Оглавление
А что такое электрический ток?
Нет ничего проще! Поток электронов – вот что такое электроток. Как река – это течение триллионов и биллионов молекул воды по руслу, так и электрический ток – это течение миллиардов электронов по металлическому проводу. Все металлы очень хорошо проводят ток
Это отличительное свойство металлов, на которое ученые давно обратили внимание. Сегодня в кристаллической решетке металла мы умеем организовывать организованное течение мириадов элементарных частичек под названием электроны
Греки добывали чуть-чуть электричества, натирая шерстью янтарь. У нас же теперь – целые электростанции, которые занимаются производством электроэнергии. Уйму тока дают!
Короче говоря, заряд электрона – это некое свойство, которое характеризуется… чем? Ясно, чем характеризуется масса. Инертностью! Чем массивнее тело, тем труднее его разгонять. Попробовали потолкать – ого! тяжеленное! А заряд как обнаружить?
А заряд проявляет себя тем, что он притягивается к другому заряду – противоположному.
Существуют два вида зарядов – положительный и отрицательный. Ничего положительного и отрицательного в бытовом смысле в них нет, они не хорошие и не плохие, просто их так назвали когда-то да и все. Обозначают положительный заряд знаком плюс – «+», а отрицательный знаком минус – «-». Эти знаки вы тыщу раз видели на разных батарейках. А если не видели, сходите да посмотрите. Мне кажется, лучше всего попробовать выломать батарейку из папиных часов с помощью молотка и отвертки.
Электрон является носителем отрицательного заряда, а протон – положительного. Разноименные заряды притягиваются друг к другу, одноименные отталкиваются. Это прекрасно видно на рисунке.
Притяжение и отталкивание электрических зарядов.
Вот так мы и к протону незаметно перешли. Посмотрим-ка на него внимательно.
Если электрон маленький, легонький и электроотрицательный (минус), то протон большой, тяжелый и электроположительный (плюс). Полная противоположность! При этом протон и электрон притягиваются друг к другу.
Что такое электрический заряд в каких единицах он измеряется
Простое объяснение понятия электрический заряд. Что это за величина, в чем она измеряется и как, собственно, ее измеряют.
В природе не все можно объяснить с точки зрения механики, МКТ и термодинамики, есть и электромагнитные явления, которые воздействуют на тело, при этом не зависят от их массы. Способность тел быть источником электромагнитных полей характеризуется физической скалярной величиной – электрическим зарядом
Его впервые вывели в законе Кулона в 1785 году, но обратили внимание на его существование еще до нашей эры. В этой статье мы простыми словами расскажем о том, что такое электрический заряд и как он измеряется
История открытий
Еще в древности было замечено, что если потереть янтарь о шелковую материю, то камень начнет притягивать к себе легкие предметы. Уильям Гильберт изучал эти опыты до конца XVI века. В отчете о проделанной работе предметы, которые могут притягивать другие тела, назвал наэлектризованными.
Следующие открытия в 1729 году сделал Шарль Дюфе, наблюдая за поведением тел при их трении об разные материи.
Таким образом он доказал существование двух видов зарядов: первые образуются при трении смолы о шерсть, а вторые – при трении стекла о шелк. Следуя логике, он назвал их «смоляными» и «стеклянными».
Шарлем Кулоном, портрет которого изображен ниже, был открыт закон, который впоследствии был назван Законом Кулона. Он описывал взаимодействие двух точечных зарядов. Также смог измерить величину и изобрел для этого крутильные весы, о которых мы расскажем позже.
И уже в начале прошлого века Роберт Милликен, в результате проведенных опытов, доказал их дискретность. Это значит, что заряд каждого тела равен целому кратному элементарного электрического заряда, а элементарным является электрон.
Теоретические сведения
Электрическим зарядом называется способность тел создавать электромагнитное поле. В физике раздел электростатики изучает взаимодействия неподвижных относительно выбранной инерциальной системы отчета зарядов.
