Обзор особенностей райзеров для видеокарт

Подключаем Speaker к материнской плате

Спикер (от английского speaker — говорилка) — небольшой динамик, который подключается к материнской плате. Он издает единичный писк при включении компьютера, сигнализируя, что устройство работает нормально и операционная система скоро загрузится.

В случае неполадок в работе компьютера динамик издает характерный звуковой сигнал, ко которому можно определить, что именно сломалось. Как правило, это комбинации коротких и долгих писков. Как именно зашифрован сигнал, зависит от версии БИОС — у разных моделей для тех же неисправностей используются разные коды.

Фактически, если система работает нормально, без спикера вообще можно обойтись. При возникновении неполадок он помогает определить возможный источник проблемы, но не более того, и не всегда слишком точно.

Для чего нужен speaker

Спикер (от английского speaker — говорилка) — небольшой динамик, который подключается к материнской плате. Он издает единичный писк при включении компьютера, сигнализируя, что устройство работает нормально и операционная система скоро загрузится.

В случае неполадок в работе компьютера динамик издает характерный звуковой сигнал, ко которому можно определить, что именно сломалось. Как правило, это комбинации коротких и долгих писков. Как именно зашифрован сигнал, зависит от версии БИОС — у разных моделей для тех же неисправностей используются разные коды.

Фактически, если система работает нормально, без спикера вообще можно обойтись. При возникновении неполадок он помогает определить возможный источник проблемы, но не более того, и не всегда слишком точно.

Куда подсоединить динамик

Контакты на материнской плате, куда нужно подключать эту «приблуду», обычно маркируются надписью SPEAKER или SPKR. Там же указана полярность — плюс и минус. На самом динамике также указаны полюса, или же провода маркированы разными цветами. Обычно красный – это плюс, черный это минус.

Если неправильно подсоединить спикерфон, ничего страшного не случится и короткого замыкания не будет. Просто динамик не будет подавать звуковой сигнал.

Если же на системной плате вообще нет маркировки коннекторов, то крайний левый пин это плюс, крайний левый это минус — относительно надписи. Вообще, там 3 или 4 контакта, но остальные используются только для монтажа и не передают никакой сигнал.

На самом динамике может быть как пара проводков, так и коннектор на 4 пина для удобного монтажа детали.Независимо от модели системной платы, будь то MSI, Gigabyte, Asrock, ASUS или любая другая, всегда есть коннектор для подключения спикера, ибо так предусмотрено стандартом. Найти его просто — он почти всегда расположен рядом с блоком контактов для подключения элементов управления — кнопок и индикаторов.

Расположение и распиновка коннектора указаны в документации на системную плату. Если она утеряна, инструкцию в электронном формате можно скачать на сайте производителя.

А если коннектор поврежден — например, сломана одна из ножек, то ее нужно отремонтировать, припаяв новый контакт. Альтернативы этому интерфейсу на системной плате нет, и при повреждении слота динамик работать не будет.

Распиновка COM порта RS232

Цветовая температура

Правильная распиновка СOM-порта RS232

Распиновка COM порта — RS232 интерфейс был сконструирован более пятидесяти лет тому назад. А после этого был стандартизирован. В различных периодах усовершенствования технических возможностей компьютеров успешно применялся для подключения к телефонной линии с помощью модема. На данный момент такой интерфейс считается как уже вчерашний день. В основном его невостребованность заключается слишком низким быстродействием. Так как там задействованы линейные сигналы в однофазной форме. То-есть не дифференциальные.

Наружный вид девяти-контактного коннектора RS232

В современных устройствах на смену интерфейсу RS-232 пришел новый, отличающейся существенным быстродействием — USB. Тем не менее, и до настоящего времени их можно встретить в действительности огромное количество в различных аппаратах. Последовательный порт, цоколевка которого описана ниже, очень востребован в изделиях предназначенных для промышленных целей, а также для медицинского оборудования.

