Оглавление
- Способы измерения сварочного тока
- Принцип действия тиристорного регулятора
- Конструкция и детали.
- Схема и назначение тиристорного регулятора напряжения для трансформатора
- Как сделать дроссель самостоятельно?
- Как сделать стабилизатор тока для светодиодов самостоятельно
- Методы настройки
- Регулятор мощности паяльника своими руками: проверенные рабочие схемы (6 шт)
- Намотка трансформатора
- Что такое регулятор мощности
- С использованием современной элементной базы
Способы измерения сварочного тока
Для оценки рабочих параметров аппарата требуются специфические устройства, которые редко применяются в быту.
Токоизмерительные клещи
Самый простой измерительный инструмент. Встраивать его в электрическую цепь не нужно. Силу тока меряют на расстоянии, не касаясь провода. Разводящийся контур инструмента охватывает кабель.
На корпусе расположен переключатель диапазонов измерения, максимальное значение составляет 500 А. Клещи можно использовать в любой ситуации.
Инструмент не воздействует на электрическую цепь аппарата. Он подходит только для измерения переменного тока. В остальных случаях клещи бесполезны.
Токоизмерительные клещи для измерения переменного тока.
Амперметр
Встраивание этого прибора в электрическую цепь помогает получать более точные результаты измерений.
При подключении учитывают такие особенности:
- В цепь встраивают не само устройство, а его шунт. Стрелочный указатель подключают к резистору параллельно.
- Шунт имеет собственное сопротивление. Однако замерить его стандартным омметром не получится.
- Для каждого амперметра предназначен резистор своего сопротивления. Чаще всего устройства продаются в комплекте.
- Амперметр не должен реагировать на колебания, возникающие при изменении параметров тока. В противном случае стрелка будет хаотично двигаться при горении дуги.
Амперметр для сварочного аппарата.
Принцип действия тиристорного регулятора
Тиристор имеет два состояния – открытый, в котором он пропускает электрический ток и закрытый. Открывается этот элемент при протекании тока через управляющий электрод и остается открытым, пока через тиристор идет ток. Переменное напряжение в сети имеет синусоидальную форму. Тиристор, включенный в цепи нагрузки, открывается в определенный момент полуволны. Это называется “угол открытия”. В результате этого через электроприбор ток протекает не все время, а только после перехода элемента в открытое состояние. Это меняет действующее значение напряжения на нагрузке.
Важно! Вольтметр измеряет действующее значение. Для надежной работы допустимое напряжение тиристоров должно соответствовать максимальному напряжению, которое больше в 1,4 раз
Для бытовой сети это 308В.
Конструкция и детали.
В схеме используются два кремниевых транзистора: КТ315 и КТ361. Так как корпуса у них одинаковые, то различаются они по месту расположения буквенной маркировки. На рисунке эти места обозначены стрелками.
У транзистора КТ315 буква всегда расположена в левом верхнем углу корпуса, а у КТ361 буква всегда наносится в середине корпуса. Все остальные обозначения это: год выпуска, месяц, партия.
На следующем рисунке изображены диод и стабилитрон
Здесь нужно обратить внимание на цоколевку их выводов. Как правило, цоколевка наносится на корпусе элемента в виде полоски, точки или нескольких точек со стороны обозначаемого вывода
Также встречаются диоды, у которых на корпусе нанесено условное обозначение диода, применяемое на принципиальных схемах. Как именно нанесено обозначение относительно выводов, значит, такое расположение анода и катода соответствует действительности.
У импортных диодов и стабилитронов наносится полоска со стороны вывода катода, а у мощных, цоколевка наносится в виде условного обозначения диода.
У Советских и Российских диодов цоколевка немного отличается от импортной. Здесь используется и полоска, и точки, и условное обозначение диода. К тому же еще обозначаются и вывод анода, и вывод катода. Так что, в любом случае, желательно использовать справочник или измерительный прибор для более точного определения выводов.
В схеме регулятора мощности, в качестве регулируемого элемента, используется тиристор. Сам по себе тиристор напоминает диод, только у него есть еще один вывод – управляющий электрод.
