Оглавление
- Содержание:
- Движение заряда в электрическом поле
- Электризация тел
- § 49. Связь между напряженностью и разностью потенциалов
- Потенциал
- Напряжённость электрополя
- Проводники в электростатическом поле. Электроемкость уединенного проводника.
- Для чего нужен потенциометр электрику
- Создание систем выравнивания потенциалов
- Разность потенциалов и работа заряда
Содержание:
Разница потенциалов в зависимости от напряжения
Разница потенциалов и напряжение — это два термина, которые используются в технике для описания разности потенциалов в двух точках. Напряжение относится к электричеству, где разность потенциалов может быть связана с электрическим, магнитным и гравитационным полями. Однако если рассматривать только электрическое поле, разность потенциалов такая же, как и напряжение.
Разность потенциалов
Потенциал — это понятие, используемое в электрическом, магнитном и гравитационном полях. Потенциал — это функция местоположения, а разность потенциалов между точкой A и точкой B рассчитывается путем вычитания потенциала A из потенциала B. Другими словами, гравитационная разность потенциалов между точками A и B — это объем работы, который должен быть выполняется для перемещения единицы массы (1 кг) из точки B в точку A. В электрическом поле это количество работы, которое необходимо совершить для перемещения единичного заряда (+1 кулон) из точки B в A. Разность гравитационных потенциалов равна измеряется в Дж / кг, где разность электрических потенциалов измеряется в В (вольтах).
Однако в общепринятом смысле термин «разность потенциалов» в основном используется для описания разности электрических потенциалов
Следовательно, мы должны использовать этот термин осторожно, чтобы избежать неверных толкований
напряжение
Разность электрических потенциалов между точками A и B также известна как напряжение между точками A и B. Напряжение измеряется в вольтах (В). Вольтметр — это оборудование, используемое для измерения напряжения. Батарея обеспечивает напряжение между двумя своими концами (электродами), и ее положительная сторона имеет более высокий потенциал, а отрицательный электрод — более низкий потенциал.
В цепи ток течет от более высокого потенциала к более низкому потенциалу. Когда он проходит через резистор, можно наблюдать напряжение между двумя концами. Это называется «падением напряжения». Хотя напряжение всегда находится между двумя точками, иногда люди просят напряжение точки. Речь идет о напряжении между этой конкретной точкой и контрольной точкой. Эта контрольная точка обычно «заземлена», и ее электрический потенциал считается равным 0 В.
В чем разница между разностью потенциалов и напряжением? 1. Разницу потенциалов можно найти в любом поле (гравитационном, электрическом, магнитном и т. Д.), А напряжение используется только для электрических полей. 2. Разность потенциалов по отношению к электрическому полю называется напряжением. 3. Напряжение измеряется в вольтах (В), а единица измерения разности потенциалов изменяется в зависимости от типа энергетического поля (В для электрического, Дж / кг для гравитационного и т. Д.). |
Движение заряда в электрическом поле
Когда носитель электрического заряда оказывается в электростатическом поле, на него неизбежно начинает действовать кулоновская сила. Это приводит к тому, что носитель заряда начинает перемещаться в пространстве, если, конечно, кулоновские силы не скомпенсированы другими, противодействующими силами. Рассмотрим случай, когда в электрическом поле оказался пробный заряд q совершенно свободный от действия других сил. Как только этот заряд окажется в зоне действия силовых линий электрического поля, то на него будет действовать сила в соответствии с Законом Кулона.
Как известно, механическая сила является векторной величиной, а значит имеет и величину, и направление. Носитель заряда в электрическом поле начнет менять свое энергетическое состояние. Как это проявляется? Одноименные заряды отталкиваются, а разноименные притягиваются. Наш заряд в зависимости от знака начнет сближаться с противоположным ему знаком заряда, которое и образует электрическое поле. Легче всего это увидеть, посмотрев на силовые линии напряженности поля. Согласно правилам они имеют направление от заряда +Q к заряду -Q, иначе говоря выходят из положительных зарядов (источника) и заходят в отрицательные заряды (источника).