В бытовых условиях необходимость в применении стыковочных проводов для соединения с COM-портом в большинстве случаев появляется в определенные моменты. Например: когда возникает необходимость работы с периферией ранних лет изготовления, и требующих создать взаимосвязь с персональным компьютером. Помимо этого, его можно часто обнаружить в девайсах для загрузки программы в микроконтроллер.

Характерные особенности порта

Что касается самой контактной колодки интерфейса RS-232 и ее кабельной составляющей, то они собраны на 9-пиновом разъеме D-Sub. Штыревые контакты размещенные в двухрядном варианте, для обеспечения точности подсоединения вилки к разъему, форма колодки имеет несимметричную конструкцию. Все контактные штырьки обозначены номерами, подробнее как делается распиновка COM порта обозначено в приведенной ниже таблице.

Таблица

Номер контакта Назначение Обозначение
1 Активная несущая DCD
2 Прием компьютером RXD
3 Передача компьютером TXD
4 Готовность к обмену со стороны приемника DTR
5 Земля GND
6 Готовность к обмену со стороны источника DSR
7 Запрос на передачу RTS
8 Готовность к передаче CTS
9 Сигнал вызова RI

Множество устройств во время своей работы задействует не все контакты, а только необходимую им часть, поэтому исходя из этого обусловливается реальная распиновка COM-порта. Необходимая информация об это имеется прилагаемой документации к соответствующему оборудованию.

Соединительный кабель

Если нет необходимости задействования все контактной группы, то в таком случае можно использовать обычную витую пару. При этом ее отдельные провода припаиваются к вилке и контактам в колодке разъема. Ввиду ограниченного пространства в самой колодке, в местах пайки провода желательно помещать в кембрик.

Наибольшее расстояние связи относительно стандарта должна быть более 15 метров. Если требуется ее увеличение, тогда для этого нужно использовать экранированный провод.

Распиновка разъемов питания видеокарт

Видеокарты должны запитываться от разъемов питания PCIe, а райзера можно запитывать как от кабелей с шестипиновыми PCI-E, так и от кабелей питания периферии (четырехпиновый молекс). При этом желательно разбираться в том, какие провода и коннекторы и для чего используются.

Для питания видеокарт используются 6 или 8-пиновые разъемы:

В них используется передача тока по желтым (+12 вольт) и черным проводам (земля ,- 12В).

По теории в 6-пиновом коннекторе питания видеокарт используют две пары токовых проводов, а в 8-пиновом – три пары.

Распиновка разъемов питания PCI-E по спецификации:

Коннекторы Sense, обозначенные синим цветом в 6 и 8-пиновых разъемах и зеленым в 8-пиновом разъеме – это земля (минус 12 вольт, черный провод).

В реальности практически все производители используют такую распиновку:

Так как контакты sense используются в качестве реальной земли, то в шестипиновых разъемах также появляется три пары цепей питания 12 В. Это улучшает условия для прохождения тока и увеличивает доступную на практике мощность.

Для проверки того, используется ли в конкретном разъеме сенс в качестве земли нужно прозвонить омметром контакты sense на разъемах питания видеокарты. Сопротивление между sense и землей должно быть равным нулю. Если sense соединены с землей – то в 6-пиновом разъеме появлются три полноценные пары проводов питания 12 вольт:

В 8-пиновом разъеме питания PCI-E в любом случае есть три пары питания (три желтых провода +12В и пять черных — земля):

Максимальная загрузка на один 8-pin коннектор PCIe по спецификации не должна превышать 150 ватт. Также до 75 дополнительных ватт видеокарта может взять от райзера или с материнской карты.

Максимальная загрузка на один PCIe 6-pin коннектор в теории не должна превышать 75 ватт.

Контакты, использующиеся в разъемах питания PCI-E:

Каждый контакт разъема питания PCI-E по спецификации рассчитан на ток не более 9 ампер, поэтому мощность, которая может проходить через его контакты значительно больше заявленной в спецификации (2*9*12 = 216 ватт для двух проводов +12 вольт и 3*9*12=324 ватта для трех пар проводников при норме в 75-150 ватт). Именно поэтому шести и восьмипиновые разъемы питания видеокарт являются самыми надежными в майнинге.

