Оглавление
- Основные параметры
- В чем различия между приборами движения?
- 49.Фототранзисторы. Основные схемы включения.
- Фотодиоды: принцип работы
- Проверка фотодиода мультиметром
- Применение фотодиодов в оптоэлектронике[править | править код]
- Режимы работы
- Описание
- Фототранзистор
- Принцип работы фотодиодов
- Фотореле, их виды, применение, схема подключения
- Квантовая эффективность
- Фотопроводящий режим в фотодиодных схемах
- Схема фотореле на фоторезисторах. Принцип работы и область применения
Основные параметры
Свойства фотодиодов определяют следующие характеристики:
- Вольтамперная. Определяет изменение величины светового тока в соответствии с меняющимся напряжением при стабильных потоке света и темновом токе
- Спектральная. Характеризует влияние длины световой волны на фототок
- Постоянная времени – это период, в ходе которого ток реагирует на увеличение затемнения или освещенности на 63% от установленного значения
- Порог чувствительности – минимальный световой поток, на который реагирует диод
- Темновое сопротивление – показатель, характерный для полупроводника при отсутствии света
- Инерционность
В чем различия между приборами движения?
Одним из наиболее популярных на рынке остается ультразвуковой датчик движения, потому что он недорогой, очень долговечный и износостойкий. В основе его работы лежит ультразвук, который излучается при фиксации движения.
Также весьма известен радиочастотный датчик, и по стоимости он гораздо дороже ультразвукового в основном потому, что он умеет распознавать движения в разных диапазонах. В основе его работы лежит радиолокатор.
Самый дорогой, но очень практичный прибор — инфракрасный датчик. Он настроен на определённую температуру и включается, когда в поле доступности появляется именно обладатель нужных температурных показателей, что исключает ненужное включение, когда мимо пробегает крыса или иное животное.
49.Фототранзисторы. Основные схемы включения.
Различают две основные схемы включения фототранзисторов: с отключенной базой и с присоединенной. В обеих преобразователь включается по схеме с общим эмиттером.
В первой, являющейся наиболее простой, фототранзистор применяется как двухполюсник. Фотоприемник обладает, наибольшим усилением, но невысоким быстродействием и температурной стабильностью.
Включение фототранзистора с присоединенной базой позволяет управлять положением рабочей точки, а также уменьшить темновой ток через коллекторный переход и повысить граничную частоту. Кроме того, фототранзистор может функционировать как фотодиод. Для этого обычно используют переход коллектор-база, площадь которого больше площади перехода эмиттер-база. В зависимости от напряжения, приложенного к переходу, получают фотодиодный или фотогальванический режимы работы.
По сравнению с фотодиодами фототранзисторы редко используются для работы со слабыми сигналами, для прецизионных аналоговых измерений, а в случае приема модулированных сигналов строгие требования предъявляются к стабилизации рабочей точки. Напротив, достаточно высокое усиление фототока, в результате чего нередко отпадает необхрдимость в промежуточных усилителях, успешная работа с немодулированными сигналами, высокими уровнями излучения, схемотехническая гибкость предопределили широкое применение фототранзисторов в различных пороговых схемах автоматики, оптронах. л ж.
Фототранзисторы могут непосредственно управлять работой маломощных электромеханических реле, тиристоров. Необходимым условием при построении таких схем является превышение тока коллектора, который устанавливается под действием на преобразователь лучистого потока, над порогом срабатывания ключевого элемента. Назначение диода — защита фотоприемника от индуцированной э.д.с. в момент запирания. Порог срабатывания тиристора устанавливается сопротивлением Ri. Конденсатор С препятствует отпиранию тиристора при кратковременных изменениях освещенности, скачках напряжения или тока в сети. При коммутации более мощных цепей, а также в фотореле с большей чувствительностью фототранзисторы нередко включают по схеме Дарлингтона. Общий коэффициент усиления первичного фототока схем равен произведению коэффициентов усиления фотоприемника и транзистора. Реле Р срабатывает при освещении фототранзисторов В схемах с тиристорами делители задают напряжение на коллекторах транзисторов, которое обычно значительно меньше величины напряжения Е. Фотореле срабатывает при засветке фототранзистора, а фотореле при его затемнении.
