Три режима работы асинхронного двигателя

ЭЛЕКТРОДВИГАТЕЛИ ПЕРЕМЕННОГО ТОКА

Благодаря удобству передачи на большие расстояния и легкости преобразования переменный ток успешно стал стандартом электроснабжения.

В сфере же производства электродвигателей его способность возбуждать переменное магнитное поле в статоре и соответственно индуцировать ток в короткозамкнутой обмотке ротора позволила создать асинхронные электродвигатели. В этом типе двигателей единственным испытывающим трение узлом остаются коренные подшипники якоря.

Ротор такого электродвигателя – это металлический цилиндр, в пазы которого под углом к оси вращения запрессованы или залиты токопроводящие жилы, на торцах ротора объединенные кольцами в одно целое. Переменное магнитное поле статора возбуждает в роторе, напоминающем беличье колесо, противоток и, соответственно, отталкивающее его от статора магнитное поле.

В зависимости от числа обмоток статора асинхронный двигатель может быть:

Однофазным – в этом случае главным недостатком двигателя становится невозможность самостоятельного запуска, так как вектор силы отталкивания проходит строго через ось вращения.

Для начала работы двигателю необходим или стартовый толчок, или включение отдельной пусковой обмотки, создающей дополнительный момент силы, смещающий их суммарный вектор относительно оси якоря.

Двухфазный электродвигатель имеет две обмотки, в которых фазы смещены на угол, соответствующий геометрическому углу между обмотками. В этом случае в электродвигателе создается так называемое вращающееся магнитное поле (спад напряженности поля в полюсах одной обмотки происходит синхронно с нарастанием его в другой).

Такой двигатель становится способным к самостоятельному запуску, однако имеет трудности с реверсом. Поскольку в современном электроснабжении не используются двухфазные сети, фактически электродвигатели этого рода применяются в однофазных сетях с включением второй фазы через фазовращающий элемент (обычно – конденсатор).

Трехфазный асинхронный электродвигатель – наиболее совершенный тип асинхронного мотора, так как в нем появляется возможность легкого реверса – изменение порядка включения фазных обмоток изменяет направление вращения магнитного поля, а соответственно и ротора.

Коллекторные двигатели переменного тока используются в тех случаях, когда требуется получение высоких частот вращения (асинхронные электродвигатели не могут превышать скорость вращения магнитного потока в статоре – для промышленной сети 50 Гц это 3000 об/мин).

Кроме того, они выигрывают в пусковом крутящем моменте (здесь он пропорционален току, а не оборотам) и имеют меньший пусковой ток, меньше перегружая электросеть при запуске. Также они позволяют легко управлять своими оборотами.

Обратной стороной этих достоинств становится дороговизна (требуется изготовление ротора с наборным сердечником, несколькими обмотками и коллектором, который к тому же сложнее балансировать) и меньший ресурс. Помимо необходимости в регулярной замене стирающихся щеток, со временем изнашивается и сам коллектор.

Синхронный электродвигатель имеет ту особенность, что магнитное поле ротора индуцируется не магнитным полем статора, а собственной намоткой, подключенной к отдельному источнику постоянного тока.

Благодаря этому частота его вращения равна частоте вращения магнитного поля статора, откуда и происходит сам термин «синхронный».

Как и двигатель постоянного тока, синхронный двигатель переменного тока является обратимым:

  • при подаче напряжения на статор он работает как электродвигатель;
  • при вращении от внешнего источника он сам начинает возбуждать в фазных обмотках переменный ток.

Основная область использования синхронных электродвигателей – высокомощные приводы. Здесь увеличение КПД относительно асинхронных электромоторов означает значительное снижение потерь электроэнергии.

Также синхронные двигатели используются в электротранспорте. Однако, для управления скоростью в этом случае требуются мощные частотные преобразователи, зато при торможении возможен возврат энергии в сеть.

Разные типы двигателя

В отличие от трёхфазного, однофазный асинхронный двигатель часто применяется в бытовой технике – пылесосах, стиральных машинах, вентиляторах, кухонных комбайнах, блендерах и т.д. Они же применяются в магнитофонах и проигрывателях виниловых дисков. Даже в составе персонального компьютера можно найти не один асинхронный двигатель. Но к устройству этой версии двигателя мы вернёмся чуть позже.