Направление силы действия на пробный заряд q определить очень легко, если он положительный, то сила будет направлена по силовым линиям поля, а если отрицательный, то против силовых линий. Траектория движения будет зависеть от начальной скорости заряда, ее величины и направления. Действующая сила будет ускорять заряд, то есть его скорость по величине и направлению будет меняться в сторону действия кулоновской силы.
Движение заряда q в электрическом поле
На рисунке изображена примерная траектория движения заряда +q, имеющего некоторую начальную скорость V. Если бы заряд имел противоположный знак, то траектория движения была бы зеркально отражена от оси X, и заряд бы двигался в сторону пластины (+). По оси Y можно изобразить шкалу потенциала, которая так же будет иметь полярность.
Спрашивается. Что это за шкала и как определить где больший, а где меньший потенциал? Учитывая, что по определению и по действующим правилам силовые линии выходят из зарядов (+) и уходят в бесконечность, где потенциал равен нулю, то максимальный положительный потенциал будет в начале силовых линий от источника, а максимальный отрицательный потенциал там, где линии заходят в источник поля. Наш заряд +q, изображенный на рисунке выше будет двигаться от большего потенциала к меньшему, тем самым уменьшая потенциальную энергию поля, а точнее, преобразуя ее в кинетическую энергию. Если же в нашем случае был заряд -q, то для него потенциалы поменяли бы знак, арифметически, за счет умножения на -1, он всё также бы двигался в сторону уменьшения энергии поля.
Электризация тел
Электризация – процесс сообщения телу электрического заряда, т. е. нарушение его электрической нейтральности. Процесс электризации представляет собой перенесение с одного тела на другое электронов или ионов. В результате электризации тело получает возможность участвовать в электромагнитном взаимодействии.
- трением, – например, электризация эбонитовой палочки при трении о мех. При тесном соприкосновении двух тел часть электронов переходит с одного тела на другое; в результате этого на поверхности у одного из тел создается недостаток электронов и тело получает положительный заряд, а у другого – избыток, и тело заряжается отрицательно. Величины зарядов тел одинаковы;
- через влияние (электростатическая индукция) – тело остается электрически нейтральным, электрические заряды внутри него перераспределяются так, что разные части тела приобретают разные по знаку заряды;
- при соприкосновении заряженного и незаряженного тела – заряд при этом распределяется между этими телами пропорционально их размерам. Если размеры тел одинаковы, то заряд распределяется между ними поровну;
- при ударе;
- под действием излучения – под действием света с поверхности проводника могут вырываться электроны, при этом проводник приобретает положительный заряд.
§ 49. Связь между напряженностью и разностью потенциалов
Работу перемещения заряда в однородном электрическом поле можно подсчитать по формулам: A = qEl и A = q(φ2 — φ1). Приравняв правые части, получим: qEl = q(φ2 — φ1). Тогда связь между напряженностью и разностью потенциалов:
или
Если расстояние l мало, го эту формулу можно с допустимой погрешностью использовать и для вычисления напряженности и потенциала неоднородного электрического поля. Разность потенциалов (потенциал) измеряется электрометром. Электрометр — это электроскоп с металлическим корпусом, имеющим легкоподвижную стрелку и шкалу в единицах разности
потенциалов. Чтобы измерить потенциал проводника относительно Земли, корпус электрометра заземляется, а проводник соединяется с его стержнем (см. рис.56). При заряжении последнего внутри электрометра возникает электрическое поле. Угол отклонения стрелки тем больше, чем сильнее напряженность этого поля. Так как она прямо пропорциональна разности потенциалов между корпусом (Землей) и стрелкой, то величина отклонения стрелки по шкале показывает разность потенциалов между телом и Землей. Перемещая при помощи изолирующей ручки конец проволоки по поверхности проводника, замечаем, что показание электрометра не изменяется. Следовательно, при равновесии зарядов на проводнике потенциалы во всех его точках, как на поверхности, так и внутри него, одинаковы. По этой причине нет разности потенциалов между двумя любыми точками заряженного проводника — напряжение между ними равно нулю.
Внутри заряженного проводника напряженность электрического поля Е = 0, а поэтому разность потенциалов внутри проводника φ2 — φ1 = 0.