В закрытом состоянии тиристор не пропускает ток, и если на его управляющий электрод подать отпирающее напряжение, то тиристор откроется, и через анод и катод потечет ток. Чем больше будет ток отпирающего напряжения, тем больший ток будет пропускать тиристор через себя.
Если возникнут проблемы с приобретением резистора R5, то его можно будет сделать из двух резисторов, соединенных последовательно. Все остальные детали простые, поэтому на них останавливаться не будем.
В качестве корпуса регулятора мощности, как вы уже догадались, возьмем накладную розетку
Когда будете покупать, то обратите внимание, чтобы сама розетка была сделана из пластмассы, а не из керамики
Это нужно для того, если вдруг тиристор не будет влезать в корпус, то от пластмассы всегда можно срезать лишний кусок.
Собирать регулятор будем из двух частей. Низковольтную часть лучше собрать на фольгированном стеклотекстолите, плотном картоне или любом другом диэлектрическом материале — так будет аккуратней. А вот высоковольтную часть сделаем навесным монтажом, как показано на рисунке ниже.
Здесь отверстия обозначены черными точками, а все соединения между точками и деталями — дорожки, показаны синими линиями.Плата схемы управления и силовая часть соединяются между собой тремя красными проводниками.
Схема и назначение тиристорного регулятора напряжения для трансформатора
Ток, протекающий при зарядке через аккумуляторную батарею, определяется внутренним сопротивлением аккумулятора, его ЭДС и напряжением на выходе зарядного устройства. Для его изменения, кроме других способов, можно регулировать напряжение на первичной обмотке. Самый удобный способ – использование тиристорного регулятора.
Модели для зарядки аккумуляторов
Зарядные устройства делятся на три группы:
- Пусковые. Предназначены для запуска двигателя при разряженном аккумуляторе. Использовать для зарядки батареи не рекомендуется – недостаточное напряжение и отсутствие регулировок.
- Зарядные. Предназначены для заряда аккумуляторов. Имеют ручную или автоматическую регулировку.
- Пуско-зарядные. Могут выполнять обе функции.
Как сделать дроссель самостоятельно?
Вполне реальным является самостоятельное изготовление дросселя в домашних условиях. Это имеет место при наличии прямой катушки с достаточным количеством витков нужного шнура. Внутри катушки проводятся прямые пластинки из металла от трансформатора. Путём выбора толщины этих пластинок, есть возможность выбора стартового реактивного сопротивления.
Рассмотрим конкретный пример. Дроссель с катушкой с 400 витками и шнура диаметром 1,5 мм, заполняется пластинками с сечением 4,5 квадратных сантиметров. Длина катушки и провода должна быть одинакова. В результате трансформаторный ток 120 А уменьшится наполовину. Такой дроссель изготавливается с сопротивлением, которое можно изменять. Чтобы провести такую операцию, необходимо замерить углубление прохождения стержня сердечника внутрь катушки. С отсутствием этого инструмента, катушка будет иметь не значительное сопротивление, но если стержень будет введён в неё, сопротивление повысится до максимума.
Дроссель, который наматывается правильным шнуром, не будет перегреваться, но, возможно, сердечник будет отличаться сильной вибрацией. Это учитывается при стяжке и крепеже железных пластин.
Как сделать стабилизатор тока для светодиодов самостоятельно
Изготовление стабилизатора для светодиодов своими руками осуществляется несколькими способами. Новичку целесообразно работать с простыми схемами.
На основе драйверов
Понадобится выбрать микросхему, которую трудно выжечь – LM317. Она будет выполнять роль стабилизатора. Второй элемент – переменный резистор с сопротивлением в 0,5 кОм с тремя выводами и ручкой регулировки.
Сборка осуществляется по следующему алгоритму:
- Припаять проводники к среднему и крайнему выводу резистора.
- Перевести мультиметр в режим сопротивления.
- Замерить параметры резистора – они должны равняться 500 Ом.
- Проверить соединения на целостность и собрать цепь.