Первым появился на свет именно трёхфазный электродвигатель, принцип работы которого строился на взаимодействии электромагнитных полей. Основные части асинхронного двигателя – это статор и ротор. Соответственно, статором была названа часть, которая остаётся неподвижной. Именно она находится непосредственно под внешней оболочкой устройства и имеет форму цилиндра. В этой части по кругу расположены три обмотки – под углом 120° друг к другу.

В современных двигателях можно насчитать множество обмоток, однако, они соединены друг с другом так, чтобы каждая последующая отличалась от предыдущей по фазе, и фазовый сдвиг между соседними обмотками составлял 120°. Обмотки наматываются медным проводом, и к каждой из групп подключается напряжение со своей фазы. Таким образом, получается, что магнитное поле движется по этим обмоткам, как бы замыкаясь в кольцо.

Статор тоже имеет свои обмотки. Так как на статор электричество не подаётся, он имеет право на замкнутый проводник, который иногда вместо обмоток формируют в виде так называемой беличьей клетки. Если сравнивать точнее, то эта деталь напоминает не саму клетку для проворного грызуна, а беличье колесо, предназначенное для того, чтобы животное выплёскивало свою неуёмную энергию. В роторе устройства «беличья клетка» формируется путём заливки расплавленного алюминия в пазы сердечника, выполненного из набранных стальных листов. Такое устройство называется короткозамкнутым ротором.

Если статор выполнен с реальными обмотками, то он обычно делается многополюсным. Такой ротор называют фазным. Обмотки этого ротора замыкают звездой или треугольником.

Ротор имеет собственный вал, который опирается на задний и передний подшипники. Они, в свою очередь, закреплены на корпусе двигателя так, что ротор внутри статора может свободно вращаться. Принцип действия асинхронных двигателей основан на том, что в обмотках или «беличьем колесе» статором наводится магнитное поле. Под его действием в проводниках ротора появляется ток, а с ним – собственное магнитное поле.

Переменное магнитное поле статора увлекает за собой ротор, и тот начинает вращаться. Но магнитное поле ротора всегда запаздывает относительно поля статора, и вращение обоих полей не может происходить синхронно. Это заставляет ротор преодолевать множество действующих на него сил:

  • силу тяготения;
  • трение качения (если используется шариковый или роликовый подшипник);
  • трение скольжения (если в качестве подшипника применяется бронзовая втулка);
  • силу противодействия приводимого в движение оборудования.

Последняя сила зависит от многих моментов, поэтому её невозможно свести к какому-либо простейшему физическому параметру. Если надо сдвинуть с места трамвай, то двигателю приходится на себя брать нагрузку от редуктора, который надо раскрутить, от самого вагона, который надо сдвинуть, к тому же не надо забывать ещё и о силе трения качения, которое испытывают колёса транспортного средства.

В случае когда идет описание работы профессиональной мясорубки, которую приводит в действие асинхронный двигатель, то здесь преодолевается сопротивление и самого редуктора, и того куска мяса или даже кости, которую надо перемолоть.

Поскольку между статором и ротором есть зазор, то ротор под нагрузкой просто отстаёт от статора по угловой скорости. Следовательно, частота вращения ротора зависит от нагрузки на вал двигателя. Нарушается принцип синхронности, оттуда и название самого устройства: «асинхронный двигатель».

Принцип работы

Рассмотрим асинхронный двигатель принцип работы и устройство. Для корректного подключения агрегата к сети, обмотки соединяются по схеме «звезда» или «треугольник». Действие механизма основано на использовании вращающегося магнитного поля статора. Частота вращения многофазной обмотки переменного поля (n1) определяется по формуле:

Здесь:

  • f – частота сети в Герцах;
  • p – Количество пар полюсов (как правило, 1-4 пары, поскольку чем их больше, тем ниже мощность и КПД, использование полюсов даёт возможность не применять редуктор, при низкой частоте вращения).

Магнитное поле, пронизывающее статор с обмоткой пронизывает и обмотку ротора. За счёт этого индуцируется электродвижущая сила. Электродвижущая сила самоиндукции в обмотке статора (Е1) направлена навстречу приложенному напряжению сети, ограничивая величину тока в статоре. Поскольку обмотка ротора замкнута, или идёт через сопротивление (короткозамкнутый ротор в первом случае, фазный ротор во втором случае), то под действием электродвижущей силы ротора (Е2) в ней образуется ток. Взаимодействие индуцируемого тока в обмотке ротора и магнитного поля статора создаёт электромагнитную силу (Fэл). Направление силы определяется по правилу левой руки.

