Регуляторы напряжения на 220 в своими руками

Оглавление

Настройки аппарата

Когда все готово, можно приступать к непосредственным настройкам. Несмотря на то, что опытные сварщики могут устанавливать режимы на собственное усмотрение, мы будем отталкиваться от рекомендованных параметров. Значения, представленные в таблице ниже, усредненные и в каждом отдельном случае, для лучшего качества работ, стоит произвести небольшую подстройку. Как это сделать, для чего нужен тот или иной параметр рассмотрим далее.

Таблица ориентировочных режимов сварки для углеродистых сталей

Скорость подачи газа

Данный параметр хоть и не относится к настройке сварочного полуавтомата, играет важную роль в процессе сваривания. Газобаллонное оборудование современного образца комплектуется удобными редукторами, где указан расход в литрах. Просто установите значение на 6 – 16 литров, в зависимости от толщины металла и на этом все.

Вольтаж

Данный параметр условно показывает, сколько тепла мы отдадим на работу в данный момент. Как видно из таблицы, чем толще металл, тем больше Вольтаж, а значит, нагрев и расплавление происходит быстрее и проще. Сложность с подбором вольтажа возникает тогда, когда мы имеем дело с нестандартным металлом или особой конструкцией сварки. Если мы говорим о работе с цветными или высоколегированными металлами, то оптимальные значения Вольтажа можно найти в интернете.

С другой стороны некоторые производители не указывают точное значение данной регулировки, а ограничиваются условными указаниями, к примеру, цифры 1-10. В таком случае следует внимательно изучить сопроводительную документацию, где должно быть указанно соответствие текущего положения к настоящему вольтажу.

Таким образом, данный параметр стоит устанавливать согласно таблице “настройка сварочного полуавтомата” или рекомендации производителя.

Скорость подачи проволоки/Сила тока

Второй параметр настройки любого полуавтомата это – скорость, совмещенная с силой тока. Это связанно с тем, что оба параметра взаимосвязаны и увеличивая скорость подачи, возрастает сила тока. Некоторые продвинутые машины имеют отдельные регулировки тока на полуавтомате, но они относятся к профессиональному уровню.

В более продвинутых моделях скорость подачи проволоки имеет тонкую настройку

Как и ранее для начала устанавливаем рекомендованные значения, однако в процессе работ эту настройку можно и нужно подстраивать под свои нужды. Заметить несоответствие просто. Если шов ведет, образуются сильные наплавления или сдвиги, то скорость слишком большая. Если же валик «проседает», появляются волнистые углубления или разрывы, то скорость слишком маленькая.

Большинство простейших аппаратов имеют именно две настройки – вольтаж и скорость подачи, совмещенная с силой тока. Умело управляя ими можно в полной мере оценить качество сваривания деталей полуавтоматом.

Электронный регулятор тока своими руками

  • Усилители мощности
  • Светодиоды
  • Блоки питания
  • Начинающим
  • Радиопередатчики
  • Разное
  • Ремонт
  • Шокеры
  • Компьютер
  • Микроконтроллеры
  • Разработки
  • Обзоры и тесты
  • Обратная связь
  • Форум Усилители мощности
  • Шокеры
  • Качеры, катушки Тэсла
  • Блоки питания
  • Светодиоды
  • Начинающим
  • Жучки
  • Микроконтроллеры
  • Устройства на ARDUINO
  • Программирование
  • Радиоприемники
  • Датчики и ИМ
  • Вопросы и ответы

Online расчёты
Умный дом
Видео
RSS
Приём статей

  • Усилители мощности
  • Светодиоды
  • Блоки питания
  • Начинающим
  • Радиопередатчики
  • Разное
  • Ремонт
  • Шокеры
  • Компьютер
  • Микроконтроллеры
  • Разработки
  • Обзоры и тесты
  • Обратная связь

Форум

  • Усилители мощности

Шокеры
Качеры, катушки Тэсла
Блоки питания
Светодиоды
Начинающим
Жучки
Микроконтроллеры
Устройства на ARDUINO
Программирование
Радиоприемники
Датчики и ИМ
Вопросы и ответы
Online расчёты
Умный дом
Видео
RSS
Приём статей

Схема регулятора с обратной связью

Обратная связь необходима для стабилизации оборотов электродвигателя, которые могут изменяться под воздействием нагрузки. Сделать это можно двумя способами:

  1. Установить таходатчик, измеряющий число оборотов. Такой вариант позволяет производить точную регулировку, но при этом увеличивается стоимость реализации решения.
  2. Отслеживать изменения напряжения на электромоторе и, в зависимости от этого, увеличивать или уменьшать «открытый» режим полупроводникового ключа.

