Оглавление
- Классификация пуско-зарядных устройств
- Общая характеристика
- Описание работы зарядки
- Самодельная батарейка из подручных средств
- Полезный совет
- Самодельное зарядное устройство для автомобильного аккумулятора
- Мощное импульсное зарядное устройство для автомобильного аккумулятора
- Самые простые варианты самодельных ЗУ для аккумуляторов
- Какие ещё имеются варианты ЗУ для АКБ
Классификация пуско-зарядных устройств
Несмотря на похожие функции по запуску ДВС, ПЗУ бывают нескольких видов по исполнению и механизму. Виды ПЗУ:
- трансформаторные;
- аккумуляторные;
- конденсаторные;
- импульсные.
Существуют также и заводские модели, среди которых нужно выбрать ПЗУ, запускающиеся без аккумулятора и работающего стабильно даже при сильном морозе.
На выходе каждого из них получается ток определённого значения и напряжение (U) 12 или 24 В (зависит от модели устройства).
Наиболее популярны трансформаторные ПЗУ, благодаря своей надёжности и ремонтоспособности. Однако и среди других видов есть достойные модели.
Трансформаторный тип
Принцип работы трансформаторных ПЗУ очень прост. Трансформатор преобразует сетевое U в пониженное переменное, которое выпрямляется диодным мостом. После диодного моста постоянный ток с пульсирующими амплитудными составляющими сглаживается конденсаторным фильтром. После фильтра происходит увеличение номинала тока при помощи различного рода усилителей, выполненных на транзисторах, тиристорах и других элементах. Основными преимуществами ПЗУ трансформаторного типа являются следующие:
- надёжность;
- высокая мощность;
- запуск авто в случае, если аккумулятор является «мёртвым»;
- простое устройство;
- регулирование значений U и силы тока (I).
Недостатками являются его габариты и вес. Если нет возможности купить, то нужно собрать пуско-зарядное устройство для автомобиля своими руками. Трансформаторный тип имеет достаточно простое устройство (схема 1).
Схема 1 — Самодельное пусковое устройство для автомобиля.
Для изготовления пуско-зарядного устройства своими руками, схема которого включает в себя трансформатор и выпрямитель, нужно найти радиодетали или приобрести в специализированном магазине. Основные требования к трансформатору:
- мощность (P): 1,3−1,6 кВт;
- U = 12−24 В (зависит от транспортного средства);
- ток II обмотки: 100−200 А (стартер при вращении коленвала потребляет около 100 А);
- площадь (S) магнитопровода: 37 кв. см;
- диаметры провода I и II обмоток: 2 и 10 кв. мм;
- количество витков II обмотки подбирается при расчете.
Диоды подбираются согласно справочной литературе. Они должны быть рассчитаны на большой I и обратное U > 50 В (Д161-Д250).
Если нет возможности найти мощный трансформатор, то схему простого пуско-зарядного автомобильного устройства придется усложнить добавлением каскада усилителя на тиристоре и транзисторах (схема 2).
Схема 2 — Пуско-зарядное своими руками с усилителем мощности.
Принцип работы ПЗУ с усилителем достаточно прост. Его нужно подсоединить к клеммам аккумулятора. Если заряд АКБ нормальный, то U не поступает с ПЗУ. Однако если АКБ разряжен, то открывается переход тиристора и электрооборудование питается от ПЗУ. Если U увеличивается до 12/24 В, то тиристоры закрываются (устройство отключается). Существует два вида тиристорных трансформаторных ПЗУ:
- двуполупериодная;
- мостовая.
При двуполупериодной схеме изготовления нужно выбирать тиристор около 80 А, а при мостовой от 160 и выше. Диоды нужно выбирать с учётом тока от 100 до 200 А. Транзистор КТ3107 возможно заменить на КТ361 или другой аналог с такими же характеристиками (можно и мощнее). Резисторы, находящиеся в управляющей цепи тиристора, должны быть мощностью не менее 1 Вт.
Бустеры и конденсаторные
ПЗУ аккумуляторного типа называются бустерами и представляют переносные АКБ, работающие по принципу блока переносного зарядного устройства. Они бывают бытовыми и профессиональными. Основное отличие в количестве встроенных элементов питания. Бытовые имеют ёмкость, достаточную для запуска авто с севшим аккумулятором. Им можно запитать только одну единицу техники. Профессиональные обладают большой ёмкостью и служат для запуска не одного авто, а нескольких.