Уровни PCIe

Если уж мы сравниваем PCIe с сетевым протоколом, то, наверное, должны быть тут и уровни, или слои? Ну там физический, канальный… В общем то да, тут их 4, которые давайте кратко рассмотрим.

Application Layer

Нижний уровень, на котором формируется пакет данных с заголовком (Header+Data) для передачи от одного устройства к другому. По сути, программный слой, задача которого только подготовить информацию к передаче на следующий уровень.

В случае приема из полученного пакета извлекаются присланные данные, которые затем используются пользователем (приложением) по назначению.

Transaction Layer

При отправке данных полученный блок информации с заголовком (Header+Data) дополняется кодом проверки ECRC (End to End Cyclic Redundancy Check). При приеме этот код может быть сравнен с контрольным вычисленным значением для подтверждения того, что блок данных поступил без искажений.

Data Link Layer

На этом уровне формируется уникальный двухбайтовый номер (Sequence Number) пакета, который может понадобиться при неуспешной отправке данных. Затем к нему добавляется информация, полученная от Transaction Layer (Header+Data+ECRC), и добавляется код LCRC (Local Cyclic Redundancy Check), используемый для проверки целостности данных от предыдущего уровня.

При приеме производится проверка кода LCRC, и если ошибок нет, то источнику передается сигнал ACK (ACKnowledge) об успешной передаче. Если же обнаружена проблема, то посылается сигнал NAK (Not AcKnowledge), означающий, что пакет с данным номером (Sequence Number) должен быть передан заново.

Physical Layer (физический уровень)

Последний уровень осуществляет согласование условий приема необработанных пакетов (PLP — Physical Layer Packets), то есть определение ширины полосы и ее частоты для связи с другим устройством.

Во время передачи данных информация, поступившая с предыдущего уровня (Header+Data+ECRC+LCRC), предваряется стартовым байтом, который, по сути, информирует получателей о начале блока данных. Аналогично, по окончании передается еще один байт, информирующий о конце передачи блока информации.

При приеме данные начальный и конечный байты позволяют определить блок данных.

Распиновка pci e x16 видеокарты прозвонка

Всем привет! Сегодня будем ремонтировать видео карту GTX 650 от фирмы Gigabyte. Немного пред истории видеокарты. Нашел я на OLX её в нерабочем состоянии по заявленной неисправности нет картинки вентиляторы крутятся. Узнал у продавца, что она после нескольких сервисов, по фотографиям определил, что у нее паяли цепь питания видео ядра. И решил забрать её, так как большинство видеокарт с проблемами питания восстановимы.

После того как забрал её, сразу проверил дополнительное питание +12 вольт и там оказалось короткое замыкание 30 Ом. Откручиваю радиатор с полевых транзисторов цепи питания видео ядра и вижу, что на терморезине есть небольшой нагар.

Не выпаивая из платы проверяю полевые транзисторы мультиметром на присутствие короткого замыкания и нахожу один пробитый в верхнем плече преобразователя. Снял все полевые транзисторы, так как они все разные и не факт, что их не пробьет потом. Сразу после того как выпаял начал мерить сопротивления на карте.

Первый замер сделал на дополнительном питании +12 вольт, короткого замыкания на этом питании больше нет. Следующий замер сопротивлений сделал ядра и видеопамяти. Сопротивления по ядру 13 Ом по памяти 300 Ом. Судя по сопротивления чип больше жив чем мёртв.

Запаял более мощные полевые транзисторы с донорской карты на 30 В 100 А, старые были 30 В 30 А.

После замены включаю карту на тестовом стенде. Она запустилась, но не успела вывести картинку — блок питания ушел в защиту. Проверяю дополнительное питание +12 вольт и на этом питании короткое замыкание. И снова пробило полевой транзистор верхнего плеча одной из 2 фаз.