Согласно правилу: левая рука устанавливается таким образом, что бы магнитно силовые линии входили в ладонь, а вытянутые четыре пальца направлялись вдоль движения тока в обмотке. Тогда отведённый большой палец покажет направление действия электромагнитной силы для конкретного проводника с током.

Совокупность электромагнитных сил двигателя будет равна общему электромагнитному моменту (М), который приводит в действие вал электродвигателя с частотой (n2). Скорость ротора не равна скорости вращения поля, поэтому эта скорость называется асинхронной скоростью. Вращающий момент в асинхронном двигателе развивается только при асинхронной скорости, когда скорость вращения ротора не равна скорости вращения магнитного поля

Важно, что бы при работе двигателя скорость ротора была меньше скорости поля (n2

Таким образом, частота вращения ротора (обороты) будет равна:

Принцип работы асинхронного электрического двигателя легко объясняется с помощью устройства, называющегося диск Арго – Ленца.

Постоянный магнит закрепляют на оси, которая устанавливается в устройстве, способном обеспечить её вращение. Перед полюсами магнита (N-S) помещают диск, выполненный из меди. Диск так же крепится на оси и свободно вращается вокруг неё.

Если вращать магнит за рукоятку, диск тоже будет вращаться в том же направлении. Эффект объясняется тем, что магнитные линии поля, создаваемые магнитом, замыкаются от северного полюса к южному полюсу, пронизывая диск. Эти линии образуют в диске вихревые токи, которые взаимодействуя с полем, приводят к возникновению силы, вращающей диск. Закон Ленца гласит, что направление всякого индукционного тока противодействует величине, вызвавшей его. Вихревые токи пытаются остановить магнит, но поскольку это не возможно, диск следует за магнитом.

Примечательно, что скорость вращения диска всегда меньше скорости вращения магнита. В асинхронных электродвигателях магнит заменяет вращающееся магнитное поле, созданное токами трёхфазной обмотки статора.

Конструкция

Буквально несколько слов о том, как устроен асинхронный двигатель. Итак, состоит он из двух частей, между которыми есть небольшой воздушный зазор. Первая часть неподвижная – это статор. Вторая подвижная (вращающаяся) – это ротор. Но и в той, и в другой есть сердечник и обмотка. Только обмотка статора, в данном случае, является первичной, то есть, именно на нее подается электрический ток, а ротора вторичной.

При этом статор состоит из сердечника, обмоток и корпуса (станины), последний чаще всего изготавливается из чугуна или алюминиевого сплава. Сердечник же асинхронного электродвигателя представляет собой конструкцию, собранную из листов специальной электромеханической стали толщиною от 0,35 мм до 0,5 мм. Такая конструкция используется специально, чтобы уменьшить действие вихревых токов, которые обязательно возникают под действием магнитного поля, которое вращается. Это поле созданно обмоткой статора. Если сердечник будет изготовлен из цельного металла, то произойдет его перемагничивание.

Именно в пазы сердечника и укладывается медный провод, который может быть однослойным или многослойным в плане укладки.

Что касается ротора, то, по сути, это вал, на который насажен сердечник. В качестве обмотки здесь используются стержни или из алюминия, или из меди, которые по торцам замыкаются кольцами. Сам он вращается в подшипниках, установленных а торцевых крышках. Вот такие особенности конструкции асинхронного двигателя.

Синхронные машины. Конспект лекций

Сохрани ссылку в одной из сетей:

причем напряжения этихфаз U

иjU сдвинуты по фазе на 90°. В подобнойдвухфазной системе взаимная индукциямежду фазами отсутствует и явления поосямd иq можно рассматривать незави­симо другот друга. В результате вместо однойсхемы замещения для симметричнойасинхронной машины для синхронноймашины получаем две схемы замещения -одну для продольной и другую дляпоперечной оси.