Конденсаторные имеют очень сложную схему исполнения, и, следовательно, их невыгодно делать самостоятельно. Основная часть схемы является конденсаторным блоком. Стоят такие модели дорого, но являются портативным ПЗУ, способными запустить стартер даже со «сдохшим» аккумулятором. Частое использование приводит к очень быстрому износу аккумулятора, если он новый. Наибольшую популярность среди всех моделей получили Berkut (рисунок 1) с пусковыми токами 300, 360, 820 А. Принцип работы устройства заключается в быстрой разрядке конденсаторного блока и этого времени хватает для запуска ДВС.
Если сравнивать аккумуляторное и конденсаторное ПЗУ, то нужно учитывать особенности использования в конкретной ситуации. Например, при поездках по городу подойдёт аккумуляторный тип. В том случае, если происходят дальние поездки, то следует выбирать автономный тип ПЗУ, а именно конденсаторный.
Общая характеристика
Для правильного обслуживания аккумулятора и продления срока его службы подзарядка требуется при падении напряжения на клеммах ниже 11,2 В. При таком напряжении двигатель, скорее всего, запустится, но при долгой стоянке зимой это приведёт к сульфатации пластин и, как следствие, к снижению ёмкости батареи. При длительной стоянке зимой необходимо регулярно следить за вольтажом на клеммах АКБ. Оно должно составлять 12 В. Лучше всего снять батарею и занести её в тёплое место, не забывая при этом следить за уровнем заряда.
Зарядка АКБ производится постоянным или импульсным током. При использовании блока питания постоянного напряжения ток для правильной зарядки должен составлять одну десятую часть от ёмкости батареи. Если ёмкость АКБ составляет 50 А-ч, то для зарядки необходим ток 5 ампер.
Для продления срока службы АКБ применяют методики десульфатации аккумуляторных пластин. Батарею разряжают до напряжения менее пяти вольт многократным потреблением большого тока краткой длительности. Пример такого потребления — запуск стартера. После этого производят медленную полную зарядку маленьким током в пределах одного ампера. Повторяют процесс 8—9 раз. Метод десульфатации является долгим по времени, но согласно всем исследованиям даёт хороший результат.
Нужно помнить, что при зарядке важно не допускать перезаряда АКБ. Заряд производится до напряжения 12,7—13,3 вольт и зависит от модели батареи
Максимальный заряд указывается в документации к аккумулятору, которую всегда можно найти в интернете.
Перезаряд вызывает закипание, увеличивает плотность электролита и, как следствие, разрушение пластин. Заводские устройства зарядки имеют системы контроля заряда и последующего отключения. Собрать самостоятельно такие системы, не обладая достаточными знаниями в электронике, достаточно сложно.
Описание работы зарядки
Стабилизация напряжения построена на базе довольно популярной микросхемы регулируемого стабилитрона tl431. Транзистор в качестве усилительного элемента. Ток заряда задается резистором R1 и зависит только от параметров заряжаемого аккумулятора. Этот резистор советуется с мощностью 1 ватт. А все остальные резисторы 0,25 или 0,125 ватт.
Как мы знаем, напряжение одной банки полностью заряженного литий-ионного аккумулятора составляет около 4,2 Вольт. Следовательно, на выходе зарядного устройства мы должны установить именно это напряжение, которое задается подбором резисторов R2 и R3. Существует очень много онлайн программ по расчету напряжения стабилизации микросхемы tl431. Для наиболее точной настройки выходного напряжения советуется резистор R2 заменить на многооборотное сопротивление около 10 килоом. Кстати, возможно и такое решение. Светодиод у нас в роли индикатора заряда, подойдет практически любой светодиод, цвет на ваш вкус. Вся настройка сводится к установке на выходе напряжения 4,2 вольта. Несколько слов о стабилитроне tl431. Это очень популярная микросхемах,не путайте с транзисторами в аналогичном корпусе. Эта микросхема встречается практически в любом импульсном блоке питания, например компьютернаом, где микросхема чаще всего стоит в обвязке. Силовой транзистор не критичен, подойдет любой транзистор обратной проводимости средней или высокой мощности, например из советских подойдут КТ819, КТ805. Из менее мощных КТ815, КТ817 и любые другие транзисторы с аналогичными параметрами.