В чем выражается взаимодействие
Электрические заряды притягиваются и отталкиваются друг от друга. Это похоже на взаимодействие магнитов. Всем знакомо, что если потереть линейку или шариковую ручку о волосы – она наэлектризуется.
Если в этом состоянии поднести её к бумаге, то она прилипнет к наэлектризованному пластику.
При электризации происходит перераспределение зарядов, так что на одной части тела их становится больше, а на другой меньше.
По этой же причине вас иногда бьёт током шерстяной свитер или другие люди, когда вы их касаетесь.
Вывод: электрические заряды с одним знаком стремятся друг к другу, а с разными – отталкиваются. Они перетекают с одного тела на другое, когда касаются друг друга.
Способы измерения
Существует ряд способов измерения электрического заряда, давайте рассмотрим некоторые из них. Измерительный прибор называется крутильными весами.
Весы Кулона – это крутильные весы его изобретения. Смысл заключается, в том, что в сосуде на кварцевой нити подвешена легкая штанга с двумя шариками на концах, и один неподвижный заряженный шарик. Вторым концом нить закреплена за колпак.
Неподвижный шарик вынимается, для того чтобы сообщить ему заряд, после этого нужно установить его обратно в сосуд. После этого подвешенная на нити часть начнет движение. На сосуде нанесена проградуированная шкала.
Принцип его действия отражен на видео.
Другой прибор для измерения электрического заряда – электроскоп. Он, как и предыдущие, представляет собой стеклянный сосуд с электродом, на котором закреплено два металлических листочка из фольги.
Заряженное тело подносят к верхнему концу электрода, по которому заряд стекает на фольгу, в результате оба листочка окажутся одноименно заряженными и начнут отталкиваться.
Величину заряда определяют по тому, насколько сильно они отклонятся.
Электрометр – еще один измерительный прибор. Состоит из металлического стержня и вращающейся стрелки. При прикосновении к электрометру заряженным телом, заряды стекают по стержню к стрелке, стрелка отклоняется и указывает на шкале определенную величину.
Напоследок рекомендуем просмотреть еще одно полезное видео по теме:
Ионизаторы воздуха положительно воздействуют на организм человека: ускоряют процесс доставки кислорода из воздуха к клеткам. Примером такого прибора является люстра Чижевского.
Теперь вы знаете, что такое электрический заряд и как его измеряют.
Материалы по теме:
- Как перевести ватты в киловатты
- Закон Джоуля-Ленца простыми словами
- Что такое статическое электричество
Электризация тела
Для того чтобы получить электрически заряженное макроскопическое тело или, как говорят, наэлектризовать
его, нужно отделить часть отрицательного заряда от связанного с ним положительного.
Проще всего это сделать с помощью трения . Если провести расческой по волосам, то небольшая часть наиболее подвижных заряженных частиц – электронов – перейдет с волос на расческу и зарядит ее отрицательно, а волосы зарядятся положительно. При электризации трением оба тела приобретают противоположные по знаку, но одинаковые по модулю заряды.
Еще один способ электризации тел – воздействие на них различных излучений (в частности, ультрафиолетового, рентгеновского иγ -излучения). Этот способ наиболее эффективен для электризации металлов, когда под действием излучений с поверхности металла выбиваются электроны, и проводник приобретает положительный заряд.
Электризация через влияние или «электрическая индукция ». При поднесении к проводнику положительного заряда электроны к нему притягиваются и накапливаются на ближайшем конце проводника. На нем оказывается некоторое число «избыточных» электронов, и эта часть проводника заряжается отрицательно. На удаленном конце образуется недостаток электронов и, следовательно, избыток положительных ионов: здесь появляется положительный заряд. При поднесении к проводнику отрицательно заряженного тела электроны накапливаются на удаленном конце, а на ближнем конце получается избыток положительных ионов. После удаления заряда, вызывающего перемещение электронов, они вновь распределяются по проводнику, так что все участки его оказываются по-прежнему незаряженными. Индуцированные заряды можно разделить, если в присутствии заряженного тела разделить проводник на части. В этом случае сместившиеся электроны уже не могут вернуться обратно после удаления внешнего заряда.