Последний вариант значительно проще в реализации, но требует небольшой настройки под мощность используемой электромашины. Ниже приведена схема такого устройства.

Регулятор мощности с обратной связью

Обозначения:

  • Резисторы: R1 – 18 кОм (2 Вт); R2 – 330 кОм; R3 – 180 Ом; R4 и R5– 3,3 кОм; R6 – необходимо подбирать, как это делается будет описано ниже; R7 – 7,5 кОм; R8 – 220 кОм; R9 – 47 кОм; R10 – 100 кОм; R11 – 180 кОм; R12 – 100 кОм; R13 – 22 кОм.
  • Конденсаторы: С1 – 22 мкФ х 50 В; С2 – 15 нФ; С3 – 4,7 мкФ х 50 В; С4 – 150 нФ; С5 – 100 нФ; С6 – 1 мкФ х 50 В..
  • Диоды D1 – 1N4007; D2 – любой индикаторный светодиод на 20 мА.
  • Симистор Т1 – BTA24-800.
  • Микросхема – U2010B.

Данная схема обеспечивает плавный запуск электрической установки и обеспечивает ее защиту от перегрузки. Допускается три режима работы (выставляются переключателем S1):

  • А – При перегрузке включается светодиод D2, сигнализирующий о перегрузке, после чего двигатель снижает обороты до минимальных. Для выхода из режима необходимо отключить и включить прибор.
  • В – При перегрузке включается светодиод D2, мотор переводится на работу с минимальными оборотами. Для выхода из режима необходимо снять нагрузку с электродвигателя.
  • С – Режим индикации перегрузки.

Настройка схемы сводится к подбору сопротивления R6, оно вычисляется, в зависимости от мощности, электромотора по следующей формуле: . Например, если нам необходимо управлять двигателем мощностью 1500 Вт, то расчет будет следующим: 0,25/ (1500 / 240) = 0,04 Ом.

Для изготовления данного сопротивления лучше всего использовать нихромовую проволоку диаметром 0,80 или1,0 мм. Ниже представлена таблица, позволяющая подобрать сопротивление R6 и R11, в зависимости от мощности двигателя.

Таблица для подбора номиналов сопротивлений в зависимости от мощности двигателя

Приведенное устройство может эксплуатироваться в качестве регулятора оборотов двигателей электроинструментов, пылесосов и другого бытового оборудования.

Схемы регуляторов тока на микросхемах

Выше мы рассмотрели несколько схем зарядных устройств с ручной регулировкой. Основной их недостаток – отсутствие стабилизации. В процессе зарядки АКБ ток через нее уменьшается, а это значит, что придется постоянно контролировать и подстраивать этот параметр. Но построить стабилизированный источник питания ненамного сложнее. Для начала несколько схем регулятора тока для зарядного устройства со стабилизацией, которые можно использовать для построения стационарных ЗУ.

Стабилизатор

Эта схема позволяет заряжать шести- и двенадцативольтовые батареи током одной, заранее установленной стабильной величины до 10 ампер.

Стабилизатор тока для зарядного устройства

Сердцем узла является интегральный стабилизатор напряжения, включенный по схеме токовой стабилизации. Величина зарядного тока будет зависеть от номинала резистора R4, который можно рассчитать по формуле:

I = 1.2/R,

где:

  • I – необходимый зарядный ток в А;
  • R – номинал резистора R4 в Ом.

Поскольку сама по себе микросхема КР142ЕН12А маломощная, для обеспечения большей мощности используются  транзисторные ключи T1 и T2, включенные параллельно. Резисторы R1 и R2 – токовыравнивающие. Они компенсируют разброс параметров транзисторов.