Включение по схеме Дарлингтона применяется в составном фототранзисторе. В корпусе этого фотоприемника на одном кристалле кремния размещаются транзистор и фототранзистор, причем на последний с помощью линзы фокусируется световой поток.
Аналогично фотодиодам фототранзисторы используются для управления работой усилительных каскадов на транзисторах. В зависимости от соотношения выходного сопротивления фотоприемника с входным сопротивлением усилителя может быть управление по току либо по напряжению. Выходной (коллекторный) ток фототранзи стора задает режим на базе транзистора. Резистор служит для ограничения тока через фотоприемник. Значение сопротивления выбирается так, чтобы ограничить мощность рассеивания, которая не должна превышать допустимой мощности рассеивания фототранзистора при работе с интенсивными засветками. Обычно сопротивление Ri значительно меньше сопротивления нагрузки. Выходное напряжение Схемы падает с ростом освещенности. Разброс параметров фотоприемников компенсируется регулировкой сопротивления.
studfiles.net
Фотодиоды: принцип работы
В электротехнике широко используются различные приборы и устройства, связанные с особенностями и физическими свойствами материалов. Среди них особое место занимают фотодиоды, принцип работы которых основан на воздействии оптического излучения. В результате, материал изменяет свои качества, что позволяет ему выполнять различные функции в электрических цепях.
Принцип действия фотодиода
Простой фотодиод является обыкновенным полупроводниковым диодом с р-п-переходом, на который оказывает действие оптическое излучение. При полном отсутствии светового потока, диод находится в состоянии равновесия и обладает обычными свойствами.
Действие излучения направлено перпендикулярно относительно плоскости, где расположен р-п-переход. Энергия, с которой поглощаются фотоны, превышает ширину запрещенной зоны, что приводит к возникновению электронно-дырочных пар. Данные пары, состоящие из электронов и дырок, получили наименование фотоносителей.
Когда фотоносители проникают внутрь п-области, электроны и дырки, в основной массе не успевают распадаться на составляющие и подходят непосредственно к границе р-п-перехода. В этом месте происходит разделение фотоносителей с помощью электрического поля.
В результате, дырки попадают в р-область. Электроны же не в состоянии пройти через поле, окружающее переход, поэтому начинается их скапливание возле п-области и у границы перехода. Таким образом, прохождение тока через переход полностью зависит от движения дырок.
Данный вид тока с участием фотоносителей получил название фототока.
Под воздействием фотоносителей-дырок в р-области по отношению к п-области возникает положительный заряд. Таким же образом, п-область заряжается отрицательно относительно р-области. Происходит возникновение разности потенциалов, именуемой фото-ЭДС.
Ток, сгенерированный в фотодиоде, имеет обратное значение и направление от катода к аноду. Величина этого тока возрастает в зависимости от увеличения степени освещенности. Работа фотодиодов может осуществляться в двух режимах. В первом случае используется фотогенераторный режим, не предусматривающий внешний источник электроэнергии.
В режиме фотопреобразователя необходимо использование внешнего источника электроэнергии.
Режим фотогенератора позволяет использовать фотодиоды как источники питания, преобразующие солнечное излучение в электрическую энергию. Они используются в качестве элементов солнечной батареи. Коэффициент полезного действия элементов на основе кремния составляет примерно 20%. КПД у пленочных конструкций может быть значительно выше.
В работе фотодиодом нередко используется свойство обратимого электрического пробоя. В результате, количество носителей заряда умножается лавинообразно, по аналогии с полупроводниковыми стабилитронами. Происходит значительный рост фототока и чувствительности фотодиодов. Данное значение превышает обычные параметры в сотни раз.
Частота лавинных фотодиодов достигает величины до 10 ГГц, что позволяет использовать их в качестве быстродействующих фотоэлектрических приборов. Единственным недостатком этих устройств является повышенный уровень шума. Фотодиоды очень часто используются в паре со светодиодами.
Электрические связи совершенно не касаются входных и выходных цепей, поскольку сигналы передаются путем оптического излучения.