Выпаиваю этот полевой транзистор чтобы убедится в том, что видеочип жив, включаю карту на одной фазе. Карта запустилась, вывела картинку и даже установились драйвера.

Решил не мучить карту и найти причину пробоя полевого транзистора верхнего плеча. Начал проверять затворы верхних плеч до ШИМа. А точнее затворные резисторы верхних плеч питания. Проверяю сопротивления резисторов верхнего плеча на мертвой фазе сопротивление резистора бесконечность вместо 2,2 Ом (R595). На рабочей фазе ровно 2,2 Ома (R592).

После замены резистора и запайки на свое место полевого транзистора, ставлю карту на тестовый стенд. После включения карта вывела картинку. Ставлю на место все радиаторы и запускаю стресс-тест Furmark.

Следующий тест будет в 3Dmark06

Карта успешно проходит все стресс-тесты и полностью работает! Обсудить статью можно на форуме. Всем удачных ремонтов, с вами был kondensator.

Описание сигналов:

M66EN

Первый, когда карта работает в 33 МГц. Подтянут, если карта запросы 66 МГц шину. Если все comonents (чипсета и других карт) может работать на частоте 66 МГц, то частота шины PCI будет в два раза быстрее, чем на обычной частоте. Определено, так как PCI 2.1 для 3,3 карты только.

Сброс логику теста

Шина PCI лечит все трансферы как прорвало операции. Каждый цикл начинается с адресом фазой с последующей одной или более данных фаз. Данные фазы могут повторяться бесконечно, но ограничены таймер, который определяет максимальное количество времени, что устройство PCI может управлять шиной. Этот таймер установлен на процессор, как часть конфигурации пространства. Каждое устройство имеет свой таймер (см. Задержка таймера в конфигурационном пространстве).

То же линии используются для адресов и данных. Командных строк также используются для линий разрешение байта. Это сделано, чтобы уменьшить общее количество контактов разъема PCI.

Командная строка (C/BE3 к C/BE0) указывают на тип автобусный трансфер в течение фазы адреса.

C / BE Тип команды

0000

Подтверждение о прерывании

0001

Специальный цикл

0010

Ввод / вывод

0011

I / O Написать

0100

зарезервированный

0101

зарезервированный

0110

Чтение из памяти

0111

Запись в память

1000

зарезервированный

1001

зарезервированный

1010

Чтения конфигурации

1011

Записи конфигурации

1100

Несколько чтение из памяти

1101

Двойной цикл адреса

1110

Memory-читаться строка

1111

Запись в память и отменить

Три основных типа трансферы ввода / вывода, память и конфигурация.

Для процессора

Производительность процессоров в последние десятилетия неуклонно растет. Растет и их энергопотребление. Питаются процессоры от преобразователей напряжения (VRM), установленных на материнской плате. Около двух десятилетий назад произошел массовый переход запитки VRM с напряжения +5 вольт на уровень +12 вольт. Связано это с тем, что для передачи одинаковой мощности при большем напряжении требуется меньший ток. VRM получают электроэнергию по отдельному кабелю с разъемом, состоящим из 4 пинов. Два контакта предназначены для напряжения+12 вольт (желтый провод) и два – земля (провод в черной изоляции).

Коннектор для VRM на 4 контакта.

Гнезда на разъеме и пины на плате расположены в два ряда по назначению. Два вывода выполняют функцию ключа – их форма отличается от остальных, поэтому ошибочное подключение невозможно.

Распиновка 4-контактного разъема для VRM.

С ростом производительности стало расти количество VRM (сначала на серверах, потом и на персональных компьютерах), поэтому встал вопрос о рациональном распределении мощности. Вопрос решен применением 8-пиновых коннекторов. В них подводимая мощность распределяется на 4 пары проводников.

Коннектор для VRM на 8 контактов.

В остальном от предыдущего варианта принципиальных отличий нет. Коннектор содержит два ряда гнезд — +12 вольт и 0 вольт, только по 4 в ряд.

Распиновка 8-контактного разъема для VRM.