На выходе получится модуль с мощностью 1,5 А. Для увеличения тока до 10 А можно добавить полевик.
Стабилизатор для автомобильной подсветки
Стабилизатор L7812
Для работы потребуется линейный прибор в виде микросхемы L7812, две клеммы, конденсатор 100n (1-2 шт.), текстолитовый материал и трубка с термоусадкой. Изготовление производится пошагово:
- Выбор схемы под L7805 из даташита.
- Вырезать из текстолита нужный по размеру кусок.
- Наметить дорожки, делая насечки отверткой.
- Припаять элементы так, чтобы вход был слева, а выход – справа.
- Сделать корпус из термотрубки.
Стабилизирующее устройство выдерживает до 1,5 А нагрузки, монтируется на радиатор.
Методы настройки
Есть разнообразные методы настройки напряжения, ранее мы рассказывали об энергии преобразованного переменного тока и преобразуемого.
В действительности, это слишком обширное разделение, потому что настройка еще имеет подвиды. У нас не получится детально рассказать о подвидах в этой статье, поэтому обсудим более популярные.
Такой метод считают безопасным и выносливым, баластник просто сделать самостоятельно и применять для работы без вспомогательных аппаратов. В основном, баластник применяют только для понижения напряжения.
Мы уже детально рассказывали о тонкостях работы и использовании баластника для полуавтоматического инвертора. Там есть важные рекомендации по изготовлению электроприбора дома и способах его применения для работы.
Кроме достоинств, способ настройки по энергии преобразованного переменного тока, используемый вместе с преобразователем энергии. Для варки бывает не таким удобным, тем более неопытным мастерам.
Во-первых, баластник достаточного большого размера — до 1 м длиной. В основном, такое электроустройство размещают под ногами, он может сильно нагреться, что нарушает правила безопасности.
Если вас не устраивают такие качества, то лучше выбрать способ, включающий в себя настройку варочного напряжения по энергии преобразуемого переменного тока.
Для этого часто применяют электрический регулятор тока для сварочного аппарата, который легко смастерить самостоятельно. Такой прибор легко настроить по энергии преобразуемого переменного тока и будет удобен для мастера в работе.
Электрический регулятор тока для сварочного аппарата будет первым помощником в работе на даче, где зачастую электроснабжение подается с перебоями.
Бывает, что в домах невозможно применение электрических приборов больше 4 кВт, что делает выполнение работ ограниченным.
Еще одним плюсом регулятора тока для сварочного аппарата выступает то, что с ним просто работать, когда надо часто менять место для выполнения работы. Устройство регулятор нет надобности брать с собой, как баластник, оно не будет вас травмировать.
Поговорим о самостоятельном изготовлении электрического прибора регулировки из тиристоров.
Регулятор мощности паяльника своими руками: проверенные рабочие схемы (6 шт)
Не всем нравится покупать неизвестно что. А некоторым приятнее сделать регулятор мощности паяльника своими руками, ведь это тоже опыт. Большинство схем собирается на симисторах и тиристорах, сейчас их найти проще чем транзисторы. Работать с ними тоже проще, так как они либо открыты, либо закрыты, что позволяет делать схемы проще.
Корпус подберите любой
Простые схемы на тиристоре
При выборе схемы регулятора мощности для паяльника важны две вещи: мощность и доступность деталей. Представленный ниже регулятор мощности паяльника собран на широко распространённых деталях, которые найти не проблема. Максимальный ток — 10 А, что более чем достаточно для выполнения работ любого рода и для паяльников мощностью до 100 Вт. Тиристор в данной схеме использован КУ202н
Обратите внимание на подключение моста. Есть много схем с ошибкой в подключении. Этот вариант рабочий
Проверен не раз
Этот вариант рабочий. Проверен не раз.