Соединим между собой два отрицательно заряженных тела, находящихся на электрометрах и имеющих разные потенциалы. Электрометры показывают, что при этом потенциал одного тела уменьшается, а другого — увеличивается до тех пор, пока они не становятся одинаковыми. Причиной изменения потенциалов является переход электронов из тела с меньшим потенциалом к телу с большим потенциалом. Установившееся равенство потенциалов указывает на то, что перемещение электронов с одного тела на другое прекратилось. Следовательно, причиной перехода заряженных частиц от одного тела к другому является наличие разности потенциалов между ними; при равенстве потенциалов переход заряженных частиц от одного тела к другому, а также от одной точки тела к другой не происходит.
Рис. 64. Линии напряженности и сечение эквипотенциальных поверхностей
Поверхность, у которой потенциалы во всех ее точках имеют одну и ту же величину, называется эквипотенциальной поверхностью. Поверхность любого проводника при равновесии зарядов на нем является эквипотенциальной поверхностью. На рис. 64 пунктирные линии показывают линии напряженности поля заряженного тела, а сплошными линиями изображены сечения эквипотенциальных поверхностей; густота знаков + указывает на поверхностную плотность зарядов на разных участках поверхности. Эквипотенциальные поверхности используются для графического изображения распределения потенциала в электрическом поле. Все точки эквипотенциальной поверхности имеют одинаковый потенциал, поэтому перемещение заряда вдоль нее не требует совершения работы. Это значит, что сила, действующая на заряд, все время перпендикулярна к эквипотенциальной поверхности (к поверхности заряженного тела). Отсюда мы делаем заключение, что линии напряженности всегда перпендикулярны к эквипотенциальным поверхностям (A = qEl cosα, где cos α90° = 0).
Задача 19. В пространство между горизонтальными пластинами электронно — лучевой трубки влетает электрон со скоростью 30000 км/сек. Вектор скорости электрона направлен параллельно пластинам. Длина пластин 4 см, расстояние между ними 1 см. На них подано постоянное напряжение 600 в. Определить, на сколько сместится электрон при выходе из пластин. Действием на него силы тяжести пренебречь.
Рис. 65. К задаче 19
За время снижения электрон, двигаясь горизонтально равномерно, проходит путь L = vt, отсюда время По второму закону Ньютона где F = eE. Напряженность Тогда ускорение Смещение электрона
Отв.: Δs = 8,4 мм.
Потенциал
Система «заряд — электростатическое поле» или «заряд — заряд» обладает потенциальной энергией, подобно тому, как система «гравитационное поле — тело» обладает потенциальной энергией.
Физическая скалярная величина, характеризующая энергетическое состояние поля называется потенциалом
данной точки поля. В поле помещается заряд q, он обладает потенциальной энергией W. Потенциал — это характеристика электростатического поля.
Вспомним потенциальную энергию в механике. Потенциальная энергия равна нулю, когда тело находится на земле. А когда тело поднимают на некоторую высоту, то говорят, что тело обладает потенциальной энергией.
Касательно потенциальной энергии в электричестве, то здесь нет нулевого уровня потенциальной энергии. Его выбирают произвольно. Поэтому потенциал является относительной физической величиной.
В механике тела стремятся занять положение с наименьшей потенциальной энергией. В электричестве же под действием сил поля положительно заряженное тело стремится переместится из точки с более высоким потенциалом в точку с более низким потенциалом, а отрицательно заряженное тело — наоборот.
Потенциальная энергия поля — это работа, которую выполняет электростатическая сила при перемещении заряда из данной точки поля в точку с нулевым потенциалом.
Рассмотрим частный случай, когда электростатическое поле создается электрическим зарядом Q. Для исследования потенциала такого поля нет необходимости в него вносить заряд q. Можно высчитать потенциал любой точки такого поля, находящейся на расстоянии r от заряда Q.
Диэлектрическая проницаемость среды имеет известное значение (табличное), характеризует среду, в которой существует поле. Для воздуха она равна единице.