*Механизм электризации трением
Наэлектризовать тела с помощью трения очень просто. А вот объяснить, как это происходит, оказалось очень непростой задачей.
1 версия
. При электризации тел важен тесный контакт между ними. Электрические силы удерживают электроны внутри тела. Но для разных веществ эти силы различны. При тесном контакте небольшая часть электронов того вещества, у которого связь электронов с телом относительно слаба, переходит на другое тело. Перемещения электронов при этом не превышают размеров межатомных расстояний (10-8 см). Но если тела разъединить, то оба они окажутся заряженными. Так как поверхности тел никогда не бывают идеально гладкими, то необходимый для перехода тесный контакт между телами устанавливается только на небольших участках поверхностей. При трении тел друг о друга число участков с тесным контактом увеличивается, и тем самым увеличивается общее число заряженных частиц, переходящих от одного тела к другому. Но не ясно, как в таких не проводящих ток веществах (изоляторах), как эбонит, плексиглас и другие, могут перемещаться электроны. Они ведь связаны в нейтральных молекулах.
2 версия
. На примере ионного кристалла LiF (изолятора) это объяснение выглядит так. При образовании кристалла возникают различного рода дефекты, в частности вакансии – незаполненные места в узлах кристаллической решетки. Если число вакансий для положительных ионов лития и отрицательных – фтора неодинаково, то кристалл окажется при образовании заряженным по объему. Но заряд в целом не может сохраняться у кристалла долго. В воздухе всегда имеется некоторое количество ионов, и кристалл будет их вытягивать из воздуха до тех пор, пока заряд кристалла не нейтрализуется слоем ионов на его поверхности. У разных изоляторов объемные заряды различны, и поэтому различны заряды поверхностных слоев ионов. При трении поверхностные слои ионов перемешиваются, и при разъединении изоляторов каждый из них оказывается заряженным.
А могут ли электризоваться при трении два одинаковых изолятора
, например те же кристаллы LiF? Если они имеют одинаковые собственные объемные заряды, то нет. Но они могут иметь и различные собственные заряды, если условия кристаллизации были разными и появилось разное число вакансий. Как показал опыт, электризация при трении одинаковых кристаллов рубина, янтаря и др. действительно может происходить. Однако приведенное объяснение вряд ли правильно во всех случаях. Если тела состоят, к примеру, из молекулярных кристаллов, то появление вакансий у них не должно приводить к заряжению тела.
Разноименный заряд
Разноименные заряды оказываются ближе друг к другу, чем одноименные, поэтому сила притяжения будет больше силы отталкивания, и бумажка притягивается к руке.
Разноименные заряды всегда придают частицам силу взаимного притяжения. При сближении частиц одинакового знака, но с различной величиной заряда сила их отталкивания сначала растет, достигая на определенном расстоянии между частицами максимума, а затем начинает падать, переходя в притяжение, которое при дальнейшем сближении частиц неограниченно растет.
Крутильные весы, с помощью которых Кулон в 1785 г. установил закон взаимодействия наэлектризованных тел. |
Разноименные заряды притягиваются, односменные отталкиваются.
Разноименные заряды притягиваются, одноименные отталкиваются.
Принцип работы р-п-пе-рехода. |
Разноименные заряды создают потенциальный барьер, который препятствует дальнейшему переходу электронов из п-об-ласти в р-область и переходу дырок в обратном направлении. Однако дырки, существующие в n — области, свободно преодолевают потенциальный барьер и могут перейти в р-область, аналогично электроны из р-области свободно перемещаются в п-область. Это движение зарядов создает небольшой дрейфовый ток. В установившемся режиме дрейфовый ток компенсируется диффузионным током и результирующий ток через границу p — n — перехода равен нулю.
Разноименные заряды притягиваются, одноименные отталкиваются.
Разноименные заряды притягиваются, одноименные от талкиваются. В этом легко убедиться на опыте, подвешивая например, на шелковых нитях легкие пробковые шарики i сообщая им электрические заряды посредством прикоснове ния к ним натертым стеклом или смолой ( фиг.