Схема регулятора температуры для паяльника на тиристоре
При сборке схемы тиристор обязательно ставим на радиатор, чем он больше тем лучше. Схема проста, но когда она включена, создаёт помехи. Радио рядом не послушаешь и, чтобы убрать помехи, параллельно нагрузке подключаем конденсатор на 200 пФ, а последовательно дроссель. Параметры дросселя подбираются в зависимости от регулируемой нагрузки, но так как паяльники обычно не более чем на 80-100 Вт, то и дроссель можно сделать на 100 Вт. Для этого понадобится ферритовое кольцо наружным диаметром 20 мм, на которое намотано около 100 витков проводом сечением 0,4 мм².
Ещё один недостаток переведённой выше схемы — паяльник ощутимо «зудит». Иногда с этим мириться можно, иногда нет. Для устранения этого явления можно подобрав параметры конденсатора C1 так чтобы при выставленном на максимум переменном резисторе, подключённая лампа еле-еле светилась.
На других элементах но тоже без помех
Приведенный выше регулятор можно использовать для любой нагрузки. Приведем еще один аналог,но с использованием другой элементной базы. Регулировать можно не только мощность/температуру паяльника, но и любую другую нагрузку с небольшой индуктивной составляющей.
Видоизмененная схема для регулирования мощности паяльника и любой другой нагрузки с устраненным эффектом пульсации
Пульсация тут есть, но ее частота высока и она не будет восприниматься нашим зрением. Так что можно использовать не только как диммер для паяльника, но и для регулирования света от обычной лампы накаливания. Нужен ли диодный мост для регулировки мощности нагрева паяльника? Он не помешает, но необходимости в нем нет.
На тиристоре с высокой чувствительностью
Данная схема позволяет плавно изменять температуру паяльника от 50% до 100%. Есть два индикатора — питания и мощности. Светодиод наличия питания горит всегда во включенном состоянии, но при 75% мощности свечение более яркое. Индикатор мощности меняет интенсивность свечения в зависимости от режима работы.
Регулятор мощности для паяльника без помех
Чтобы регулятор поместился в корпус от зарядного устройства мобильного телефона, сопротивления используют СМД типа (1206). Все резисторы установлены на плате, кроме R 10. Некоторые могут быть составными (из последовательно соединенных резисторов собираем нужный номинал).
Для нормальной работы схемы требуется чувствительный тиристор (с малым током управления) и низким током удержания состояния (порядка 1 мА). Например, КТ503 (рассчитан на напряжение 400 В, Ток управления 1 мА). Остальная элементная база указана на схеме.
Если собрали, но напряжение не регулируется
Если собранный регулятор ничего не регулирует — не меняется температура паяльника — дело в тиристоре. Схема, вроде, работает, а ничего не происходит. Причина — тиристор с низкой чувствительностью. Токи, которые протекают в схеме, недостаточны для открытия. В таком случае стоит поставить аналог с более высокой чувствительностью (токи управления более низкие).
Один из вариантов корпуса, в который можно спрятать самодельный регулятор мощности для паяльника
Еще может регулятор работать, но паяльник начинает «зудеть». Решается такая проблема установкой дросселя на выходе (перед паяльником). Емкость надо подбирать — зависит от паяльника. Второй вариант решения — аналоговая схема управления, а это уже другая схема.
Ну, и при проблемах с работой ищите либо неисправные детали, либо неправильно подобранные компоненты. Обычно проблема в этом.
Намотка трансформатора
Его первоначально предстоит полностью разобрать, железо следует на время отложить. Предстоит изготовить каркас катушки, применив для этого текстолит толщиной равной 2 мм, такая необходимость возникает по той причине, что свой каркас не имеет достаточного запаса прочности. Габариты щеки должны быть равны 147х106 мм. В щеках нужно подготовить окно, габариты которого равны 87х51,5 мм. На этом можно считать, что каркас полностью готов. Теперь нужно отыскать обмоточный провод Ø1,8 мм, предпочтительнее использовать тот, что имеет усиленную стекловолоконную защиту.
Изготавливая сварочный полуавтомат своими руками, нужно создать на первичной обмотке следующее количество витков: 164 + 15 + 15 + 15 + 15. В промежутке между слоями нужно проложить изоляцию, применив тонкую стеклоткань. Провод предстоит наматывать с максимальной плотностью, в противном случае он может не влезть.