Характеристики фотодиодов
Если рассматривать в целом непосредственно фотодиоды, принцип действия и другие параметры этих устройств, следует отметить то, как выходная мощность соотносится с общей массой и площадью солнечной батареи. Максимальное значение этих параметров может достигать соответственно 200 ватт на 1 кг и 1 киловатт на 1 м2.
Кроме того, значение имеет вольт-амперная характеристика, в которой выходное напряжение зависит от выходного тока. Значение спектральных характеристик показывает соотношение фототока и величины световых волн, падающих на фотодиод. Максимальное значение данного параметра находится в прямой зависимости от того, насколько возрастает коэффициент поглощения.
Фототок и освещенность определяют световую характеристику фотодиода. Обе величины имеют между собой прямую пропорциональную зависимость.
Эта величина представляет временной отрезок, на протяжении которого происходят изменения после того как фотодиод освещен или затемнен. Показатель соотносится с установленным значением.
Фотодиод также характеризуется в соответствии с сопротивлением при отсутствии освещения и другими параметрами, определяющими его работоспособность и область практического применения.
Проверка фотодиода мультиметром
Рассмотрим, как проверить мультиметром фотодетекторы. Тестером замеряют значения сопротивления (обратного и прямого) в процессе освещения/затемнения диода. Мультиметр (или омметр) переводят на отметку 200 кОм.
Иногда встречается характерный дефект — хаотическое изменение тока («ползучесть»). Для обнаружения неполадки собирают простую схему (смотреть рисунок ниже) и замеряют величину обратного тока на протяжении нескольких минут. Если ток неизменный, то деталь рабочая. Проверять можно запчасть на плате, но возможны погрешности, поэтому всегда рекомендована выпайка.
Применение фотодиодов в оптоэлектронике[править | править код]
Фотодиод является составным элементом во многих сложных оптоэлектронных устройствах, поэтому он находит широкое применение во многих областях.
В оптоэлектронных интегральных микросхемах фотодиод может обладать большим быстродействием, но его коэффициент усиления фототока не превышает единицы. Благодаря наличию оптической связи оптоэлектронные интегральные микросхемы обладают рядом существенных достоинств. Почти идеальная гальваническая развязка управляющих цепей при сохранении между ними сильной функциональной связи.
Многоэлементные фотоприемники — это приборы сканистор, мишень кремникона, фотодиодная матрица с управлением на МОП-транзисторе, фоточувствительные приборы с зарядовой связью и другие. Они относятся к числу наиболее быстро развивающихся и прогрессирующих изделий электронной техники. Сочетая в себе успехи физики дискретных фотоприемников и новейшие технологические достижения больших интегральных схем, многоэлементные фотоприемники вооружают оптоэлектронику твердотельным «глазом», способным реагировать не только на яркостно-временные, но и на пространственные характеристики объекта, то есть воспринимать его полный зрительный образ. Для успешного выполнения этих функций необходимо, чтобы число элементарных фоточувствительных ячеек в приборе было достаточно большим, поэтому кроме всех проблем дискретного фотоприемника (чувствительность, быстродействие, спектральная область) приходится решать и проблему считывания информации. Все многоэлементные фотоприемники представляют собой сканирующие системы, то есть устройства, позволяющие производить анализ исследуемого пространства путем последовательного его просмотра (поэлементного разложения). Принцип восприятия образов этими системами сводится к следующему. Распределение яркости объекта наблюдения превращается в оптическое изображение и фокусируется на фоточувствительную поверхность. Здесь световая энергия переходит в электрическую, причем отклик (ток, заряд, напряжение) пропорционален освещенности. Яркостная картина преобразуется в электрический рельеф. Схема сканирования производит периодический последовательный опрос каждого элемента и считывание содержащейся в нем информации. В конечном счете, на выходе устройства мы получаем последовательность видеоимпульсов, в которой закодирован воспринимаемый образ.
При создании многоэлементных фотоприемников стремятся обеспечить наилучшее выполнение ими функций преобразования и сканирования.