Разноименные заряды притягиваются друг к другу по законам электростатики. Химическую связь, возникающую за счет перехода электронов между отдельными атомами, называют ионной ( гетерополярной) или электровалентной.
Схема заряженного конденсатора. |
Разноименные заряды пластин взаимно притягиваются друг к другу. Сила взаимодействия зависит от величины заряда каждой из пластин и от величины напряженности поля.
Электрические поля заряженных центров. Вверху на энергетической схеме кружками отмечены изначальные значения энергии доноров и акцептора, горизонтальными черточками — значения энергии доноров, скорректированные кулоневским потенциалом заряженных примесей. Этот потенциал показан внизу. |
Поскольку разноименные заряды притягиваются, в равновесии ионизованы будут те доноры, которые находятся близко к акцепторам. Неравенство NA C NJJ означает, что среднее расстояние между акцепторами много больше, чем среднее расстояние между донорами.
Возникновение разноименных зарядов в поверхностном слое дисперсных систем приводит к ряду интересных явлений, называемых электрокинетическими. Электрокинетические явления развиты тем сильнее, чем выше подвижной заряд диффузного с.
Когда происходит подобное? Из-за чего атомы могут, например, терять электроны?
Это бывает при высоких температурах, то есть тогда, когда атомы газа имеют большую энергию и скорости, носятся, как сумасшедшие, сталкиваются друг с другом. Мы ведь с вами помним, что частота и скорость соударений и есть температура. В обычном воздухе скорость соударений молекул невелика. А вот на Солнце раскаленный газ имеет температуру в тысячи (на поверхности Солнца) и даже десятки миллионов градусов (внутри нашего светила). Я сказал «на Солнце»? Это немного неточно. Скорее, «в Солнце». Потому что Солнце представляет собой раскаленный газовый шар. В основном оно состоит из водорода с небольшой примесью гелия.
Так вот в этих условиях скорость соударения атомов водорода такова, что «крышу срывает» у атомов на всю катушку. Атомы разрушаются, электроны слетают со своих орбит и начинают метаться одни, так же, как и протоны. Получается хаотическая электронно-протонная смесь или, иначе говоря, ионизированная плазма.
Плазма – горячая смесь ионов. Огонь – это тоже плазма. Только в обычном пламени костра или свечи содержание ионов не такое большое, как на Солнце, потому что температура ниже.
Я загрузил вас новыми словами – «ионы», «плазма». Но зато теперь вы можете похвастаться тем, что знаете целых четыре состояния вещества!
Первое – твердое. Атомы и молекулы в таком веществе крепко держатся друг за друга, никуда не бегают, а только чуть-чуть дрожат и топчутся на одном месте, образуя кристаллическую решетку.
Второе состояние вещества – жидкое. Здесь уже энергетика частичек вещества такова, что они ломают кристаллическую структуру, рушат тесные ряды и начинают хаотически бродить, будучи не в силах удержаться в твердой структуре. Растекаются. Но еще не разлетаются друг от друга.
Разлетаться они начнут в третьем состоянии вещества – газообразном, которое наступит при дальнейшем нагреве, то есть дальнейшей накачке вещества энергией. Тогда скорость атомов станет уже такой, что силы их притяжения не смогут сдерживать энергичность расшалившихся атомов. Они просто разлетятся друг от друга и рассеются в пространстве.
Если же газ собрать в каком-то закрытом объеме или просто удерживать мощной силой гравитации (как на Солнце) и продолжать нагревать, то энергетика атомов станет уже такой огромной, что при столкновении друг с другом будут разрушаться уже сами атомы – с них начнет срывать электронные шубы. И останутся только ионы, ионизированный газ – плазма. При этом газ начнет светиться, что говорит о его высокой температуре.
Плазма – это прекрасно. Мы любим смотреть на плазму…
Глава 4. Сила есть – ума палата! →
← Глава 2. Что такое тепло?
Глава 3. Как устроен атом и вообще весь мир
4.3 (86.67%) 15 votes
Поляризация диэлектрика
Давайте возьмем два, на первый взгляд, одинаковых задания из ЕГЭ.