При наличии успокоительной илипусковой обмотки (рис. 2, а и б) в схемедля продольной оси имеются две вторичныецепи, как и у двухклеточного асинхронногодвигателя, а в схеме для попереч­нойоси –

Рис 2, а

Рис 2, б

одна вторичная цепь. Приотсутствии указанных обмоток (рис. 2, ви г) количество вторичных цепей уменьшаетсяна еди­ницу. На схемах рис. 2 принятоrа=

0 и не учи­тываютсяпотери в стали статора. При наличии вцепи возбуждения доба­вочногосопротивления (на­пример, сопротивленияга­шения поля) его величина должнавключаться вrf Воснове рассмотрения явлений согласнорис. 1 и 2 лежит представле­ние одвухфазной маши­не. Поэтому сопротивле­ниясхем рис. 2 также следовало бы считатьэкви­валентными сопротивлени­ямидвухфазной машины. Однако, чтобы избежатьвведения в рассмотрение

Рис 2,в

Рис 2,г

новых параметров, будемпредполагать, что сопротивления,фигу­рирующие в схемах рис. 2, представляютсобой параметры m-фазноймашины.

Асинхронные режимы различных видовсинхронных машин.

При потере возбуждения синхронныегенераторы переходят в асинхрон­ныйрежим и их скорость вращения будетувеличиваться до тех пор, пока не наступитравенство между движущим моментом навалу и электромагнитным моментом машины.При этом машина будет потреблять изсети намагничивающий ток

и отдавать в сеть активнуюмощность.

При малыхскольжениях поверхностный эффект втеле ротора турбогенератора проявляетсяслабо и поэтому глубина проникнове­ниятоков велика. В результате активноесопротивление тела ротора мало и моментдостигает весьма большой величины ужепри малых скольжениях.

Ввиду относительноблагоприят­ных характеристик Ma=f(s) на электростанциях разрешаетсякратковременная работа (до 30мин) турбогенераторов васинхронном ре­жиме при условии, чтопотери в рото­ре и статоре не превышаютпотерь при номинальном режиме ипотребле­ние реактивной мощности сточки зрения режима работы энергосистемыдопустимо. В течение указанного вре­мениможно устранить неисправности в системевозбуждения, перевести турбогенераторна резервное возбуж­дение или перевестинагрузку на другие турбогенераторы илистан­ции. Использование возможностира­боты турбогенераторов в асинхронномрежиме позволяет увеличить надежностьэнергоснабжения потребителей.

Асинхронные характеристикигидрогенераторов значительно менееблагоприятны. Гидрогенераторы имеютшихто­ванные полюсы, и успокоительныеобмотки во многих случаях у нихотсутствуют. При отсутствии успокоительнойобмотки мощ­ность в асинхронном режимеразвивается только за счет токов,индуктируемых в обмотке возбуждения.

Активное сопротивление успокоительнойобмотки велико, и в этом случае моментMa

при малых s также мал.

Поэтому гидрогенераторыне могут развивать значительной мощностив асинхронном режиме, успокоительнаяобмотка быстро нагревается, и есливосстановление возбуждения в течение10—15 сек

невозможно, то их нужно отключать отсети.

Все синхронные двигателиимеют пусковые обмотки и обычно пускаютсяв ход как асинхронные двигатели, причемобмотка воз­буждения замкнута черезразрядное, или гасительное, сопротивле­ние rг= (5 — 10) rf

или замкнута накоротко. Пуск с разомкнутойобмоткой возбуждения недопустим, таккак при этом может прои­зойти повреждениеее изоляции. Скольжение невозбужденногодвигателя изменяется при пуске от s= 1 до s= 0,05, когда включается ток возбужденияи двигатель втягивается в синхронизм.

Кривые М, = f

(s) синхронных двигателей представленына рис.. Момент, развиваемый обмоткойвозбуждения, достигает максимальногозначения при малых скольжениях, вособенности, когда rг= 0, так как rfмало, а относительно велико.

Наоборот, момент,развиваемый пусковой обмоткой, достигаетмаксимума при s=

0,3 — 0,4, так как активноесопротивление этой обмотки значи­тельнобольше и рассеяние меньше. При расчетекривых было принято, что сопротивлениеобмотки якоря ra= 0.

Определение и немного истории

Автором асинхронного двигателя считают Михаила Осиповича Доливо-Добровольского, который в 1889 году получил патент на двигатель с ротором типа «Беличья клетка», а в 1890 году на двигатель с фазным ротором, которые без особых изменений в конструкции используются и сегодня. А первые исследования и наработки в этом направлении были проведены в 1888 Галилео Феррарисом и Николой Тесла независимо друг от друга.