Фотодиоды активно используются в оптронах, оптоэлектронныых приборах, в которых имеются источник и приемник излучения с тем или иным видом оптической и электрической связи между ними, конструктивно объединенные и помещенные в один корпус. В электронной схеме оптрон выполняет функцию элемента связи, в одно из звеньев которого информация передается оптически. Это основное назначение оптрона. Если между компонентами оптрона создать электрически обратную связь, то оптрон может стать активным прибором, пригодным для усиления и генерации электрических и оптических сигналов. Принципиальное отличие оптронов как элементов связи заключается в использовании для переноса информации электрически нейтральных фотонов, что обуславливает ряд достоинств оптронов, которые присущи и всем остальным оптоэлектронным приборам в целом. Хотя у оптронов есть, разумеется, и свои недостатки.
В повседневной жизни фотодиоды используются в таких приборах, как устройства чтения компакт-дисков, пультах дистанцианного управления, фотокамерах, различных сенсорных устройствах, использующих данную технологию. Одно из важных применений — в медицинских приборах, в частности — в устройствах для проведения компьютерной томографии.
Режимы работы
Фотодиоды разделяют по режиму функционирования.
Режим фотогенератора
Осуществляется без источника электропитания. Фотогенераторы, являющиеся комплектующими солнечных батарей, иначе называют «солнечными элементами». Их функция – преобразовывать солнечную энергию в электрическую. Наиболее распространены фотогенераторы, созданные на базе кремния – дешевого, распространенного, хорошо изученного. Обладают невысокой стоимостью, но их КПД достигает всего 20%. Более прогрессивными являются пленочные элементы.
Режим фотопреобразования
Источник электропитания в схему подключается с обратной полярностью, фотодиод в данном случае служит датчиком освещенности.
Описание
Структурная схема фотодиода. 1 — кристалл полупроводника; 2 — контакты; 3 — выводы; Φ — поток электромагнитного излучения; Е — источник постоянного тока; RH — нагрузка.
Принцип работы:
При воздействии квантов излучения в базе происходит генерация свободных носителей, которые устремляются к границе p-n-перехода. Ширина базы (n-область) делается такой, чтобы дырки не успевали рекомбинировать до перехода в p-область. Ток фотодиода определяется током неосновных носителей — дрейфовым током. Быстродействие фотодиода определяется скоростью разделения носителей полем p-n-перехода и ёмкостью p-n-перехода Cp-n
Фотодиод может работать в двух режимах:
- фотогальванический — без внешнего напряжения
- фотодиодный — с внешним обратным напряжением
Особенности:
- простота технологии изготовления и структуры
- сочетание высокой фоточувствительности и быстродействия
- малое сопротивление базы
- малая инерционность
Фототранзистор
Чувствительность
Токовая чувствительность S i , Φ {\displaystyle S_{i,{\Phi }}} по световому потоку фототранзистора определяется отношением тока через прибор I Φ {\displaystyle I_{\Phi }} к вызвавшему этот ток световому потоку Φ {\displaystyle \Phi } :
S i , Φ = I Φ Φ {\displaystyle S_{i,{\Phi }}={\frac {I_{\Phi }}{\Phi }}}
Токовая чувствительность современных фототранзисторов достигает нескольких сотен /.
Темновой ток
Даже в отсутствие освещения, через прибор протекает некоторый ток, называемый темновым током. Этот ток вреден для регистрации слабых световых потоков, так как «маскирует» полезный сигнал и при изготовлении фототранзисторов его стремятся уменьшить разными технологическими приемами. Кроме того, величина темнового тока существенно зависит от температуры полупроводниковой структуры и нарастает при её повышении приблизительно так же, как и обратный ток p-n перехода в любом полупроводниковом приборе. Поэтому для снижения темнового тока иногда применяют принудительное охлаждение прибора.
При прочих равных, величина темнового тока сильно зависит от ширины запрещённой зоны полупроводника и снижается при её увеличении. Поэтому характерные значения темнового тока при комнатной температуре германиевых фототранзисторов порядка единиц мкА, кремниевых — долей мкА, арсенидо-галлиевых — десятков пкА.
Спектральная чувствительность
Типовая спектральная чувствительность кремниевого фототранзистора Чувствительность фототранзистора зависит от длины волны падающего излучения. Например, для кремниевых приборов максимум чувствительности находится в диапазоне 850—930 нм — красный и ближний инфракрасный диапазоны. Для ближнего ультрафиолетового излучения (~400 нм) чувствительность снижается в ~10 раз от максимальной. Также чувствительность снижается при увеличении длины волны и для длин волн свыше ~1150 нм — край оптической полосы поглощения кремния, снижается до нуля.