Напряжённость электрополя
В электрическом поле, так же как и в гравитационном, возникает понятие напряжённости. Это говорит о том, какая сила будет действовать, а известно, что эта сила зависит от источника и от расстояния. Именно интенсивность — характеристика этого поля, которое можно зарядить. По определению, напряжённость электрополя — это отношение силы, действующей на его значение.
Например, есть данные центрального поля, создаваемые зарядом Q. Следует разместить на расстоянии R1 пробный заряд q. Делается работа по перемещению этого испытательного заряда на расстояние R2 от источника поля.
Для того чтобы система заряда двигалась с одинаковой скоростью, нужно постоянно действовать на него с усилием, уравновешивающем величину Куломба. Но вместе с изменением расстояния от источника эта сила меняется обратно пропорционально квадрату расстояния. Использовать нужно среднюю величину, действующую на пробный заряд.
Чтобы определить, является ли работа положительной или отрицательной, нужно подумать, каков угол между вектором приложенного усилия и вектором перемещения. Если пробный заряд притягивается источником поля, и работа, которую выполняют, перемещает этот заряд ближе к источнику, тогда нужно сбалансировать притяжение.
Одним словом, прилагают усилие, которое создаёт с вектором смещение на угол 180°. Если cos (α)= -1, то работа отрицательная. Но если источник имеет взаимодействие с грузом так, чтобы уравновесить силу, параллельную цепи смещения, так что условие α=0°, т. е. cos (α) = 1 — работа положительная.
Проводники в электростатическом поле. Электроемкость уединенного проводника.
Если поместить проводник во внешнее электростатическое поле или его зарядить, то на заряды проводника будет действовать электростатическое поле, в результате чего они начнут перемещаться. Перемещение зарядов (ток) продолжается до тех пор, пока не установится равновесное распределение зарядов, при котором электростатическое поле внутри проводника обращается в нуль. Это происходит в течение очень короткого времени. В самом деле, если бы поле не было равно нулю, то в проводнике возникло бы упорядоченное движение зарядов без затраты энергии от внешнего источника, что противоречит закону сохранения энергии. Итак, напряженность поля во всех точках внутри проводника равна нулю:
По гауссу
называют электроемкостью (или просто емкостью) уединенного проводника. Емкость уединенного проводника определяется зарядом, сообщение которого проводнику изменяет его потенциал на единицу.
Емкость проводника зависит от его размеров и формы, но не зависит от материала, агрегатного состояния, формы и размеров полостей внутри проводника. Это связано с тем, что избыточные заряды распределяются на внешней поверхности проводника. Емкость не зависит также ни от заряда проводника, ни от его потенциала. Сказанное не противоречит формуле, так как она лишь показывает, что емкость уединенного проводника прямо пропорциональна его заряду и обратно пропорциональна потенциалу.
Единица электроемкости — фарад (Ф): 1Ф
Поскольку электрический ток является упорядоченным движением заряженных частиц, то для определения величины тока необходимо знать, как величину энергии частиц, так и силу стороннего воздействия на них.
Для чего нужен потенциометр электрику
Что такое измерение сопротивления изоляции и почему это важно
Данный прибор широко применяется в практике для модуляции напряжения. Дело в том, что у многих источников (особенно заточенных под автономное функционирование: аккумуляторные элементы, солнечные батареи и т.д.) константное напряжение, не поддающееся управлению без специальных устройств, что может вызвать проблемы. Чтобы уменьшить исходное напряжение такого элемента, используют устройства-делители, снабженные потенциометрами.
Потенциометр-реостат
Как работает потенциометр? Он представляет собой резистор, имеющий пару выводов и подвижный ползунок с еще одним выводом. Подключаться такое переменное устройство сопротивления может двумя способами:
- По типу реостата, с использованием ползункового вывода и одного из пары других. Сопротивление замеряется движением ползунка по корпусу резистора. Регуляция цепного электротока в таком случае возможна при последовательном подключении такого реостата и источника напряжения.
- Потенциометрическим методом, задействующим каждый вывод из имеющейся у прибора тройки. Два главных вывода включаются параллельно источнику, снятие сниженного напряжения реализуется с ползункового механизма и одного вывода. В этом случае через резисторное устройство течет электроток, создающий спад напряжения между ползунком и боковыми выводами. В такой модели на источник питания ложится большая нагрузка, так как для точности регуляции и отсутствия сбоев необходимо, чтобы резисторное сопротивление в несколько раз уступало нагрузочному.