Главным отличием разработки Доливо-Добровольского от разработок Теслы было использование трёхфазной, а не двухфазной конструкции статора. Демонстрация первых двигателей состоялась на Международной электротехнической выставке во Франкфурте на Майне в сентябре 1891 года. Там представили три трёхфазных асинхронных электродвигателя, самый мощный из которых был на 1.5 кВт. Конструкция этих машин оказалась настолько удачно, что не пережила весомых изменений до наших дней.

Определение асинхронной машины звучит следующим образом:

5.9. ПОТЕРИ И КПД АСИНХРОННОГО ДВИГАТЕЛЯ

В обмотку статора из сети поступает мощность P1. Часть этой мощности идет на потери в стали
Pсl, а также потери в обмотке статора Рэ1:

Оставшаяся мощность посредством магнитного потока передается на ротор и называется электромагнитной мощностью:

Часть электромагнитной мощности затрачивается на покрытие электрических потерь в обмотке ротора:

Оставшаяся мощность преобразуется в механическую, получившую название полной механической мощности:

Р2‘=Рэмэ2

Воспользовавшись ранее полученной формулой

запишем выражение полной механической мощности:

тогда

или

Рэ2=SРэм,

т.е. мощность электрических потерь пропорциональна скольжению.

Мощность на валу двигателя P2 меньше полной механической мощности Р2’ на величину
механических Рмех и добавочных Рдоб потерь:

Р22’-(Рмех.доб.).

Таким образом:

Р21-SP,

где

SP=Pсlэ1э2мех.доб.

Коэффициент полезного действия
есть отношение мощности на валу P2 к потребляемой мощности P1:

Конструкция

Конструкция асинхронного двигателя, пожалуй, самая простая среди его аналогов. Он состоит из ротора и статора. Зачастую на статоре расположена трёхфазная обмотка, исключение составляют двигатели, предназначенные для работы в однофазной сети с двухфазной обмоткой или с рабочей и пусковой обмоткой. Статор состоит из металлического корпуса и сердечника с обмотками (собственно их называют обмоткой статора).

Так как двигатель питается переменным током, возникает проблема, связанная с потерями на блуждающие токи (т.н. токи Фуко), для этого сердечник статора набирают из тонких пластин. Стальные пластины для предотвращения контакта друг с другом изолируются окалиной, скрепляются лаком. Ток, протекающий в обмотках статора, называют током статора.

Корпус статора закрывается с двух сторон подшипниковыми щитами, в них, соответственно, устанавливаются подшипники скольжения или качения, в зависимости от мощности и размеров машины. Подшипники закрываются крышками, это нужно для их смазки, обычно используют пластичную смазку, как литол, солидол и подобные.

Реже, в больших и мощных электрических машинах могут использоваться опорные подшипники скольжения с циркуляционной системой смазки (жидкостная смазка). В них маслонасос закачивает масло, в рабочем режиме ротор таких машин скользит по тонкой масляной плёнке, подобно тому, как это происходит во вкладышах на ДВС.

По конструкции корпуса и типу крепления различают двигатели на лампах или с фланцевым креплением, также бывают с комбинированным типом крепления — с лапами и фланцем.

В зависимости от типа двигателя вал из него может выходить как с одной, так и с обеих сторон. К нему присоединяется исполнительный механизм, для этого конец выполняется конической или цилиндрической формы или с проточкой для установки шпонки и соединения с исполнительным механизмом.

В большинстве электродвигателей используется принудительное воздушное охлаждения. Для этого на корпусе продольно располагаются рёбра, а на другом конце вала устанавливается крыльчатка вентилятора охлаждения. Во время работы двигателя она вращается и прогоняет воздух вдоль рёбер, забирая тепло от статора.

Принцип работы

Рассмотрим асинхронный двигатель принцип работы и устройство. Для корректного подключения агрегата к сети, обмотки соединяются по схеме «звезда» или «треугольник». Действие механизма основано на использовании вращающегося магнитного поля статора. Частота вращения многофазной обмотки переменного поля (n1) определяется по формуле:

Здесь:

  • f – частота сети в Герцах;
  • p – Количество пар полюсов (как правило, 1-4 пары, поскольку чем их больше, тем ниже мощность и КПД, использование полюсов даёт возможность не применять редуктор, при низкой частоте вращения).