Быстродействие
Фототранзисторы по сравнению с фотодиодами имеют относительно низкое быстродействие. Это обусловлено конечным временем рассасывания неосновных носителей в базе при снижении освещённости. Кроме того, если напряжение между коллектором и эмиттером изменяется при изменении освещенности, что имеет место в некоторых схемах электрического включения прибора, дополнительно снижает быстродействие эффект Миллера, обусловленный емкостью коллекторно-базового p-n перехода. Практически диапазон рабочих частот фототранзисторов ограничен, в зависимости от схемы включения, несколькими сотнями кГц — единицами МГц.
Принцип работы фотодиодов
Основа действия фотодиодных элементов – внутренний фотоэффект. Он заключается в возникновении в полупроводнике под воздействием светового потока неравновесных электронов и дырок (т.е. атомов с пространством для электронов), которые формируют фотоэлектродвижущую силу.
- При попадании света на p-n переход происходит поглощение световых квантов с образованием фотоносителей
- Фотоносители, находящиеся в области n, подходят к границе, на которой они разделяются под влиянием электрополя
- Дырки перемещаются в зону p, а электроны собираются в зоне n или около границы
- Дырки заряжают p-область положительно, а электроны – n-зону отрицательно. Образуется разность потенциалов
- Чем выше освещенность, тем больше обратный ток
Если полупроводник находится в темноте, то его свойства аналогичны обычному диоду. При прозванивании тестером в отсутствии освещения результаты будут аналогичны тестированию обычного диода. В прямом направлении будет присутствовать маленькое сопротивление, в обратном – стрелка останется на нуле.
Фотореле, их виды, применение, схема подключения
Фотореле применяемое для уличного освещения, изобрели сравнительно недавно, но оно уже прочно вошло в практику городских коммунальных служб. Популярность этот прибор завоевал благодаря своим отличным эксплуатационным свойствам: надежность в работе и значительная экономия электроэнергии.
Если говорить конкретнее, то выгода от использования фотореле для уличного освещения заключается в том, что при наступлении темного времени суток та или иная зона освещается в автоматическом режиме. Фотореле с большой точностью может определить начало включения и отключения световых приборов, при этом за счет работы потенциометра автоматически контролирует уровень освещения.
Применяют фотореле также и в осветительных системах фасадов зданий, дворов, загородных домов, автостоянок, зоны видимости видеокамер при наступлении темноты, чтобы автоматизировать освещение витрин магазинов, вывесок и рекламных щитов.
Как устроено фотореле для уличного освещения
Зачастую фотореле уличного освещения называют – автомат уличного освещения. Основным его компонентом является фотодатчик, в качестве которого используется фотодиод. Фотодатчик может находиться в корпусе или снаружи. При первом варианте все устройство монтируют на улице. Во втором случае фотодатчик – на улице, а электронный блок устанавливают в электрическом щитке в помещении.
Большинство таких приборов на корпусе имеют механический выключатель и регулятор порога срабатывания для задания величины освещенности, при которой включается свет.
При этом, таймер можно запрограммировать так, чтобы его включение происходило в назначенный день недели.
Фотореле с выносным фотоэлементом (рис. 1)
Фотореле, имеющее регулировку порога срабатывания (рис. 2)
Фотоэлемент внутри корпуса, снабженный таймером (рис. 3)
Фотоэлемент внутри корпуса (рис. 4)
К основным техническим характеристикам относятся:
- номинальное напряжение сети
- номинальная частота сети
- коммутируемый ток
- диапазон срабатывания
- мощность потребления от сети
- максимальный диаметр подключаемых проводов
- габариты
- масса
- допустимые колебания сети
- диапазон температуры окружающей среды
Принцип действия
Работа фотореле для уличного освещения основана на свойствах фотодатчика, который контролирует величину освещенности. Принцип действия заключается в том, что при недостаточном уровне света (при наступлении сумерек) контакты замыкаются, вследствие этого происходит включение системы освещения.