Прогресс не остановить, потребление энергии процессорами будет только расти. Похоже, 4-пиновые разъемы свой век отжили и уходят в прошлое.

Для видеокарты (PCI Express)

Видеокарты предыдущих поколений, имеющие невысокую производительность, и современные модели бюджетного класса питаются от разъема PCIe х 16, к которому они подключаются. Напряжение на этот терминал поступает от материнской платы, которая, в свою очередь, запитывается от БП через 24(20)-контактный коннектор. Этого хватает для передачи 75 ватт.

Разъем дополнительного питания PCI Express.

Современным производительным картам этого недостаточно, поэтому для них предусмотрен дополнительный вход питания PCI Express. Изначально он представлял собой коннектор на 6 контактов и позволял обеспечить дополнительное энергоснабжение мощностью 75 ватт. Очень скоро этой пропускной способности стало недостаточно, и последующие стандарты ATX пополнил разъем на 8 контактов и на 120 ватт.

Распиновка 6-контактного и 8-контактного коннектора.

Также этот разъем выпускается в универсальном формате 6+2, позволяющий использовать его как для 6-пиновых коннекторов видеокарт, так и для 8-пиновых.

Универсальный разъем 6+2.

Для самых современных видеокарт производители применяют коннекторы с двенадцатью контактами, но они пока широкого распространения не получили.

Для жестких дисков и прочих устройств (SATA, MOLEX)

Для подключения жестких дисков и некоторой другой периферии долгое время использовался разъем Molex (по названию фирмы-изготовителя). Его достоинство – вилки и розетки с большими, мощными контактами, надежно работающими при больших токах.

Втычные элементы расположены в один ряд. Разъем также имеет ключ, исключающий неверное соединение. Два внутренних пина предназначены для земляных проводов (черных). К крайним подключаются проводники с напряжением +5 вольт и +12 вольт. Каждый контакт рассчитан на ток в 11 ампер, что позволяет передать по пятивольтовому каналу 55 ватт, а по двенадцативольтовому – 132 ватта. Распиновка коннектора Молекс показана на рисунке.

Распиновка разъема Molex.

В связи с возросшей популярностью стандарта SATA, разъемы Molex вытесняются коннекторами питания SATA, имеющими 15 выходов. На каждое напряжение задействовано 3 пина, что позволяет передавать большую мощность, не увеличивая сечение проводников и сохраняя гибкость кабеля. Группы напряжений разделены группами нулевых проводов (по 3 проводника). Распиновка разъема – в таблице.

Номер контакта Цвет провода Уровень напряжения, В
1 Оранжевый +3,3
2 Оранжевый +3,3
3 Оранжевый +3,3
4 Черный 0 В
5 Черный 0 В
6 Черный 0 В
7 Красный +5
8 Красный +5
9 Красный +5
10 Черный 0 В
11 Черный 0 В
12 Черный 0 В
13 Желтый +12
14 Желтый +12
15 Желтый +12

Разъем питания SATA.

Виды разъемов для питания компонентов ПК

Форму и положение разъемов внутреннего блока питания персональных компьютеров регулирует стандарт ATX, пришедший на смену устаревшему AT. Для подключения устройств к источнику электрической энергии в основном применяются:

  • ATX 20 (20+4, 24) – для энергоснабжения материнской платы;
  • коннектор 4 или 8 пин – для питания процессора;
  • Molex – для питания многих периферийных устройств;
  • SATA power – для питания жестких или твердотельных дисков;
  • PCI Expess – для запитки видеокарт.

Также внутри ПК можно найти и другие разъемы. Некоторые устарели и встречаются редко (например, для питания приводов для гибких дисков), другие только набирают популярность.

Для материнской платы (ATX 20, 24 pin)

Самый большой по габаритам разъем, отходящий от блока питания, подключается к материнской плате. Он содержит 24 гнезда (на плате 24 штырька соответственно). Еще можно встретить разъемы питания устаревших компьютеров на 20 выводов. Распиновка и цветовая маркировка 24-выводного разъема приведена на рисунке.

