирования для улучшения электрических параметров прибора. Коллекторный слой легируется слабо, что повышает допустимое коллекторное напряжение. Эмиттерный слой — сильно легированный: величина пробойного обратного напряжения эмиттерного перехода не критична, так как обычно в электронных схемах транзисторы работают с прямосмещённым эмиттерным переходом. Кроме того, сильное легирование эмиттерного слоя обеспечивает лучшую инжекцию неосновных носителей в базовый слой, что увеличивает коэффициент передачи по току в схемах с общей базой. Слой базы легируется слабо, так как располагается между эмиттерным и коллекторным слоями и должен иметь большое электрическое сопротивление.

Упрощенная схема поперечного разреза планарного биполярного n-p-n транзистора

Общая площадь перехода база-эмиттер выполняется значительно меньше площади перехода коллектор-база, что увеличивает вероятность захвата неосновных носителей из базового слоя и улучшает коэффициент передачи. Так как в рабочем режиме переход коллектор-база обычно включён с обратным смещением, в нём выделяется основная доля тепла, рассеиваемого прибором, и повышение его площади способствует лучшему охлаждению кристалла. Поэтому на практике биполярный транзистор общего применения является несимметричным устройством (то есть инверсное включение, когда меняют местами эмиттер и коллектор, нецелесообразно).

Для повышения частотных параметров (быстродействия) толщину базового слоя делают меньше, так как этим, в том числе, определяется время «пролёта» (диффузии в бездрейфовых приборах) неосновных носителей. Но при снижении толщины базы снижается предельное коллекторное напряжение, поэтому толщину базового слоя выбирают исходя из разумного компромисса.

В первых транзисторах в качестве полупроводникового материала использовался металлический германий. Полупроводниковые приборы на его основе имеют ряд недостатков, и в настоящее время биполярные транзисторы изготавливают в основном из монокристаллического кремния и монокристаллического арсенида галлия. Благодаря очень высокой подвижности носителей в арсениде галлия приборы на его основе обладают высоким быстродействием и используются в сверхбыстродействующих логических схемах и в схемах СВЧ-усилителей.

Вопросы на тему транзисторы

Вопрос 1. Что такое p-n переход?

Ответ. Электронно дырочный переход (или p-n переход) представляет собой область соприкосновения двух разных проводников с разными типами проводимости: электронной и дырочной.

В одной области носителями заряда являются электроны, а в другой – дырки. На границе соединения двух полупроводников создается запирающий слой. Электрические процессы, происходящие в p-n переходе, лежат в основе работы многих полупроводниковых приборов.

Вопрос 2. Что такое транзистор

Ответ. Транзистор – полупроводниковый прибор, предназначенный для усиления, генерирования и изменения электрических колебаний. Обычно транзистор имеет три вывода и представляет из себя триод. 

Вопрос 3. Какие есть виды транзиторов?

Ответ. По принципу действия транзисторы делятся на:

  • полевые;
  • биполярные.

Наиболее широкое применение в электронике находят биполярные транзисторы.

Вопрос 4. Как устроены биполярный и полевой транзисторы?

Ответ. Биполярный транзистор включает в себя два p-n перехода и состоит из трех областей: эмиттера, базы и коллектора. Эмиттер и коллектор имеют одинаковый тип проводимости, а проводимость базы противоположная.

В полевом транзисторе используется один тип проводимости. Такой транзистор представляет собой классический триод и состоит из трех элементов: истока (катода), стока (анода) и затвора (управляющего электрода). 

Вопрос 5. Какие есть способы включения биполярного транзистора в схему?

Ответ. Транзистор может быть включен по схемам с общей базой, общим эмиттером и общим коллектором.

Нужна помощь с заданиями по учебе? Обращайтесь в профессиональный сервис для учащихся в любое время.

2.2.5 Порядок расчета цепи смещения

Расчет элементов цепи смещения на рис. 2.2.1 проводится в следующем порядке. Исходными данными для расчета являются положение рабочей точки  .

  1. Напряжение питания  выбирается из соотношения:

    .

    Окончательное значение  определяют, учитывая имеющиеся источники питания.

  2. Затем определяют напряжение на резисторе обратной связи
  3. Поскольку , сопротивление резистора  определим по формуле

    .

  4. Максимальный ток базы

    .

  5. Ток делителя напряжения  —  (полагаем, что база отключена от делителя)

    .

  6. Суммарное сопротивление делителя

    .

  7. Напряжение на резисторе  равно сумме напряжения на резисторе в цепи эмиттера и напряжения эмиттерного перехода:

    .

    Для кремниевых транзисторов напряжение  принимают равным 0.6 – 0.7 В.

  8. Сопротивления резисторов  и :

    ;  .

Изложенная процедура расчета является приближенной и базируется на трех ключевых моментах. Во-первых, напряжение питания в 3-5 раз превышает напряжение коллектор-эмиттер. Во-вторых, напряжение на резисторе в цепи эмиттера примерно равно напряжению коллектор-эмиттер. И, наконец, ток резистора  должен в 10-100 раз превышать ток базы. В дальнейшем номиналы элементов уточняются по результатам моделирования спроектированной цепи.

Подведем итоги:

  • Посмотрите на рисунок ниже.
  • Выберите схему смещения.
  • Выберите RК и IЭ для вашего приложения. Значения RК и IЭ обычно должны устанавливать напряжение коллектора VК на 1/2 от Vпит.
  • Рассчитайте резистор базы RБ, чтобы получить необходимый ток эмиттера.
  • Если необходимо, пересчитайте ток эмиттер IЭ для стандартных номиналов резисторов.
  • Для схемы смещения с делителем напряжения выполните сначала расчет смещения эмиттера, а затем определите R1 и R2.
  • Для усилителей переменного тока: конденсатор обхода, параллельный RЭ, улучшает усиление по переменному напряжению. Выберите XC≤0,10RЭ для самой низкой частоты.

Формулы расчета смещения (вкратце)