А на рассвете природная освещенность возрастает, что приводит к размыканию контактов и отключению источников искусственного света. Конструкция прибора для уличного освещения предусматривает возможность установки того диапазона чувствительности к свету, который будет наиболее рациональным к условиям его использования.
То есть, устройство действует в зависимости от интенсивности освещения.
Схема подключения
Схема подключения фотореле в едином пластмассовом корпусе для уличного освещения достаточно проста, что можно увидеть на (рис. 5). Внутри корпуса прибора есть две пары клемм. Одна из них подсоединяется к сети, а к другой подключают светильник. Из корпуса приборов, в которых клемм нет, выводятся три провода различного цвета.
Для их подсоединения вблизи фотореле устанавливают распределительную коробку. «Нулевой» провод подключаются к светильнику и к самому реле на прямую через скрутку или клемник, «земля» так-же через скрутку или клемник на прямую к светильнику, «фазный» провод через реле в разрыв.
Проще говоря перед нами схема подключения одноклавишного выключателя, только в роли выключателя у нас реле.
Квантовая эффективность
Квантовая эффективность излучателя определяется как отношение числа выделенных электронов к числу падающих фотонов. У кремния и InGaAs пиковая квантовая эффективность около 80%.
Интересно почитать: фотореле в уличном освещении.
Скорость ответа
Скорость ответа детектора ограничена временем прохода, которое является временем преодоления свободными зарядами ширины внутреннего слоя. Это функция напряжения обратного смещения и физической ширины. Для быстрых p-i-n-диодов она колеблется от 1,5 до 10 нс. Емкость также влияет на ответ устройства, причем емкость перехода образует изолирующим внутренним слоем между электродами, образованными p- и n-областями. У высокоскоростных фотодиодов время ответа может достигать 10 пикосекунд при емкости в несколько пикофарад с очень маленькими площадями поверхностей.
Вольтамперная характеристика
Типичные вольтамперные (I-U) кривые для кремниевого p-i-n-фотодиода показа, на рис. 6.11. Можно видеть, что даже когда нет оптической мощности, течет небольшой обратный ток, который называется темновым током (dark current). Он вызывается температурным образованием свободных носителей зарядов, обычно удваиваясь через каждые 10°С прироста температуры после 25°С.
Динамический диапазон
Линейная зависимость между напряжением и оптической мощностью, показанная на рис. 6.11 сохраняется обычно на протяжении около шести десятков, давая динамический диапазон около 50 дБ.
Фотодиод на схеме.
Фотопроводящий режим в фотодиодных схемах
Чтобы переключить показанную выше схему детектора в фотопроводящий режим, мы подключаем анод фотодиода к источнику отрицательного напряжения, а не к земле. Катод всё еще находится под напряжением 0 В, но анод находится под некоторым напряжением ниже 0 В; таким образом, на фотодиод подается обратное смещение.
Рисунок 2 – Пример включения фотодиода в фотопроводящем режиме
Когда использовать фотопроводящий режим
Прикладывание напряжения обратного смещения к PN-переходу приводит к расширению обедненной области. Это имеет два положительных эффекта в контексте применения фотодиодов. Во-первых, более широкая обедненная область, как объяснялось в предыдущей статье, делает фотодиод более чувствительным. Таким образом, фотопроводящий режим – хороший выбор, когда вы хотите получить больший выходной сигнал при той же освещенности.
Во-вторых, более широкая обедненная область снижает емкость перехода фотодиода. В схеме, показанной выше, наличие сопротивления обратной связи и емкости перехода (наряду с другими источниками емкости) ограничивает полосу пропускания замкнутой петли системы. Как и в случае с базовым RC-фильтром нижних частот, уменьшение емкости увеличивает частоту среза. Таким образом, фотопроводящий режим обеспечивает более широкую полосу пропускания и предпочтителен, когда вам нужно максимизировать способность детектора реагировать на быстрые изменения освещенности.
Наконец, обратное смещение также расширяет диапазон линейной работы фотодиода. Если вас беспокоит точность измерений при высокой освещенности, вы можете использовать фотопроводящий режим и выбрать напряжение обратного смещения в соответствии с требованиями вашей системы. Но помните, что большее обратное смещение также увеличивает темновой ток.