Назначение выводов разъема ATX 24.

Часть каналов являются сигнальными и служат для управления блоком питания:

  • вывод 8 — Power OK (PWR_OK, PWR_good) – сигнал на материнскую плату «питание включено»;
  • вывод 16 -Power ON – сигнал от материнской платы, разрешение на подачу напряжения, в режиме ожидания на нем +5 вольт (подтянуто резистором), в режиме разрешения – 0 вольт (на материнской плате соединяется с общим проводом);
  • вывод 13 дополнительный коричневый провод — Sense – обратная связь для автоматической регулировки напряжения.

Также надо отдельно отметить напряжение Stand by на фиолетовом проводе (вывод 9). Оно предназначено для питания внутренней схемы БП и одновременно служит в качестве дежурного напряжения для запуска компьютера.

В 20-контактном разъеме отсутствует секция из 4-х крайних выводов – пары 11-12 и 23-24. В новом, 24-контактном коннекторе, эта секция может быть выполнена съемной.

Разъем для материнской платы 20+4.

Распиновка основного разъема кабеля питания

Распиновка БП компьютера начинается с самого большого и значимого кабеля питания – это кабель, подключаемый к материнской плате. У материнских плат старого образца разъем ATX рассчитан на 20 контактов, а материнские платы нового поколения содержат в своем разъеме уже 24 контакта. Именно по этой причине блоки питания нового поколения обладают кабелями со штекером 20+4 контакта.

При распиновке БП компьютера важно знать, что штекер ATX подходит только для питания материнской платы. Это можно проверить, если присмотреться к контактам в штекере и разъеме – каждый из них уникален и подходит только для одной цели

Распиновка БП компьютера под нагрузкой

Для проверки работоспособности блока питания можно его подключить, не затрагивая систему в целом. Делается это для того, чтобы в случае бракованного блока питания, не повредить все составляющие компьютера. Для первичного запуска БП необходимо замкнуть 6 и 7 контакты. Если все сделано правильно, то блок питания должен подать сигнал работы в виде крутящегося вентилятора.

Распиновка блока питания компьютера — принцип его работы

Блок питания для настольного компьютера предназначен для конвертации переменного напряжения 220v в пониженное постоянное с номинальным значением ±12v, ±5v, +3.3v. Питание ±12v используется для работы подключаемых комплектующих устройств компьютера, как правило это система охлаждения и приводы. Все установленные на материнской плате микросхемы, получают питание по шинам ±5v, +3.3v.

Распиновка блока питания компьютера ранних годов выпуска, принципиальных отличий от современных БП не имеет. Конечно, источники питания нынешнего поколения снабжены соединителями для современных комплектующих.

Особенности

Не секрет, что современные блоки питания (БП) стали мощнее, имеют улучшенные характеристики и конечно же современный дизайн, нежели их предшественники те же 10-15 лет назад. Также, многие из вас знают (или узнают сейчас), что современные БП имеют новые коннекторы для комплектующих, ранее не используемых в персональных компьютерах (ПК). Наличие новых коннекторов связано с появлением новых (или модернизацией старых) комплектующих компьютера, улучшения их ТТХ и как следствие, потребность в дополнительном питании.

Современный БП соответствует стандартам сертификации энергоэффективности и коэффициенту полезного действия, которые применяются для распределения мощности и эффективности подачи питания на комплектующие компьютера. Благодаря «большей прожорливости» в питании тех же видеокарт, материнских плат, БП содержит дополнительные провода, контакты и коннекторы.

Коннекторы БП

В блоке питания присутствуют основные коннекторы (электрические соединители), используемые ранее в старых БП, с подачей напряжений 3,3, 5 и 12 Вольта. Каждый контакт коннектора это один Pin.

Материнская плата подключается к БП по коннектору (папа) 24 Pin (так называемой шине), который с усовершенствованием системных плат претерпел изменений. Предыдущие поколения материнских плат подключались к БП по шине в 20 Pin.