Потенциометрическое подключение прибора
Таким образом, понятие потенциала используется в разных областях физики: как в механике, так и в изучении электричества. В последнем случае оно выступает в качестве характеристики поля. Непосредственно рассматриваемая величина измерению не поддается, зато можно измерить разность, тогда один заряд берется за точку отсчета.
Создание систем выравнивания потенциалов
Проект каждой системы индивидуален, и разрабатывается в соответствии с конфигурацией помещения. Существуют общие правила монтажа, которые необходимо выполнять:
- Шина выравнивания потенциалов и шина защитного заземления должны быть соединены, или объединены в один узел.
- Все объекты: электроустановки, поддоны, ванны, раковины, элементы инфраструктуры здания, подключаются к шине выравнивания потенциалов параллельно.Это означает, что каждый элемент имеет отдельный проводник, подключенный к общей шине. Не допускается последовательное соединение между объектами. Если первичный проводник будет оборван, все последующие объекты на линии окажутся отключенными от системы выравнивания потенциалов.
- На всей протяженности токопроводящих линий, не должно быть коммутационных и размыкающих устройств: выключателей, реле, плавких предохранителей.
- Подключение должно быть надежным: не допускаются скрутки, приматывание изолентой. Применяется сварка, винтовые соединения, штатные контактные зажимы.
Какие объекты подключаются к системе выравнивания потенциалов
- Металлические корпуса всех электроустановок (если они не заземлены надлежащим образом). В список входят и токопроводящие корпуса светильников (торшеров).
- Разумеется, вся система защитного заземления. Собственно, от нее и начинается система выравнивания потенциалов.
- Металлические части каркаса здания, арматура фундамента, стен, перекрытий.
- Самостоятельно установленные металлические элементы инфраструктуры. Например, стальная сетка под стяжкой пола или металлический профиль под листами гипсокартона.
- Металлические трубы и кожухи системы вентиляции.
- Медные трубки системы подачи хладагента в кондиционерах (если они имеют большую протяженность).
- Металлические оболочки бронированных кабелей.
- Экранная оплетка информационных кабелей (телевидение, интернет).
На этом пункте остановимся подробнее. Кабель в металлической оплетке начинается от распределительного или усилительного устройства, которое расположено далеко за пределами вашего помещения. При этом у вас нет возможности контролировать правильность организации питания или заземления этих устройств. Может возникнуть ситуация, когда по экрану к вам в дом придет фаза.
Вы, ничего не подозревая, можете одновременно коснуться оплетки под напряжением, и заземленного металлического предмета (например, радиатора отопления). Последствия очевидны — поражение электротоком. При подключении экрана к системе выравнивания потенциалов, внешний пробой фазы на кабель, не страшен.
- Все металлические части системы водоснабжения и канализации: трубы, смесители, раковины из нержавейки, поддоны и металлические кабинки душевых, ванны.
- Компоненты систем водонагрева: бойлеры, внутренние трубы.
- Система отопления: трубы, радиаторы, полотенцесушители.
- Система газоснабжения.
- Заземление молниезащиты (если у вас частное жилище, в многоквартирных домах «опция» недоступна). При этом молниеотвод подключается к общей системе, и собственному заземлителю одновременно.
- Металлопластиковые рамы окон (если токопроводящие элементы не покрыты пластиком).
- Стальные двери и дверные коробки.
На схеме это выглядит так:
- Шина выравнивания потенциалов.
- Грозоразрядник от щита питания. Соединен с фазой. В нормальном состоянии, контакта между фазным и заземляющим проводником нет — в разряднике достаточный зазор. При ударе молнии в силовой кабель, возникает дуговой ток на «землю», и разница потенциалов в несколько тысяч вольт не возникнет.
- Ограничитель перенапряжения в линии данных.
- Кронштейны крепления заземляющих проводников к металлическим трубам.
- Фундаментный заземлитель с шиной, входящий в общую систему выравнивания потенциалов.