Магнитное поле, пронизывающее статор с обмоткой пронизывает и обмотку ротора. За счёт этого индуцируется электродвижущая сила. Электродвижущая сила самоиндукции в обмотке статора (Е1) направлена навстречу приложенному напряжению сети, ограничивая величину тока в статоре. Поскольку обмотка ротора замкнута, или идёт через сопротивление (короткозамкнутый ротор в первом случае, фазный ротор во втором случае), то под действием электродвижущей силы ротора (Е2) в ней образуется ток. Взаимодействие индуцируемого тока в обмотке ротора и магнитного поля статора создаёт электромагнитную силу (Fэл). Направление силы определяется по правилу левой руки.

Согласно правилу: левая рука устанавливается таким образом, что бы магнитно силовые линии входили в ладонь, а вытянутые четыре пальца направлялись вдоль движения тока в обмотке. Тогда отведённый большой палец покажет направление действия электромагнитной силы для конкретного проводника с током.

Совокупность электромагнитных сил двигателя будет равна общему электромагнитному моменту (М), который приводит в действие вал электродвигателя с частотой (n2). Скорость ротора не равна скорости вращения поля, поэтому эта скорость называется асинхронной скоростью. Вращающий момент в асинхронном двигателе развивается только при асинхронной скорости, когда скорость вращения ротора не равна скорости вращения магнитного поля

Важно, что бы при работе двигателя скорость ротора была меньше скорости поля (n2

Таким образом, частота вращения ротора (обороты) будет равна:

Принцип работы асинхронного электрического двигателя легко объясняется с помощью устройства, называющегося диск Арго – Ленца.

Постоянный магнит закрепляют на оси, которая устанавливается в устройстве, способном обеспечить её вращение. Перед полюсами магнита (N-S) помещают диск, выполненный из меди. Диск так же крепится на оси и свободно вращается вокруг неё.

Если вращать магнит за рукоятку, диск тоже будет вращаться в том же направлении. Эффект объясняется тем, что магнитные линии поля, создаваемые магнитом, замыкаются от северного полюса к южному полюсу, пронизывая диск. Эти линии образуют в диске вихревые токи, которые взаимодействуя с полем, приводят к возникновению силы, вращающей диск. Закон Ленца гласит, что направление всякого индукционного тока противодействует величине, вызвавшей его. Вихревые токи пытаются остановить магнит, но поскольку это не возможно, диск следует за магнитом.

Примечательно, что скорость вращения диска всегда меньше скорости вращения магнита. В асинхронных электродвигателях магнит заменяет вращающееся магнитное поле, созданное токами трёхфазной обмотки статора.

Основные параметры электродвигателя

Момент электродвигателя

Вращающий момент (синонимы: вращательный момент, крутящий момент, момент силы) – векторная физическая величина, равная произведению радиус вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы.

,

  • где M – вращающий момент, Нм,
  • F – сила, Н,
  • r – радиус-вектор, м

Справка: Номинальный вращающий момент Мном, Нм, определяют по формуле

,

  • где Pном – номинальная мощность двигателя, Вт,
  • nном – номинальная частота вращения, мин-1

Начальный пусковой момент – момент электродвигателя при пуске.

Справка: В английской системе мер сила измеряется в унция-сила (oz, ozf, ounce-force) или фунт-сила (lb, lbf, pound-force)

1 oz = 1/16 lb = 0,2780139 N (Н)1 lb = 4,448222 N (Н)

момент измеряется в унция-сила на дюйм (oz∙in) или фунт-сила на дюйм (lb∙in)

1 oz∙in = 0,007062 Nm (Нм)1 lb∙in = 0,112985 Nm (Нм)

Мощность электродвигателя

Мощность электродвигателя – это полезная механическая мощность на валу электродвигателя.

Мощность электродвигателя постоянного тока

Механическая мощность

Мощность – физическая величина, показывающая какую работу механизм совершает в единицу времени.

,

  • где P – мощность, Вт,
  • A – работа, Дж,
  • t – время, с

Работа – скалярная физическая величина, равная произведению проекции силы на направление F и пути s, проходимого точкой приложения силы .