Из-за этого, чтобы поддерживать любой вид подключения к материнской плате, коннектор выполнен в виде разборной конструкции с 20 Pin основной и 4 Pin дополнительный разъем питания.

Если материнке нужно только 20 Pin, коннектор 4 Pin снимается (потяните вниз по пластмассовым рельсам) и отгибается для удобства установки 20-ти пиновой шины.

Для запитки оптических дисков и иных накопителей с интерфейсом подключения PATA (Parallel ATA) используются коннекторы molex 8981 (по названию фирмы разработчика-производителя).

Сейчас вытеснены современным интерфейсом подключения SATA (Serial ATA) для накопителей всех видов.

Центральному процессору необходимо питание от коннектора 4 или 8 Pin (может быть разборной).

Видеокарте нужно питание 6 или 8 Pin. Коннектор может быть разборным на 6+2 Pin

Некоторые современные БП могут содержать устаревший 4 Pin коннектор для флоппи дисководов, картридеров и т.д.

Также 3 и 4 Pin коннекторы используются для подключения кулеров.

Недостатки usb 2.0

Хотя максимальная скорость передачи данных USB 2.0 составляет 480 Мбит/с (60 Мбайт/с), в реальной жизни достичь таких скоростей нереально (~33,5 Мбайт/сек на практике). Это объясняется большими задержками шины USB между запросом на передачу данных и собственноначалом передачи. Например, шина FireWire, хотя и обладает меньшей пиковой пропускной способностью 400 Мбит/с, что на 80 Мбит/с (10 Мбайт/с) меньше, чем у USB 2.0, в реальности позволяет обеспечить бо́льшую пропускную способность для обмена данными с жёсткимидисками и другими устройствами хранения информации. В связи с этим разнообразные мобильные накопители уже давно «упираются»в недостаточную практическую пропускную способность USB 2.0.

• Самым существенным преимуществом USB 3.0 является более высокая скорость (до 5 Гбит/с), которая в 10 раз выше скорости более устаревшего порта. • У нового интерфейса улучшено энергосбережение. Это позволяет накопителю переходить в спящий режим при бездействии. • Можно осуществить двустороннюю передачу данных одновременно. Это даст более высокую скорость, если на один порт подключить несколько устройств (разветвить порт). Разветвить можно с помощью хаба (хаб – устройство, которое из одного порта разветвляет на 3-6 портов). Вот если подключить хаб к порту USB 3.0, а к хабу подключите несколько устройств (например, флешек) и осуществите одновременную передачу данных, то вы увидите, что скорость будет значительно больше, чем было при интерфейсе USB 2.0. • Есть характеристика, которая может являться плюсом и минусом. В интерфейсе USB 3.0 была повышена сила тока до 900 мА, а USB 2.0 работает с силой тока в 500 мА. Это будет плюсом для тех устройств, которые были адаптированы под USB 3.0, ну а небольшой минус состоит в том, что может возникать риск при подзарядке более слабых устройств, как телефон. • Физическим недостатком нового интерфейса является размеры кабеля. Для поддержания высокой скорости кабель стал более толстым и по длине более коротким (не может быть длиннее 3 метров), чем USB 2.0

• Следует отметить важное, что устройства с разными USB интерфейсами будут работать хорошо и не должно возникнуть проблем. Но не думайте, что скорость «разгонится», если вы подключите USB 3.0 к более устаревшему порту, или подключите к новому порту кабель устаревшего интерфейса. Скорость передачи данных будет равна скорости самого слабого порта

Скорость передачи данных будет равна скорости самого слабого порта.

PCI timing diagrams:

            ___     ___     ___     ___     ___     ___
CLK     ___|   |___|   |___|   |___|   |___|   |___|   |___

        _______                                   _________
FRAME          |_________________________________|

                ______  _______  ______  ______  ______
AD      -------<______><_______><______><______><______>---
                Address  Data1    Data2   Data3   Data4

                ______  _______________________________
C/BE    -------<______><_______________________________>---
                Command   Byte Enable Signals

         ____________                                   ___
IRDY                 |_________________________________|

         _____________                                  ___
TRDY                  |________________________________|

         ______________                                 ___
DEVSEL                 |_______________________________|

PCI transfer cycle, 4 data phases, no wait states. Data is transferred on the rising edge of CLK.