Задание 1
Если к незаряженному металлическому шару поднести, не касаясь, точечный положительный заряд, то на стороне шара, ближайшей к заряду, появится отрицательный заряд. Как называется это явление?
Мы только что это разобрали: то электростатическая индукция.
Задание 2
Если к незаряженному диэлектрическому шару поднести, не касаясь, точечный положительный заряд, то на стороне шара, ближайшей к заряду, появится отрицательный заряд. Как называется это явление?
Кажется, что очень похоже на электростатическую индукцию, но это явление будет называться поляризация. В чем разница:
В первом случае — это проводник, а во втором — диэлектрик. Если не вдаваться в подробности, то поляризация диэлектрика — процесс, очень похожий по природе своей на электростатическую индукцию, только происходит в непроводящих материалах.
Применение на практике
Работы Кулона очень важны в электростатике, на практике они применяется в целом ряде изобретений и устройств. Ярким примером можно выделить молниеотвод. С его помощью защищают здания и электроустановки от грозы, предотвращая тем самым пожар и выход из строя оборудования. Когда идёт дождь с грозой на земле появляется индуцированный заряд большой величины, они притягиваются в сторону облака. Получается так, что на поверхности земли появляется большое электрическое поле. Возле острия молниеотвода оно имеет большую величину, в результате этого от острия зажигается коронный разряд (от земли, через молниеотвод к облаку). Заряд от земли притягивается к противоположному заряду облака, согласно закону Кулона. Воздух ионизируется, а напряженность электрического поля уменьшается вблизи конца молниеотвода. Таким образом, заряды не накапливаются на здании, в таком случае вероятность удара молнии мала. Если же удар в здание и произойдет, то через молниеотвод вся энергия уйдет в землю.
В серьезных научных исследованиях применяют величайшее сооружение 21 века – ускоритель частиц. В нём электрическое поле выполняет работу по увеличению энергии частицы. Рассматривая эти процессы с точки зрения воздействия на точечный заряд группой зарядов, тогда все соотношения закона оказываются справедливыми.
Напоследок рекомендуем просмотреть видео, на котором предоставлено подробное объяснение Закона Кулона:
Полезное по теме:
Закон Кулона — это один из основных законов электростатики. Он определяет величину и направление силы взаимодействия между двумя неподвижными точечными зарядами.
Под точечным зарядом понимают заряженное тело, размер которого много меньше расстояния его возможного воздействия на другие тела. В таком случае ни форма, ни размеры заряженных тел не влияют практически на взаимодействие между ними.
Закон Кулона экспериментально впервые был доказан приблизительно в 1773 г. Кавендишем, который использовал для этого сферический конденсатор. Он показал, что внутри заряженной сферы электрическое поле отсутствует. Это означало, что сила электростатического взаимодействия меняется обратно пропорционально квадрату расстояния, однако результаты Кавендиша не были опубликованы.
В 1785 г. закон был установлен Ш. О. Кулоном с помощью специальных крутильных весов. Опыты Кулона позволили установить закон, поразительно напоминающий закон всемирного тяготения.
Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей заряда и обратно пропорциональна квадрату расстояния между ними.
В аналитическом виде закон Кулона имеет вид:
.
где |q1| и |q2| — модули зарядов; r — расстояние между ними; k — коэффициент пропорциональности, зависящий от выбора системы единиц. Сила взаимодействия направлена по прямой, соединяющей заряды, причем одноименные заряды отталкиваются, а разноименные — притягиваются.
Сила взаимодействия между зарядами зависит также от среды между заряженными телами.
В воздухе сила взаимодействия почти не отличается от таковой в вакууме. Закон Кулона выражает взаимодействие зарядов в вакууме.
Кулон — единица электрического заряда. Кулон (Кл) — единица СИ количества электричества (электрического заряда). Она является производной единицей и определяется через единицу силы тока — 1 ампер (А), которая входит в число основных единиц СИ.
За единицу электрического заряда принимают заряд, проходящий через поперечное сечение проводника при силе тока 1 А за 1 с.