Для подготовки вторичной обмотки нужно использовать алюминиевую шину, которая имеет стеклянную изоляцию с габаритами, равными 2,8х4,75 мм, приобрести ее можно у обмотчиков. Понадобится около 8 м, однако приобрести материал нужно с некоторым запасом. Намотку следует начинать с образования 19 витков, после предстоит обеспечить петлю, направленную под болт М6, затем необходимо сделать еще 19 оборотов. Концы должны иметь длину по 30 см, что понадобится для проведения дальнейших работ. При изготовлении полуавтомата сварочного следует учесть, что если для работы с габаритными элементами вам может быть недостаточно тока при подобном напряжении, то на этапе монтажа или уже в процессе дальнейшего использования аппарата можно переделать вторичную обмотку, дополнив ее еще тремя витками на плечо, в конечном результате это позволит получить 22+22.
Сварочный полуавтомат должен обладать обмоткой, которая укладывается впритык, по этой причине следует мотать очень аккуратно, это позволит расположить все верно. При использовании для образования первичной обмотки эмальпровода затем в обязательном порядке нужно произвести обработку посредством лака, минимальное время удержания катушки в нем ограничено 6 часами.
Теперь можно смонтировать трансформатор и подсоединить его к электросети, что позволит определить ток холостого хода, который должен быть равен примерно 0,5 А, уровень напряжения на вторичной обмотке должен быть эквивалентен 19-26 В. При совпадении условий можно на время отложить трансформатор и приступить к выполнению следующего этапа.
Делая сварочный полуавтомат своими руками, взамен ОСМ-1 для силового трансформатора допустимо использовать 4 единицы ТС-270, однако они обладают несколько иными габаритами, при необходимости для этого случая можно самостоятельно рассчитать данные для осуществления намотки.
Что такое регулятор мощности
Самые первые прототипы устройств, позволяющих уменьшать проводимую к нагрузке мощность, были разработаны с учетом закона Ома. На этом принципе и основано функционирование реостата. Его можно подключать последовательно и параллельно нагрузке. При изменении сопротивления реостата можно регулировать его мощность.
Что собой представляет регулятор мощности
При подключении реостата к нагрузке ток распределяется между ними. В зависимости от способа подключения можно контролировать разные параметры: при параллельном — разницу потенциалов, а при последовательном — напряжение и силу тока. Реостаты различаются в зависимости от использованного в их конструкции материала: металла, керамики, угля или жидкости.
При использовании реостата поглощенная им энергия никуда не исчезает, а преобразуется в тепло. При большом количестве энергии целесообразно использовать системы охлаждения, чтобы температура устройства не была слишком высокой. Отводят тепло обычно с помощью обдува или погружая резистор в масло.
Такие простейшие реостаты широко применяются, но есть один значимый недостаток — невозможность использовать его в мощных электрических цепях. Поэтому резисторы применяются только в бытовых целях (к примеру, такие есть в конструкции радио).
Обратите внимание! Обычный реостат можно сделать и самому, для этого понадобится только проволока из нихрома или константана. Ее необходимо намотать на оправку, при этом изменение проходящей мощности происходит за счет регулировки длины проволоки
Все полупроводниковые устройства сделаны на переходах или слоях (n-p, p-n). Простой диод — 1 переход и 2 слоя. Биполярный транзистор — 2 перехода и 3 слоя (трехфазный). А при добавлении четвертого слоя как раз и образуется стабилизатор мощности — тиристор. При соединении 2 тиристоров встречно-параллельно получается симистор.
Вам это будет интересно Выбор электросчетчика
С использованием современной элементной базы
Старые радиодетали хороши тем, что они «дубовые» в смысле надежности эксплуатации. Но они уже действительно старые. У многих временной ресурс на пределе и служат они далеко не так долго, как «свежие». Это первая проблема. И вторая — их все сложнее найти. Хорошо что есть уже много схем регуляторов паяльников на новой элементной базе. Некоторые из них простые, другие посложнее, используются различные виды современных радиодеталей.