Самодельная батарейка из подручных средств
Как сделать диммер для паяльника
Как можно сделать аккумуляторы, используя электролит и электроды, рассмотрено выше. Теперь о том, как быстро собрать источник тока однократного действия. Батарейка – это гальванический источник электричества, который не имеет способности восстанавливаться.
Способ первый: батарейка из лимона
Мякоть лимона содержит лимонную кислоту, она послужит электролитом. В качестве электрода выступают оцинкованный гвоздик и отрезок медной проволоки. Они втыкаются в лимон на расстоянии 50-100 мм друг от друга. Реакция окисления запускает движение электрического тока.
Батарейка из лимона
Способ второй: банка с электролитом
Литровую стеклянную банку используют в качестве ёмкости. В качестве электродов берутся цинковая и медная пластины. К пластинам прикрепляются провода, сами они опускаются в банку с электролитом. Им служит 20% раствор серной кислоты. Также можно использовать хлористый аммоний (нашатырь). На 100 мл воды берут 50 г. порошка. Уровень электролита не достигает края банки на 15-20 мм.
Ёмкость с электролитом
Осторожно! Работа с серной кислотой при приготовлении электролита подразумевает добавление воды в кислоту, а не наоборот. При приготовлении раствора необходимо использовать стеклянную посуду и стеклянную или деревянную палочку для перемешивания
Способ третий: медные монеты
Принцип использования медного катода и алюминиевого анода рассмотрен в этом способе. Процесс изготовления источника тока следующий:
- по форме медных монет одного размера (медный пятак) вырезают кружочки из алюминиевой фольги и плотного картона (обложка старой книги);
- монеты очищаются путём погружения в уксус, им же пропитываются и кружочки картона;
- картон вставляется между монетой и кружком фольги, которые служат катодом и анодом.
Собранная таким образом батарея будет работать до тех пор, пока не высохнет электролит, пропитавший картонные кружки.
Батарейка из монет и алюминиевой фольги
Способ четвертый: батарейка в пивной банке
Сам корпус пивной банки (алюминиевый) служит анодом (минус), в качестве катода используют графит. При изготовлении выполняются следующие шаги:
- удаляется верхняя часть банки;
- пенопластовый кружок диаметром, равным внутреннему диаметру банки, и толщиной не менее 10 мм укладывается на дно банки;
- в его центр вставляется графитовый стержень подходящего диаметра;
- свободное пространство между ним и стенками банки заполняется угольной крошкой;
- соляным раствором (5 ст. л. соли на 0,5 л воды) заполняется полученный элемент;
- верхняя часть устройства заливается расплавленным парафином или стеарином (от свечи);
- к стержню и корпусу банки с помощью зажимов «крокодил» присоединяются провода.
Батарейка в пивной банке
Способ пятый: батарейка из картошки
Это вариант использования химической реакции окисления между медными и оцинкованными полосками, в качестве электролита используется мякоть картофеля.
Внимание! Полученные напряжения таких источников настолько малы, что подобные конструкции могут служить лишь в качестве опытов для изучения происхождения электричества. Батарейка из картошки. Батарейка из картошки
Батарейка из картошки
Способ шестой: графитовый стержень
Графитовый сердечник обматывается пористой фибровой салфеткой. Поверх него наматывается по спирали алюминиевая проволока. Вся конструкция опускается в подходящий по размеру стакан, заполненный «Белизной». Водный раствор хлорки служит электролитом.
Графитовый стержень как электрод батарейки
Несмотря на всё разнообразие способов и видов самодельных источников тока, все они работают, благодаря электролитическим процессам и химическим реакциям окисления. Правильно подобранные пары элементов для анода и катода, а также использование подходящего электролитического раствора дают реальные результаты. Можно сделать аккумулятор своими руками для питания гаджетов и малогабаритных устройств.
Полезный совет
При использовании устройств без автоматического контроля заряда АКБ можно применить простейшее сетевое, суточное реле китайского производства. Это избавит от необходимости следить за временем отключения блока от сети.