Резисторы R1, R2, R4 изготавливаются из отрезков обмоточного провода необходимой длины, которые для большей компактности свернуты в спираль. Транзисторы VT1 и VT2 можно установить на один общий радиатор без изолирующих прокладок. Площадь рассеяния радиатора – 300 см2. Если на место R4 установить мощный реостат сопротивлением 0.8 Ом, то легко получить регулируемый стабилизатор.

Регулятор-стабилизатор

Эта схема является регулируемым стабилизатором и в отличие от предыдущей имеет более высокий КПД, поскольку рассеиваемая мощность на токозадающем резисторе намного меньше из-за его низкого сопротивления.

Узел собран на операционном усилителе LM358 и полевом транзисторе IRFZ44. Регулировка зарядного тока производится при помощи переменного резистора R3. Резистор R5 является токозадающим.

На месте T1 может работать транзистор STP55NF06, стабилитрон 1N4734A заменим на любой маломощный с напряжением стабилизации 5.6 В. Отечественные аналоги микросхемы LM358 – КР1401УД5, КР1053УД2, КР1040УД1. Полевой транзистор устанавливаем на радиатор.

Переменный резистор.

Итак, чем же отличается переменный резистор от постоянного? Собственно, здесь ответ прямо следует из названия этих элементов Величину сопротивления переменного резистора, в отличие от постоянного, можно изменить. Каким способом? А вот это мы как раз и выясним! Для начала давайте рассмотрим условную схему переменного резистора:

Сразу же можно отметить, что тут в отличие от резисторов с постоянным сопротивлением в наличии имеется три вывода, а не два. Сейчас разберемся зачем они нужны и как все это работает…

Итак, основной частью переменного резистора является резистивный слой, имеющий определенное сопротивление. Точки 1 и 3 на рисунке являются концами резистивного слоя

Также важной частью резистора является ползунок, который может изменять свое положение (он может занять любое промежуточное положение между точками 1 и 3, например, он может оказаться в точке 2 как на схеме)

Таким образом, в итоге мы получаем следующее. Сопротивление между левым и центральным выводами резистора будет равно сопротивлению участка 1-2 резистивного слоя. Аналогично сопротивление между центральным и правым выводами будет численно равно сопротивление участка 2-3 резистивного слоя. Получается, что перемещая ползунок мы можем получить любое значение сопротивления от нуля до R_ . А R_ – это ни что иное как полное сопротивление резистивного слоя.

Конструктивно переменные резисторы бывают поворотные, то есть для изменения положения ползунка необходимо крутить специальную ручку (такая конструкция подходит для резистора, который изображен на нашей схеме). Также резистивный слой может быть выполнен в виде прямой линии, соответственно, ползунок будет перемещаться прямо. Такие устройства называют движковыми или ползунковыми перемененными резисторами. Поворотные резисторы очень часто можно встретить в аудио-аппаратуре, где они используются для регулировки громкости/баса и т. д. Вот как они выглядят:

Переменный резистор ползункового типа выглядит несколько иначе:

Часто при использовании поворотных резисторов в качестве регуляторов громкости используют резисторы с выключателем. Наверняка вы не раз сталкивались с таким регулятором – к примеру на радиоприемниках. Если резистор находится в крайнем положении (минимальная громкость/устройство выключено), то если его начать вращать, раздастся ощутимый щелчок, после которого приемник включится. А при дальнейшем вращении громкость будет увеличиваться. Аналогично и при уменьшении громкости – при приближении к крайнему положению снова будет щелчок, после которого устройство выключится. Щелчок в данном случае говорит о том, что питание приемника было включено/отключено. Выглядит такой резистор так:

Как видите, здесь есть два дополнительных вывода. Они то как раз и подключаются в цепь питания таким образом, чтобы при вращении ползунка цепь питания размыкалась и замыкалась.

Есть еще один большой класс резисторов, имеющих переменное сопротивление, которое можно изменять механически – это подстроечные резисторы. Давайте уделим немного времени и им!

Электрический регулятор

Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон . 1890—1907 .