,

где s – расстояние, м

Для вращательного движения

,

где – угол, рад,

,

где – углавая скорость, рад/с,

Таким образом можно вычислить значение механической мощности на валу вращающегося электродвигателя

Справка: Номинальное значение – значение параметра электротехнического изделия (устройства), указанное изготовителем, при котором оно должно работать, являющееся исходным для отсчета отклонений.

Коэффициент полезного действия электродвигателя

Коэффициент полезного действия (КПД) электродвигателя – характеристика эффективности машины в отношении преобразования электрической энергии в механическую.

,

  • где – коэффициент полезного действия электродвигателя,
  • P1 – подведенная мощность (электрическая), Вт,
  • P2 – полезная мощность (), Вт

При этом

потери в электродвигатели обусловлены:
электрическими потерями – в виде тепла в результате нагрева проводников с током;
магнитными потерями – потери на перемагничивание сердечника: потери на вихревые токи, на гистерезис и на магнитное последействие;
механическими потерями – потери на трение в подшипниках, на вентиляцию, на щетках (при их наличии);
дополнительными потерями – потери вызванные высшими гармониками магнитных полей, возникающих из-за зубчатого строения статора, ротора и наличия высших гармоник магнитодвижущей силы обмоток.

КПД электродвигателя может варьироваться от 10 до 99% в зависимости от типа и конструкции.

Международная электротехническая комиссия (International Electrotechnical Commission) определяет требования к эффективности электродвигателей. Согласно стандарту IEC 60034-31:2010 определено четыре класса эффективности для синхронных и асинхронных электродвигателей: IE1, IE2, IE3 и IE4.

где n – частота вращения электродвигателя, об/мин

Момент инерции ротора

Момент инерции – скалярная физическая величина, являющаяся мерой инертности тела во вращательном движении вокруг оси, равна сумме произведений масс материальных точек на квадраты их расстояний от оси

,

  • где J – момент инерции, кг∙м2,
  • m – масса, кг

Справка: В английской системе мер момент инерции измеряется в унция-сила-дюйм (oz∙in∙s2)

1 oz∙in∙s2 = 0,007062 kg∙m2 (кг∙м2)

Момент инерции связан с моментом силы следующим соотношением

,

где – угловое ускорение, с-2

,

Справка: Определение момента инерции вращающейся части электродвигателя описано в ГОСТ 11828-86

Номинальное напряжение

Номинальное напряжение (англ. rated voltage) – напряжение на которое спроектирована сеть или оборудование и к которому относят их рабочие характеристики .

Электрическая постоянная времени

Электрическая постоянная времени – это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое ток достигает уровня в 63,21% (1-1/e) от своего конечного значения.

,

где – постоянная времени, с

Механическая характеристика двигателя представляет собой графически выраженную зависимость частоты вращения вала от электромагнитного момента при неизменном напряжении питания.

Регулирование частоты вращения изменением скольжения

Изменять скольжение асинхронного двигателя можно разными способами: изменением подводимого к статору напряжения, введением сопротивления в цепь ротора или введением в цепь ротора дополнительной ЭДС.
При изменении напряжения статора механическая характеристика двигателя изменяется, как показано на рис. 4.33. Снижение напряжения приводит к уменьшению жесткости механической характеристики и росту скольжения. При этом частота вращения ротора снижается,. Регулирование частоты вращения таким способом возможно в ограниченном диапазоне изменения скольжения. Основным недостатком этого способа регулирования частоты вращения является низкий КПД из-за роста потерь в обмотке ротора пропорционально частоте скольжения.

Поэтому он применяется только для двигателей малой мощности, работающих в системах автоматического управления.
В двигателях с фазным ротором изменить частоту вращения можно путем изменения сопротивления в роторе (рис. 4.34). Преимущество данного способа регулирования частоты состоит в том, что максимальный момент остается неизменным

Важно также отметить, что часть потерь двигателя выносится в резистор, тем самым облегчается тепловой режим двигателя. В остальном способ аналогичен предыдущему и характеризуется низким КПД., малым диапазоном регулирования, зависящим от нагрузки, и «мягкой» механической характеристикой