Стоимость такого прибора около 200 рублей. Зная примерное время зарядки своего аккумулятора, можно выставить нужное время отключения. Это гарантирует своевременное прекращение подачи электричества. Можно отвлечься на дела и забыть о АКБ, что может привести к закипанию, разрушению пластин и выходу аккумулятора из строя. Новый аккумулятор будет стоить гораздо дороже
Самодельное зарядное устройство для автомобильного аккумулятора
Перед тем как сделать зарядное устройство для автомобильного аккумулятора, следует оценить свой опыт электромонтажных работ, знания по электротехнике, на основании этого приступить к выбору схемы зарядного устройства для автомобильного аккумулятора.
Можно посмотреть в гараже, возможно, есть старые устройства или блоки. Для устройства подходит блок питания от старого компьютера. В нем есть почти все:
- разъем 220 В;
- выключатель питания;
- электросхема;
- вентилятор охлаждения;
- выводы подключения.
Напряжения на нем стандартные: +5 В, -12 В и +12 Вольт. Для заряда АКБ лучше использовать провод +12 Вольт, 2 Ампера. Выходное напряжение необходимо поднять до уровня +14,5 – +15,0 Вольт. Обычно это удается сделать, изменив номинал сопротивления в цепи обратной связи (около 1 килоОма).
Это можно проделать экспериментальным путем либо покопавшись в интернете и найдя подходящую схему блока питания.
Ограничивающее сопротивление можно не ставить, электронная схема самостоятельно отрегулирует ток заряда в пределах 2 Ампер. Нетрудно подсчитать, что для полного заряда АКБ 50 А*ч потребуется около суток. Внешний вид устройства.
Рис.3
Можно подобрать или купить на блошином рынке сетевой трансформатор с напряжением вторичной обмотки от 15 до 30 Вольт. Такие применялись в старых телевизорах.
Мощное импульсное зарядное устройство для автомобильного аккумулятора
Такой блок питания был создан после того, как сгорел мой лабораторный БП, который прослужил всего пару месяцев. Было решено из подручных средств собрать мощный сетевой ИБП, который при желании можно было использовать в качестве зарядного устройства для автомобильных аккумуляторов.
За основу была взята схема полумостового инвертора на драйвере IR2153. По идее, такой инвертор можно собрать из подручного хлама, почти все основные компоненты можно снять из компьютерного блока питания.
На входе питания собран простой сетевой фильтр, пленочные конденсаторы 0,1мкФ подобраны с рабочим напряжением 400 Вольт до и после дросселя, сам дроссель выпаян из платы компьютерного блока питания. На кольце намотаны две независимые обмотки проводом 0,9мм, количество витков каждой обмотки — 10.
Термистор на входе питания защищает полевые ключи от бросков напряжения во время включения схемы. Диодный мост — можно взять готовый или же собрать из 4-х выпрямительных диодов с обратным напряжением не менее 400 вольт и током 1,5-3 А, в моем случае использован готовый диодный мост на 600 Вольт 4А.
От емкости электролитов зависит основная мощность, электролиты легко можно найти в любом компьютерном блоке питания. Мощность инвертора с таким раскладом компонентов составляет порядка 200ватт.
Трансформатор тоже был взят готовый, от того же компового блока питания. Поскольку ИБП должен работать в качестве лабораторного БП, то диапазон выходных напряжений должен быть широким. Трансформатор от компьютерного БП позволяет получить 24 Вольт без переделок, чего вполне достаточно для штатных радиолюбительских дел. Увеличить выходное напряжение можно двумя способами — повышением рабочей частоты генератора или же перемоткой импульсного трансформатора.
Ограничительный резистор 47К брать с мощностью 2 ватт, он обеспечивает питание микросхемы, номинал резистора может отклоняться на 10% в ту или иную сторону. В качестве диодного выпрямителя использована мощная сборка Шоттки, которая в себе содержит два мощных диода по 30А.
После выпрямителя напряжение сглаживается конденсатором 50Вольт 1000мкФ, чего вполне достаточно, но при желании можно увеличить емкость.
Полевые ключи обязательно должны быть высоковольтными, можно использовать ключи типа IRF740/IRF840 и другие. Хочу также заметить, что мощность такого блока питания можно поднять до 400 ватт, при этом заменяя только электролиты, крайне не советую повышать мощность более 500 ватт.