Смотреть что такое «Электрический регулятор» в других словарях:

электрический регулятор — Электротехническое устройство, предназначенное для автоматического поддержания в заданных пределах регулируемого параметра или изменения его по заданному закону. Тематики системы регулирования авиационных силовых установок … Справочник технического переводчика

Электрический регулятор* — Регулятором вообще называется такое приспособление или аппарат, посредством которого можно данную переменную величину либо приводить всегда к одному и тому же значению, либо давать ей ряд определенных значений. Регулятор, приводимый в действие Э … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

электрический регулятор воздухозаборника — регулятор воздухозаборника Электрический регулятор, предназначенный для автоматического регулирования геометрической формы канала воздухозаборника по заданному закону. Тематики системы регулирования авиационных силовых установок… … Справочник технического переводчика

электрический регулятор замедления ротора турбокомпрессора — регулятор замедления Электрический регулятор, предназначенный для автоматического поддержания заданного режима замедления ротора турбокомпрессора авиационной силовой установки. Тематики системы регулирования авиационных силовых… … Справочник технического переводчика

электрический регулятор направляющего аппарата — регулятор направляющего аппарата Электрический регулятор, предназначенный для автоматического регулирования поворота лопаток направляющего аппарата по заданному закону. Тематики системы регулирования авиационных силовых установок… … Справочник технического переводчика

Регулируемый стабилизатор тока

Меня как радиолюбителя со стажем 20 лет радует ассортимент продаваемых готовых блоков и модулей. Сейчас  из готовых блоков можно собрать любое устройство за минимальное время.

Цена начинается от 35руб. за DC-DC преобразователь напряжения, драйвер подороже и отличается двумя тремя подстроечными резисторами, вместо одного.

Для более универсального использования лучше подходит регулируемый драйвер. Основное отличие, это установка переменного резистора в цепи, задающей амперы на выходе. Эти характеристики могут быть указаны в типовых схемах включения в спецификациях на микросхему, даташит, datasheet.

Слабые места таких драйверов, это нагрев дросселя и диода Шотки. В зависимости от модели ШИМ контроллера, они выдерживают то 1А до 3А без дополнительного охлаждения микросхемы. Если выше 3А, то требуется охлаждение ШИМ и мощного диода Шотки. Дроссель перематывают более толстым проводом или заменяют на подходящий.

КПД зависит от режима работы, разницы напряжения между входом и выходом. Чем выше коэффициент полезного действия, тем ниже нагрев стабилизатора.

Регулятор мощности паяльника своими руками: проверенные рабочие схемы (6 шт)

Не всем нравится покупать неизвестно что. А некоторым приятнее сделать регулятор мощности паяльника своими руками, ведь это тоже опыт. Большинство схем собирается на симисторах и тиристорах, сейчас их найти проще чем транзисторы. Работать с ними тоже проще, так как они либо открыты, либо закрыты, что позволяет делать схемы проще.

Корпус подберите любой

Простые схемы на тиристоре

При выборе схемы регулятора мощности для паяльника важны две вещи: мощность и доступность деталей. Представленный ниже регулятор мощности паяльника собран на широко распространённых деталях, которые найти не проблема. Максимальный ток — 10 А, что более чем достаточно для выполнения работ любого рода и для паяльников мощностью до 100 Вт. Тиристор в данной схеме использован КУ202н

Обратите внимание на подключение моста. Есть много схем с ошибкой в подключении. Этот вариант рабочий

Проверен не раз

Этот вариант рабочий. Проверен не раз.

Схема регулятора температуры для паяльника на тиристоре

При сборке схемы тиристор обязательно ставим на радиатор, чем он больше тем лучше. Схема проста, но когда она включена, создаёт помехи. Радио рядом не послушаешь и, чтобы убрать помехи, параллельно нагрузке подключаем конденсатор на 200 пФ, а последовательно дроссель. Параметры дросселя подбираются в зависимости от регулируемой нагрузки, но так как паяльники обычно не более чем на 80-100 Вт, то и дроссель можно сделать на 100 Вт. Для этого понадобится ферритовое кольцо наружным диаметром 20 мм, на которое намотано около 100 витков проводом сечением 0,4 мм².

Ещё один недостаток переведённой выше схемы — паяльник ощутимо «зудит». Иногда с этим мириться можно, иногда нет. Для устранения этого явления можно подобрав параметры конденсатора C1 так чтобы при выставленном на максимум переменном резисторе, подключённая лампа еле-еле светилась.