Чтобы повысить КПД двигателя при регулировании частоты вращения путем изменения скольжения, необходимо мощность скольжения использовать для совершения полезной работы или возвратить обратно в сеть. Схемы, реализующие эту идею, называются каскадными. Одной из распространенных схем данного типа является схема асинхронно-вентильного каскада (рис. 4.35).
Схема включает асинхронный двигатель с фазным ротором (АД), диодный выпрямитель (Д), сглаживающий дроссель (Др), тиристорный инвертор (И) и сетевой согласующий трансформатор (Тр). Регулирование частоты вращения осуществляется посредством изменения напряжения инвертора. Это приводит к соответствующему изменению напряжения обмотки ротора, а следовательно, и частоты вращения ротора. Мощность частоты скольжения, извлекаемая из роторной обмотки двигателя, передается в сеть через согласующий трансформатор. Достоинством каскадных схем регулирования частоты вращения асинхронных двигателей по сравнению с частотными схемами управления в статорной цепи (рис. 4.28) является то, что полупроводниковый преобразователь выполняется на мощность скольжения, а не на полную мощность двигателя

Это обстоятельство особенно важно для мощных и сверхмощных приводов насосов, прессов, конвейеров, подъемных механизмов и др., где требуется ограниченный диапазон регулирования частоты вращения (2:1 и менее).
Асинхронно-вентильный каскад с неуправляемым выпрямителем допускает регулирование только вниз от синхронной частоты вращения. Если использовать управляемый выпрямитель, то можно осуществить регулирование частоты вращения вверх от синхронной

В этом случае направление передачи мощности скольжения меняется на противоположное.

  • Назад
  • Вперёд

Статор

Статор асинхронного двигателя состоит из трёх частей: корпуса, сердечника и обмотки. Корпус статора служит в качестве опоры для электродвигателя. Изготавливают его из стали или чугуна, сваркой или литьём. К прочности корпуса предъявляются высокие требования, так как при работе возникают вибрации в результате которых может сместиться ротор, что приведёт к заклиниванию мотора и выходу его из строя.

Статор асинхронного двигателя

Есть и ещё одно требование — геометрия корпуса должна быть идеальной. Между обмоткой статора и ротором зазор делают в несколько миллиметров, так что малейшие отклонения могут быть критичны.

Сердечник статора

Сердечник статора асинхронного электродвигателя изготавливают из наборных металлических пластин. Так как сердечник является магнитопроводом, металл используется магнитная электротехническая сталь. Для уменьшения потерь из-за вихревых потоков сердечник набирается из пластин, покрытых слоем диэлектрика (лак).

Сердечник статора набирается из тонких металлических изолированных пластин

Толщина одной пластины — 0,35-0,5 мм. Они собираются в единый пакет, так чтобы пазы всех пластин совпадали. В эти пазы затем укладываются витки обмотки.

Обмотка статора и количество оборотов электродвигателя

Статор асинхронного электромотора чаще всего имеет трёхфазную обмотку возбуждения. Она называется так, потому что является причиной движения ротора. Обмотка статора состоит из катушек, навитых из медной проволоки которые укладываются в пазы сердечника. Каждая обмотка может состоять из нескольких витков проволоки или из одного витка. Провод используется специальный, с лаковым покрытием, которое изолирует витки друг от друга и от стенок сердечника.

Как уже говорили, чаще всего обмотка статора асинхронного двигателя имеет три фазы. В этом случае оси катушек расположены со сдвигом 120°. При таком строении магнитное поле имеет два полюса и делает один полный оборот за один цикл трёхфазного питания. При частоте в электросети равной 50 Гц, скорость вращения поля (и ротора) 50 об/сек или 3000 об/мин.

Укладка катушек обмотки статора асинхронного двигателя

Для уменьшения скорости вращения ротора в асинхронном двигателе обмотку делают с большим количеством полюсов. Так с четырехполюсным стартером скорость вращения будет вдвое меньше — 1500 об/мин. Обмотка с шестью полюсами статора даёт втрое меньшую скорость — 1000 об/мин. С восемью полюсами — в четыре раза меньше, т. е. 750 об/мин. Ещё более «медленные» электромоторы делают очень редко.

Концы обмоток статора выводятся на клеммную коробку корпуса. Тут они могут соединяться по принципу «звезда» или «треугольник» в зависимости от типа подаваемого питания (220 В или 380 В).