Какой же блок питания без защиты от КЗ? Изначально думал реализовать защиту в первичной цепи схемы, но это будет уже трудно настраиваемая схема, поскольку у многих возникают проблемы связанные именно с защитой, а поскольку изначально мне захотелось собрать устройство, которое бы могли повторить радиолюбители не имеющие нужного опыта работы с ИИП, то решил отказаться от идеи, этим не портить и не усложнять основную схему.
Сама защита реализована на отдельной плате, состоит из двух транзисторов. Номиналом шунта можно грубо настроить ток срабатывания защиты, номиналом переменника, можно более точно настроить на нужный ток срабатывания.
При КЗ и перегрузке блока питания, загорится индикатор и питание отключается, блок выходит из защиты моментально, при отсутствии кз или перегруза на выходе.
Полевой транзистор практически любой, с током 20-100A, можно использовать ключи типа irfz44, irfz40, irfz24, irfz46, irfz48, irf3205 и другие. Регулятор мощности — одна из важнейших частей блока питания. За основу взял схему ШИМ регулятора, поскольку такое управление имеет очень много плюсов.
.
ШИМ — регулятор построен на таймере 555 и мощном ключе IRFZ44, напряжение плавно можно регулировать от . до максимального выходного напряжения с трансформатора.
Данный блок справляется с любыми задачами, которые могут возникнуть в радиолюбительской практике — легкий, мощный и компактный, вольт/амперметр будет цифровым, заказан отдельно на интернет магазине, будет установлен на блок в ближайшее время.
Самые простые варианты самодельных ЗУ для аккумуляторов
Мы не будем рассуждать на тему что лучше, самодельная или заводская зарядка. Очевидно, что последний вариант безопаснее, но что касается рабочих характеристик, то здесь вполне могут присутствовать темы для горячих дебатов. А ценовой вопрос и вовсе не обсуждается. Так что давайте лучше сразу приступим к рассмотрению вариантов изготовления своими руками самых простых в реализации зарядок для автомобильного аккумулятора.
Зарядка из обычной лампочки и диода
Полноценное зарядное устройство из этих компонент не сделаешь, но если появится необходимость завести машину с севшей батареей, такой прибор очень даже пригодится.
Что нам понадобится:
- Старая добрая лампа накаливания. Они ещё встречаются в продаже. Главное – чтобы её мощность была высокой – чем выше, тем быстрее мы сможем привести аккумулятор в боевое состояние. Оптимальный вариант – 70–150-ваттные лампочки.
- Полупроводниковый диод – электронный элемент, пропускающий ток только в одном направлении. В нашем устройстве диод будет отвечать за преобразование переменного тока в постоянный. Они продаются в магазинах радиотоваров, на рынках и стоят копейки даже по нынешним меркам.
- Провод с вилкой для подключения зарядки к сети 220 В.
- Провода для коммутации ЗУ с батареей.
Лампа с диодом подключаются последовательно, провод от лампы идёт в розетку, от диода – на плюсовую клемму аккумулятора. Второй провод соединяет минус АКБ и розетку. Отметим зависимость между временем зарядки и мощностью лампы. При 100 ваттах ток заряда будет составлять 0.17 А. Это означает, что за 10 часов мы зарядим батарею всего на 2 А. Но слишком мощная лампа тоже плохо – 200 Вт это уже критично для полупроводникового диода, который может просто сгореть.
Нетрудно подсчитать, что сильно разряженную батарею таким ЗУ в оптимальные сроки восстановить не удастся. Но если требуется подзарядить АКБ для пуска мотора, то этот вариант можно считать рабочим.
Зарядное устройство для АКБ из выпрямителя
По количеству используемых компонент это зарядное устройство также относится к самым простым. Их здесь, как и в предыдущем случае, два: выпрямитель в паре с преобразователем напряжения.
При этом выпрямитель можно использовать одного из трёх типов:
- с зарядкой постоянным током;
- работающие с ассиметричным током;
- устройства с переменным током.
Если использовать первый вариант, зарядка аккумулятора будет происходить при постоянном значении силы тока, избавленного от флюктуаций переменного напряжения. Выпрямители переменного тока работают по принципу подачи на клеммы АКБ переменного напряжения. Ассиметричные (их часто называют однополупериодными) выпрямители демонстрируют лучшие результаты, чем их оппоненты.