На других элементах но тоже без помех

Приведенный выше регулятор можно использовать для любой нагрузки. Приведем еще один аналог,но с использованием другой элементной базы. Регулировать можно не только мощность/температуру паяльника, но и любую другую нагрузку с небольшой индуктивной составляющей.

Видоизмененная схема для регулирования мощности паяльника и любой другой нагрузки с устраненным эффектом пульсации

Пульсация тут есть, но ее частота высока и она не будет восприниматься нашим зрением. Так что можно использовать не только как диммер для паяльника, но и для регулирования света от обычной лампы накаливания. Нужен ли диодный мост для регулировки мощности нагрева паяльника? Он не помешает, но необходимости в нем нет.

На тиристоре с высокой чувствительностью

Данная схема позволяет плавно изменять температуру паяльника от 50% до 100%. Есть два индикатора — питания и мощности. Светодиод наличия питания горит всегда во включенном состоянии, но при 75% мощности свечение более яркое. Индикатор мощности меняет интенсивность свечения в зависимости от режима работы.

Регулятор мощности для паяльника без помех

Чтобы регулятор поместился в корпус от зарядного устройства мобильного телефона, сопротивления используют СМД типа (1206). Все резисторы установлены на плате, кроме R 10. Некоторые могут быть составными (из последовательно соединенных резисторов собираем нужный номинал).

Для нормальной работы схемы требуется чувствительный тиристор (с малым током управления) и низким током удержания состояния (порядка 1 мА). Например, КТ503 (рассчитан на напряжение 400 В, Ток управления 1 мА). Остальная элементная база указана на схеме.

Если собрали, но напряжение не регулируется

Если собранный регулятор ничего не регулирует — не меняется температура паяльника — дело в тиристоре. Схема, вроде, работает, а ничего не происходит. Причина — тиристор с низкой чувствительностью. Токи, которые протекают в схеме, недостаточны для открытия. В таком случае стоит поставить аналог с более высокой чувствительностью (токи управления более низкие).

Один из вариантов корпуса, в который можно спрятать самодельный регулятор мощности для паяльника

Еще может регулятор работать, но паяльник начинает «зудеть». Решается такая проблема установкой дросселя на выходе (перед паяльником). Емкость надо подбирать — зависит от паяльника.  Второй вариант решения — аналоговая схема управления, а это уже другая схема.

Ну, и при проблемах с работой ищите либо неисправные детали, либо неправильно подобранные компоненты. Обычно проблема в этом.

РЕГУЛИРУЕМЫЙ ИСТОЧНИК ПИТАНИЯ С СИГНАЛИЗАЦИЕЙ ПЕРЕГРУЗКИ

 Звуковая сигнализация позволяет пользователю быстро среагировать на аварийную ситуацию, если при экспериментах с различной радиоэлектронной аппаратурой возникла перегрузка источника питания. Схема источника питания с звуковым сигнализатором превышения потребления тока показана на рисунке.

Выпрямитель на диодах VD1—VD4 питается от трансформатора, вторичная обметка которого рассчитана на напряжение 18 В при токе нагрузки не менее 1 А, Регулируемый стабилизатор напряжения выполнен на транзисторах VT2 — VT5 по известной схеме. Переменным резистором R3 на выходе стабилизатора может быть установлено напряжение от 0 до +15 В.

Стабилизаторы постоянного напряжения

Многие простые источники питания постоянного тока регулируют напряжение с помощью последовательных или шунтирующих регуляторов, но большинство из них используют опорное напряжение с помощью шунтирующего регулятора, такого как стабилитрон , лавинный диод или трубка регулятора напряжения . Каждое из этих устройств начинает проводить при заданном напряжении и будет проводить столько тока, сколько требуется для поддержания его напряжения на клеммах на этом заданном напряжении, путем отвода избыточного тока от неидеального источника питания на землю, часто через резистор относительно небольшого номинала, чтобы рассеивать лишнюю энергию. Источник питания рассчитан на подачу только максимальной величины тока, которая находится в пределах безопасных рабочих возможностей шунтирующего регулирующего устройства.

Если стабилизатор должен обеспечивать большую мощность, выход шунтирующего регулятора используется только для обеспечения стандартного опорного напряжения для электронного устройства, известного как стабилизатор напряжения. Стабилизатор напряжения — это электронное устройство, способное по запросу выдавать гораздо больший ток.