Схема регулятора для паяльника без помех на микросхеме
Этот вариант простым не назовешь, но зато он не выдает в сеть помех. С наличием большого количества электроники в каждом доме это может быть важным. Если вы паяете лишь от случая к случаю — можно и не обращать на это внимания. Но вот если вы часто сидите с паяльником, помехи могут доставлять серьезные неудобства.
Регулировать данная схема может нагрузку до 2 кВт, обеспечивает плавное изменение от 0 до максимума.
Самодельный регулятор паяльника без помех
По элементной базе. Микросхема К561ЛА7 может быть заменена на К176ЛА7. Переменный резистор R1 — любой из группы А. Остальные резисторы — лучше МЛТ, конденсаторы C1, C3 — керамические. Диоды в схеме использованы КД503А, можно заменить КД514А и КД522А. ТАкже есть вариант замены транзистора КТ361В — на КТ326В или КТ361А.
На базе фазовых регуляторов мощности PR1500S
В этой схеме использован фазовый регулятор мощности. Кроме него, в регуляторе используется лишь пара деталей, так что времени на сборку надо минимум, ошибиться практически невозможно.
Регулятор температуры жала паяльника своими руками
Нужен будет только переменный резистор, можно с выключателем — тогда не надо будет паяльник вытаскивать из сети. Для устранения помех нужен будет конденсатор на 100 пФ, на 630 В, лучше специальный плёночный для фильтров. Единственное, с чем может возникнуть сложность — намотка дросселя, его параметры есть в таблице.
Параметры для намотки дросселя
Нужно будет кольцо из феррита с наружным диаметром 20 мм. Чем больше проницаемость феррита тем лучше. Данный фазовый регулятор может регулировать нагрузку до 1,5 кВт, так что выбирать можно любой их столбиков. Можно сделать с запасом, мало ли что потом захотите регулировать. Проволока естественно, медная лакированная, специально для намотки дросселей.
То, что получилось после сборки
При сборке для дросселя и фазового регулятора лучше сделать теплоотвод. Особенно он пригодится при работе с большими нагрузками. Для паяльника можно и обойтись, но мало ли что потом подключите и лучше собрать сразу с запасом прочности.
На оптосимисторе МОС204х/306х/308х
Схема обкатанная много раз и работает отлично без каких-либо проблем. Использовать желательно оптические симисторы указанных марок, так как они открываются в случае перехода напряжения через ноль
Состояние светодиода при этом неважно. Все другие работают по другому принципу, потому схему надо будет переделывать под них. Также в схеме присутствует биполярный таймер 555 серии. Найти его не проблема, цена нормальная
Найти его не проблема, цена нормальная.
Регулятор мощности паяльника на оптосимисторах
Все компоненты подобраны миниатюрных габаритов, чтобы в готовом виде плата вошла в корпус от зарядки мобильника. Номинал резистора R5 зависит от типа используемого светодиода. На красном падение напряжения 1,6-2 В, на зелёном 1,9-4 В, на жёлтом 2,1-2,2 В, на синем 2,5-3,7 В. Соответственно резистор подбирается в зависимости от фактических параметров.
С ШИМ-контроллером
Современная элементная база очень обширна, а одни и те же задачи можно решать по разному. Например, для регулятора мощности использовать ШИМ-контроллер. Для этой схемы подойдёт любая модель, работающая на частоте 0,5-1 Гц. Коммутирующий элемент полевой транзистор, его можно найти на старых материнских платах или купить. Его тип не указан, но подойдет любой n-канальный транзистор с напряжением не менее 12 В, током — 6 А и мощностью — 60 Вт.
Регулятор паяльника на ШИМ контроллере и полевом транзисторе
Светодиод VD3 необязательная часть схемы, но он мигает с разной частотой в зависимости от нагрева. Когда приноровишься, удобно ориентироваться и не надо смотреть на ручку регулятора. Но вообще, его из схемы можно безболезненно выкинуть
Обратите внимание: шины питания от микросхемы идут параллельно проводами, это минимизирует влияние более мощной нагрузки