Они состоят из пяти компонент:
- диода большой мощности;
- переменного сопротивления;
- стабилитрона (трансформатора);
- предохранителя;
- выключателя.
Номинал предохранителя – 1 А, мощность трансформатора должна составлять 140 Вт при выходном напряжении 20–21 В. Резистор должен быть помощнее, типа МЛТ-2. Диод должен выдерживать токи порядка 5 А. Наконец, в качестве усилителя можно использовать регулятор на базе транзисторов 0818 и KT825, которые нужно установить на радиаторную подложку.
Для сборки потребуется плата без дорожек, на которой размещают все элементы, соединяя их между собой проводами. Такое зарядное устройство для автоаккумулятора, собранное своими руками, позволяет регулировать выходной ток. Главное – найти указанные компоненты и грамотно их расположить.
Какие ещё имеются варианты ЗУ для АКБ
Рассмотрим ещё несколько вариантов самостоятельных зарядных устройств для аккумуляторов.
Использование зарядки от ноутбука для АКБ
Один из самых простых и быстрых способов оживления севшего аккумулятора. Для реализации схемы оживления АКБ с помощью зарядки от ноутбука понадобятся:
- Зарядное устройство от любого ноутбука. Параметры зарядных устройств составляют 19 В и ток около 5 А.
- Лампа галогеновая мощностью 90 Вт.
- Соединительные провода с зажимами.
Переходим к реализации схемы. Лампочка используется для того, чтобы ограничить ток до оптимального значения. Вместо лампочки можно использовать резистор.
Зарядку для ноутбука также возможно использовать для «оживления» автомобильного аккумулятора
Собрать такую схему не составляет большого труда. Если зарядку от ноутбука не планируется использовать по назначению, то штекер можно отрезать, после чего подключить к проводам зажимы. Предварительно при помощи мультиметра следует определить полярность. Лампочка включается в цепь, которая идёт на плюсовую клемму аккумулятора. Минусовая клемма от АКБ подключается напрямую. Только после подключения устройства к АКБ можно осуществлять подачу напряжения на блок питания.
ЗУ своими руками из микроволновой печи или аналогичных приборов
С помощью трансформаторного блока, который имеется внутри микроволновки, можно сделать ЗУ для АКБ.
Пошаговая инструкция изготовления самодельного зарядного устройства из трансформаторного блока от микроволновки представлена ниже.
- С микроволновки нужно снять трансформаторный блок.
- Удалить вторичную обмотку, после чего заменить её на изолированный провод сечением свыше 2 мм2 .
- Определиться с необходимым количеством витков, которые нужно сделать при помощи изолированного провода. Выяснить необходимое значение можно экспериментальным путём. Для этого необходимо намотать 10 витков, после чего измерить выходное напряжение. К примеру, если его значение будет составлять 2 В, то для достижения 14,5 В понадобится сделать около 70 витков. Выходное напряжение будет зависеть от сечения используемого провода.
С трансформаторного блока микроволновой печи удаляется обмотка
- Для реализации схемы понадобится диодный мост и мощный конденсатор.
- По желанию в цепь можно включить амперметр, который будет показывать ток.
Схема подключения трансформаторного блока, диодного моста и конденсатора к автомобильному аккумулятору
Сборку устройства можно осуществлять на любом основании
При этом важно, чтобы все конструкционные элементы были надёжно защищены. При необходимости схему можно дополнить выключателем, а также вольтметром
Бестрансформаторное зарядное устройство
Если поиски трансформатора завели в тупик, то можно воспользоваться простейшей схемой без понижающих устройств. Ниже представлена такая схема, которая позволяет реализовать ЗУ для аккумулятора без использования трансформаторов напряжения.
Электрическая схема ЗУ без использования трансформатора напряжения
Роль трансформаторов выполняют конденсаторы, которые рассчитаны на напряжение величиной 250В. В схему следует включить минимум 4 конденсатора, расположив их параллельно. Параллельно конденсаторам в цепь включается резистор и светодиод. Роль резистора заключается в гашении остаточного напряжения после отключения устрйоства от сети.
В цепь также включается диодный мост, рассчитанный на работу с токами до 6А. В схему мост включается после конденсаторов, а к его выводам подключаются провода, идущие на АКБ для зарядки.