Принцип стабилизации тока

Требования к управляющему элементу

Стабилизатор тока на полевом транзисторе – это самый простой и дешёвый способ получения подходящего по качеству напряжения, обеспечивающего эффективную работу домашней аппаратуры. Принцип работы такого устройства основывается на следующих фундаментальных положениях:

  • Основное назначение стабилизатора на полевом транзисторе – поддержание тока в цепи потребителя на строго фиксированном уровне;
  • Схема его включения, помимо устранения токовых скачков, должна обеспечивать компенсацию перепадов мощности в нагрузочной цепи;

Дополнительная информация. Эти девиации электрических параметров, помимо плохого качества самого питания, могут быть связаны с колебаниями окружающей температуры или с изменениями теплового режима элементов схемы.

Для повышения эффективности регулировки и обеспечения помехозащищённости всей схемы в ней должна быть предусмотрена цепь отрицательной обратной связи (ООС).

При выполнении всех перечисленных выше условий вопрос стабилизации по токовой нагрузке решается довольно просто.

Суть стабилизации

Работу управляющего органа схемы стабилизации можно представить следующим образом. В результате случайных колебаний мощности в нагрузке (из-за температурных или иных отклонений) протекающий через неё ток также меняет свою величину: увеличивается, например. Такое изменение сразу же проявляется в виде прироста падения напряжения на рабочей нагрузке.

По цепочке обратной связи зафиксированное отклонение передаётся на вход управляющей схемы и вызывает изменение проводящего режима регулирующего элемента (полевого транзистора). Поскольку связь является отрицательной, с увеличением напряжения ток через транзисторный переход и нагрузочную цепь уменьшается. При этом вся система возвращается к прежнему состоянию, что воспринимается как её стабилизация по токовой составляющей.

REGIN PULSER

Симисторный регулятор PULSER используется для настройки электрообогревателей (однофазных и двухфазных). Крепится на вертикальную поверхность, подключается последовательно между аппаратом и сетью питания. PULSER оборудован входом для термодатчика и терморегулятора.

Управление осуществляется путём включения и выключения отопительного прибора на пропорциональной основе (30 секунд работает, 30 секунд отключён). Так, экономится электроэнергия, а температура в помещении остаётся на одном уровне. Распределение нагрузки осуществляется симистром (полупроводниковым прибором). Это обеспечивает дополнительную надёжность, из-за отсутствия механических элементов. Переключение производится при нулевом напряжение, это мешает образованию электромагнитных помех.

Если в помещении температура быстро меняется, то регулятор начинает работать в специальном режиме, с точкой возврата к исходным параметрам через 6 минут. В ночной период можно выставить специальную температуру. При чрезмерной мощности электрообогревателя, нагрузка разделяется на несколько приборов с управлением от одного регулятора.

Технические характеристики

  • Электросеть — однофазная или двухфазная, 200/415 В, 50-60 Гц.
  • Ток — минимальный — 1 А, максимальный — 16 А.
  • Окружающая среда — не больше 30°C.
  • Влажность — не больше 90%.
  • Защита — IP20.
  • Размеры — 94х150х43 мм.
  • Диапазон — от 0 до 30 °C.
  • Количество термодатчиков — 1.

Устройство соответствует европейским стандартам EN 50081-1.

Как варить электросваркой

Электросварка — это очень увлекательный процесс, который сильно затягивает. Если учиться варить электросваркой самому, то нужно освоить технику зажигания дуги и движение электродом, а также понимать, какой требуется ток для сварки толстого и тонкого по толщине металла.

Конечно же, в данной статье сайта mmasvarka.ru не будут описываться какие-то сложные приемы и техники, для более подробного изучения ручной дуговой сварки, написаны десятки книг по теме. Но вот что касается первых шагов в плане выполнения сварочных работ, то, здесь, всегда, пожалуйста.

Техника безопасности при работе с электросваркой

Любой сварочный процесс должен выполняться согласно технике безопасности. Для защиты глаз сварщика во время сварки придуманы специальные маски. Сегодня с этой целью отлично справляются маски для сварки Хамелеон . Защитить руки призваны прочные и стойкие к огню краги, а ноги сварщика, специальные штаны из прочной ткани и ботинки.