                                               
            ___     ___     ___     ___     ___     ___     ___     ___
CLK     ___|   |___|   |___|   |___|   |___|   |___|   |___|   |___|   |__

        _______                                                  _________
FRAME          |________________________________________________|

                                   A               B               C
                ______           ______________  ______  _____________
AD      -------<______>---------<______________><______><_____________>---
                Address           Data1           Data2   Data3

                ______  ______________________________________________
C/BE    -------<______><______________________________________________>---
                Command   Byte Enable Signals

                                                         Wait
         ____________                                    _____         ___
IRDY                 |__________________________________|     |_______|

                        Wait            Wait
         ______________________         ______                         ___
TRDY                           |_______|      |_______________________|

         ______________                                                ___
DEVSEL                 |______________________________________________|

PCI transfer cycle, with wait states. Data is transferred on the rising edge of CLK at points labelled A, B, and C.

Современные блоки питания

Сегодняшние блоки питания несколько отличаются от своих предшественников, не только современным дизайном, повышенной мощностью и улучшенными характеристиками, но и наличием новых коннекторов для устройств, которых раньше не было в большинстве обычных компьютеров. Это связано с разработкой новых устройств или модификацией старых, повышением технических характеристик уже имеющихся и как следствие, необходимостью дополнительного питания.

Помимо обычных блоков питания, существуют модульные блоки или частично модульные. Различие между блоками в том, что в модульных полностью или частично, кабели заменены соответствующими разъёмами для их подключения и полностью соответствуют стандартам разъёмов обычных блоков. Это хорошо тем, что неиспользуемые провода не будут находиться в корпусе компьютера и мешать при его модернизации, так и циркуляции воздуха внутри.

Есть стандарты сертификации для энергоэффективности и КПД стандартного блока питания, для измерения эффективности подачи питания и распределения его мощности на внутренние устройства компьютера. Именно потребление дополнительного питания обуславливает появление новых коннекторов, наличие дополнительных проводов и контактов.

В современных блоках питания по-прежнему присутствуют основные коннекторы (разъёмы), использующиеся в более ранних моделях, подающие для устройств стандартное для них напряжение в 12, 5 и 3,3 вольта. Так для подключения к материнской плате используется разъём 24 pin (от английского pin – штырь, контакт), который претерпел некоторые изменения. В более старых моделях материнских плат, а соответственно и в блоках питания, использовался разъём в 20 pin. Поэтому, в большинстве современных БП (блок питания) разъём выполнен в виде разборной модели, представляющий собой стандартный разъём в 20 pin + дополнительный коннектор в 4 pin, для современных моделей материнских плат.

При использовании только 20 pin, дополнительный коннектор в 4 pin снимается (сдвигается вниз по пластмассовым рельсам) и остаётся отдельно в резерве. Далее в БП обязательно присутствуют разъёмы типа molex (по названию компании-разработчика фирмы Molex) в 4 pin, для “запитки” оптических дисков и других видов накопителей с интерфейсом PATA (Parallel ATA), вытесненных более современным интерфейсом SATA (Serial ATA). Для питания накопителей SATA обычно присутствуют два специальных разъёма в 15 pin (или переходников-адаптеров питания PATA HDD –> SATA HDD).

А также в современном БП должны быть коннекторы питания для центрального процессора 4 или 8 pin (могут быть разборными), коннектор для питания видеоплаты (6/8 pin, также может быть разборным и содержать 6 pin + 2 отдельных контакта). В некоторых моделях может присутствовать коннектор Floppy (4-pin), для питания флоппи-дисководов, некоторых картридеров и других устройств, которые используют данный устаревший разъём.