Рисунок 3 – Hamamatsu – ведущий производитель фотоприемников. Этот график, взятый из их руководства по кремниевым фотодиодам, дает представление о том, насколько вы можете расширить область линейного отклика фотодиода, увеличив напряжение обратного смещения
Схема фотореле на фоторезисторах. Принцип работы и область применения
Фоторезистор, представляет собой непроволочный полупроводниковый резистор, омическое сопротивление которого определяется степенью освещенности . В основе принципа действия фоторезисторов лежит явление фотопроводимости полупроводников. Фотопроводимость — увеличение электрической проводимости полупроводника под действием света. Причина фотопроводимости — увеличение концентрации носителей заряда — электронов в зоне проводимости и дырок в валентной зоне. Схема устройства фотоэлементов с внутренним фотоэффектом, носящих название фотосопротивлений (ФС) или фоторезисто¬ров, приведена на рис. 16-а. Фотосопротивление представляет собой стеклянную пластинку, покрытую тонким слоем полупроводникового материала (сернистого свинца, сернистого висмута, сернистого кадмия), на котором расположены токопроводящие электроды. Сущность внутреннего фотоэффекта сводится к следующему. Известно, что электропроводимость связана с количеством носите¬лей заряда, который имеет тот или иной материал. В полупровод¬никах количество носителей электрических зарядов может увеличиваться вследствие поглощения энергии извне, в частности под воздействием световой энергии. Увеличение количества носителей электрических зарядов в мате¬риале повышает, его способность проводить электрический ток.
Рис.16 Фотосопротивление В результате этого уменьшается электрическое сопротивление осве-щаемого материала. Отличительная особенность фотосопротивлений от фотоэлемен¬тов с внешним фотоэффектом заключается в том, что при внешнем фотоэффекте электроны покидают пределы освещенного материала, а при внутреннем фотоэффекте они остаются внутри материала, увеличивая тем самым количество носителей электрических зарядов. Изменение проводимости в полупроводниках под воздействием света может быть очень большим. В некоторых материалах при переходе от темноты к интенсивному освещению сопротивление уменьшается в десятки раз и соответственно изменяется величина тока в цепи фотосопротивлений (рис. 16-б). Светочувствительный слой полупроводникового материала в таких сопротивлениях помещен между двумя токопроводящими электродами. Под воздействием светового потока электрическое сопротивление слоя меняется в несколько раз (у некоторых типов фотосопротивлений оно уменьшается на два- три порядка). В зависимости от применяемого слоя полупроводникового материала фотосопротивления подразделяются на сернистосвинцовые, сернистокадмиевые, сернисто-висмутовые и поликристаллические селенокадмиевые. Фотосопротивления обладают высокой чувствительностью, стабильностью, экономичны и надежны в эксплуатации. В целом ряде случаев они с успехом заменяют вакуумные и газонаполненные фотоэлементы. Основной областью применения фоторезисторов является автоматика, где они в некоторых случаях с успехом заменяют вакуумные и газонаполненные фотоэлементы. Обладая повышенной допустимой мощностью рассеивания по сравнению с некоторыми типами фотоэлементов, фоторезисторы позволяют создавать простые и надежные фотореле без усилителей тока. Такие фотореле незаменимы в устройствах для телеуправления, контроля и регулирования, в автоматах для разбраковки, при сортировке и счете готовой продукции, для контроля качества и готовности самых различных деталей. Широко используются фоторезисторы в полиграфической промышленности при обнаружении обрывов бумажной ленты, контроле за количеством листов, подаваемых в печатную машину. В измерительной технике фоторезисторы применяются для измерения высоких температур, для регулировки температуры в различных технологических процессах. Контроль уровня жидкости и сыпучих тел, защита персонала от входа в опасные зоны, контроль за запыленностью и задымленностью самых различных объектов, автоматические выключатели уличного освещения и турникеты в метрополитене — вот далеко не полный перечень областей применения фоторезисторов.
Схема включения фоторезисторов:
Рис.17 Схема фотореле на фоторезисторе При определенном освещении сопротивление фотоэлемента уменьшается, а, следовательно, сила тока в цепи возрастает, достигая значения, достаточного для работы какого- либо устройства (схематично показано в виде некоторого сопротивления нагрузки).