При осуществлении электросварочных работ следует знать, что повышенная влажность может стать причиной поражения электрическим током. Также необходимо всегда помнить, что при электросварке в стороны летят искры, и они могут стать причиной возникновения пожара. Все вышеперечисленные моменты обязательно нужно предусмотреть, перед тем, как варить электросваркой.

Стабилизированный регулируемый блок питания с защитой от перегрузок

Множество радиолюбительских блоков питания (БП) выполнено на микросхемах КР142ЕН12, КР142ЕН22А, КР142ЕН24 и т.п. Нижний предел регулировки этих микросхем составляет 1,2…1,3 В, но иногда необходимо напряжение 0,5…1 В. Автор предлагает несколько технических решений БП на базе данных микросхем.

Интегральная микросхема (ИМС) КР142ЕН12А (рис.1) представляет собой регулируемый стабилизатор напряжения компенсационного типа в корпусе КТ-28-2, который позволяет питать устройства током до 1,5 А в диапазоне напряжений 1,2…37 В. Этот интегральный стабилизатор имеет термостабильную защиту по току и защиту выхода от короткого замыкания.

Рис.1. ИМС КР142ЕН12А

На основе ИМС КР142ЕН12А можно построить регулируемый блок питания, схема которого (без трансформатора и диодного моста) показана на рис.2. Выпрямленное входное напряжение подается с диодного моста на конденсатор С1. Транзистор VT2 и микросхема DA1 должны располагаться на радиаторе. Теплоотводящий фланец DA1 электрически соединен с выводом 2, поэтому если DA1 и транзистор VD2 расположены на одном радиаторе, то их нужно изолировать друг от друга. В авторском варианте DA1 установлена на отдельном небольшом радиаторе, который гальванически не связан с радиатором и транзистором VT2.

Устройства постоянного тока

Схема регулятора постоянного тока характеризуется высокой проводимостью. При этом тепловые потери в устройстве являются минимальными. Чтобы сделать регулятор постоянного тока, тиристор требуется диодного типа. Подача импульса в данном случае будет высокой за счет быстрого процесса преобразования напряжения. Резисторы в цепи должны быть способны выдерживать максимальное сопротивление 8 Ом. В данном случае это позволит привести к минимуму тепловые потери. В конечном счете модулятор не будет быстро перегреваться.

Современные аналоги рассчитаны примерно на предельную температуру в 40 градусов, и это следует учитывать. Полевые транзисторы ток способны пропускать в цепи только в одном направлении. Учитывая это, располагаться в устройстве они обязаны за тиристором. В результате уровень отрицательного сопротивления не будет превышать 8 Ом. Высокочастотные фильтры на регулятор постоянного тока устанавливаются довольно редко.

Конструкция и принцип работы


Стабилизатор обеспечивает постоянство тока при его отклонении

Стабилизатор обеспечивает постоянство показателей рабочего тока LED-диодов при его отклонении от нормы. Он предотвращает перегрев и выгорание светодиодов, поддерживает постоянство потока при перепадах напряжения или разрядке АКБ.

Простейшее устройство состоит из трансформатора, выпрямительного моста, соединенного с резисторами и конденсаторами. Действие стабилизатора основывается на следующих принципах:

  • подача тока на трансформатор и изменение его предельной частоты до частоты электросети – 50 Гц;
  • регулировка напряжения на повышение и понижение с последующим выравниванием частоты до 30 Гц.

В процессе преобразования также задействуются выпрямители высоковольтного типа. Они определяют полярность. Стабилизация электрического тока осуществляется при помощи конденсаторов. Для снижения помех применяются резисторы.

Трехфазные тиристорные регуляторы

Трехфазные тиристоры напряжения с естественной коммутацией (ТРНЕ) (рис.9.1) могут работать как с нулевым про­водом (показанным штриховой линией) так и без него. Обе схемы содержат по три пары встречно-параллельно соединенных тиристоров, включенных в цепь нагрузки. Включение тиристоров между сетью и нагрузкой (рис. 9.1, а

) позволяет соединять сопро­тивления трехфазной нагрузки в звезду или в треугольник, а включение после нагрузки (рис. 9.1,б ) обеспечивает шунтирование тиристоров при трехфазном коротком замыкании нагрузки, предотвращая прохождение через них больших токов.