Разность потенциалов и работа заряда
Когда носитель электрического заряда оказывается в электростатическом поле, на него неизбежно начинает действовать кулоновская сила. Это приводит к тому, что носитель заряда начинает перемещаться в пространстве, если, конечно, кулоновские силы не скомпенсированы другими, противодействующими силами. Рассмотрим случай, когда в электрическом поле оказался пробный зарядq
совершенно свободный от действия других сил. Как только этот заряд окажется в зоне действия силовых линий электрического поля, то на него будет действовать сила в соответствии с Законом Кулона.
Как известно, механическая сила является векторной величиной, а значит имеет и величину, и направление. Носитель заряда в электрическом поле начнет менять свое энергетическое состояние. Как это проявляется? Одноименные заряды отталкиваются, а разноименные притягиваются.
Наш заряд в зависимости от знака начнет сближаться с противоположным ему знаком заряда, которое и образует электрическое поле. Легче всего это увидеть, посмотрев на силовые линии напряженности поля.
Согласно правилам они имеют направление от заряда +Q
к заряду-Q , иначе говоря выходят изположительных зарядов (источника) и заходят вотрицательные заряды (источника).
Направление силы действия на пробный заряд q
определить очень легко, если он положительный, то сила будет направлена по силовым линиям поля, а если отрицательный, то против силовых линий. Траектория движения будет зависеть от начальной скорости заряда, ее величины и направления. Действующая сила будет ускорять заряд, то есть его скорость по величине и направлению будет меняться в сторону действия кулоновской силы.
Движение заряда q
в электрическом поле
На рисунке изображена примерная траектория движения заряда +q
, имеющего некоторую начальную скоростьV0 . Если бы заряд имел противоположный знак, то траектория движения была бы зеркально отражена от оси X, и заряд бы двигался в сторону пластины (+). По оси Y можно изобразить шкалу потенциала, которая так же будет иметь полярность.
Спрашивается.
Что это за шкала и как определить где больший, а где меньший потенциал? Учитывая, что по определению и по действующим правилам силовые линии выходят из зарядов (+) и уходят в бесконечность, где потенциал равен нулю, то максимальный положительный потенциал будет в начале силовых линий от источника, а максимальный отрицательный потенциал там, где линии заходят в источник поля.
Наш заряд +q
, изображенный на рисунке выше будет двигаться от большего потенциала к меньшему, тем самым уменьшая потенциальную энергию поля, а точнее, преобразуя ее в кинетическую энергию. Если же в нашем случае был заряд-q , то для него потенциалы поменяли бы знак, арифметически, за счет умножения на -1, он всё также бы двигался в сторону уменьшения энергии поля.
Разность потенциалов — энергетическая характеристика
Любой заряд при своем движении в электрическом поле имеет начальную позицию, точку в пространстве поля, которая характеризуется потенциалом φначальное
, и конечную точку, которая также имеет свой потенциалφконечное . Разность между двумя этими величинами потенциалов называетсяΔφ — разность потенциалов, а иначе еще называют электрическим напряжением поля.
Следует различать электрическое напряжение поля в электростатическом потенциальном поле, где нет вихрей, и падение электрического напряжения в электротехнических цепях, а также напряжение, которое является ЭДС (электродвижущая сила). Для того, чтобы не было путаницы, обычно для электрического поля употребляют выражение «разность потенциалов»
, для электрических цепей —«падение напряжения» , а для источников тока —«ЭДС источника» . Когда отсутствует понимание различия таких определений, становится трудно разобраться в сути сложных явлений в мире электротехники, электроники и автоматики.
Что же роднит все эти три такие похожие, но всё-таки различные понятия? Прежде всего общее здесь то, что все три характеризуют энергетическое состояние. Но далее, при ответе на вопрос «Энергетическое состояние чего?», идут различия. Разность потенциалов характеризует энергетику электрического потенциального поля, падение напряжения — для участка электрической цепи, а ЭДС источника — это энергетическая характеристика устройства создающего электрический ток. Общность при ответе на вопрос: «Что это?», а различия при ответе на вопрос «Где?».