Заряд в 1 Кл очень велик. Сила взаимодействия двух точечных зарядов по 1 Кл каждый, расположенных на расстоянии 1 км друг от друга, чуть меньше силы, с которой земной шар притягивает груз массой 1 т. Сообщить такой заряд небольшому телу невозможно (отталкиваясь друг от друга, заряженные частицы не могут удержаться в теле). А вот в проводнике (который в целом электронейтрален) привести в движение такой заряд просто (ток в 1 А — вполне обычный ток, протекающий по проводам в наших квартирах).
Коэффициент k в законе Кулона при его записи в СИ выражается в Н · м 2 /Кл 2 . Его численное значение, определенное экспериментально по силе взаимодействия двух известных зарядов, находящихся на заданном расстоянии, составляет:
k = 9 · 10 9 Н·м 2 /Кл 2 .
Часто его записывают в виде , где ɛ =8,85 · 10 — 12 Kл 2 H·м 2 — электрическая постоянная. В среде с диэлектрической проницаемостью ɛ закон Кулона имеет вид:
.
Разноименный точечный заряд
Разноименные точечные заряды е и е2 ( е в2) расположены на оси X на некотором расстоянии друг от друга. Ось X направлена от положительного заряда к отрицательному. Под каким углом 62 к оси X входит в заряд е2 силовая линия, выходящая из заряда е под углом GI. Под каким углом 6о выходит из заряда е первая силовая линия, уходящая в плоскости XY на бесконечность. Какой угол боо с осью X образует она на бесконечности.
Однако, рассматривая энергию двух разноименных точечных зарядов, мы приходим к противоречию.
Электрический диполь — совокупность двух равных по размеру разноименных точечных зарядов, находящихся на некотором расстоянии друг от друга. Основной характеристикой электрического диполя является электрический момент.
Электрический диполь — совокупность двух равных по размеру разноименных точечных зарядов, находящихся на некотором расстоянии друг от друга. Основной характеристикой электрического диполя является электрический момент ( см. с. Электрическая поляризация — состояние вещества, характеризуемое тем, что электрический момент данного объема этого вещества имеет значение, отличное от нуля.
Электрическим диполем называется система двух одинаковых по величине разноименных точечных зарядов / и — q, расстояние / между которыми значительно меньше расстояния до тех точек, в которых определяется поле системы. Прямая, проходящая через оба заряда, называется осью диполя.
Электрическим диполем называется система двух одинаковых по величине разноименных точечных зарядов — — q и — д, расстояние / между которыми значительно меньше расстояния до тех точек, в которых определяется поле системы. Прямая, проходящая через оба заряда, называется осью диполя.
Электрическим диполем называется система из двух одинаковых по величине разноименных точечных зарядов / и — q, расстояние / между которыми значительно меньше расстояния до тех точек, в которых определяется поле системы. Прямая, проходящая через оба заряда, называется осью диполя.
На рис. 2.7 — 2.10 изображены известные из курса средней школы картины плоских сечений электростатических полей: положительного и отрицательного точечных зарядов, а также двух одинаковых и двух разноименных точечных зарядов. В первых двух случаях ( рис. 2.7, 2.8) поля обладают центральной симметрией.
Принцип суперпозиции применим для расчета электростатического поля электрического диполя. Электрический диполь-система двух равных по модулю разноименных точечных зарядов ( Q, — Q), расстояние / между которыми значительно меньше расстояния до рассматриваемых точек поля.
ДИПОЛЬ ЭЛЕКТРИЧЕСКИЙ — система, состоящая из двух одинаковых по величине, но разноименных точечных зарядов ( 7), расположенных на конечном расстоянии I друг от друга.
В зависимости от строения молекул различают неполярные и полярные диэлектрики. Если электрические заряды в молекуле распределены несимметрично, то диэлектрик будет полярным. Молекулу полярного диэлектрика можно рассматривать как диполь — систему двух разноименных точечных зарядов — — q и — q, находящихся на некотором расстоянии / друг от друга. Такие молекулы называются дипольными.