Управление тиристорами ТРНЕ производится широкими импульсами с длительностью не менее 90°. Импульсы следуют друг за другом через 60° в порядке нумерации тири­сторов на схеме по перекрестному принципу и все одновременно регулируются по фазе на угол α.

На рис. 9.2 приведены два возможных варианта формирования одного из шести таких импульсов, предназначенного, в частности для управления тиристором VS1 (см.рис. 9.1). Для уменьшения мощности выходных каскадов системы управления (СУ) им­пульсы формируют с высокочастотным заполнением. В первом варианте построения СУ вместе с регулированием угла α смещаются и фронт, и срез импульса (рис.9.2, а

), во втором варианте смещается только фронт (рис. 9.2,б ).

Процессы формирования напряжения на нагрузке в обеих схемах (см. рис. 9.1, а,б

) иден­тичны.

В схемах с нулевым проводом процессы формирования напряжения в каждой фазе нагрузки не зависят от работы соседних фаз. Мгновенные значения фазных на­пряжений для этого случая при R- и L-нагрузке представлены соответственно на рис.9.3, а, б

Анализ регулировочных свойств ТРНЕ удобно производить в относительных единицах. Для этого производят расчеты степени регулирования по формуле:

где U2α – регулируемое напряжение нагрузки; U1 – напряжение сети.

Угол управления для схемы с нулевым проводом регулируется от φн до 180°, а сте­пень регулирования (ε) действующих значений напряжений при R- и L-нагрузке опре­деляется по выражениям:

а) R-нагрузка φн = 0°, 0° 180°

б) L-нагрузка φн = 90°, 90° 180°

При R-нагрузке без нулевого провода следует различать три характерных интер­вала регулирования α:

Для этих интер­валов мгновенные значения фазных напряжений на нагрузке имеют вид, представленный соответственно на рис. 9.4, а

, рис. 9.4,б и рис. 9.4,в . На этих рисунках представлены также интервалы проводимости тиристоров VS1-VS6, пояс­няющие принцип действия ТРНЕ.

Для указных на рис. 9.4 интервалов степень регулирования напряжений при симмет­ричной R-нагрузке и при симметричном управлении определяется следующим образом:

При L-нагрузке угол α регулируется от φн = 90° до φн = 150° . При этом разли чают два интервала: α и α , на которых работает разное количество тиристоров (рис. 9.5).

Степень регулирования напряжения при симметричной L-нагрузке и симметрич­ном управлении определяется следующим образом:

Выражения (9.3) и (9.4) при α = 60° имеют одно и то же значение:

а выраже­ния (9.4) и (9.5) при α = 90° – значение

Выражения (9.6) и (9.7) при α = 120° имеют также одно значение:

Зависимости ε = f(α) для трехфазных схем ТРНЕ без нулевого провода рассчитанные по формулам (9.3) – (9.7) и с нулевым проводом, рассчитанные по формулам (9.1) и (9.2) приведены на рис. 9.6. На этих графиках выделены характерные точки, и штриховкой показаны области изменения ре­гулировочных характеристик ТРНЕ в зависимости от φн.

С помощью аналитических соотношений покажем, что при работе тиристорных регуля­торов напряжения от сети с синусоидальным напряжением на активную нагрузку (φн = 0°) справедливо тождество:

С учетом тождества (9.8) на графиках (рис. 9.6) при φн = 0 изображены также зависимости коэффициента мощности μ от угла управления α.

Коэффициент мощности ТРН равен:

где ν – коэффициент искажения входного тока; Im1(1)= , – амплитуда и фаза первой гармо­ники входного тока и его действующее значение; A1, В1 – коэффициент ряда Фу­рье для первой гармоники.

После преобразования формулы (9.9) получим:

Действующее значение выходного напряжения ТРН равно:

На основании уравнений (9.9) и (9.10) справедливо тождество (9.8). Оно справедливо для лю­бых схем ТРН с естественной и искусственной коммутацией тиристоров при работе от синусоидальной сети на активную нагрузку.

Источник