Из чего состоит статор асинхронного двигателя

Подключение электромотора на самодельных устройствах

Перед использованием электродвигателя нужно навести справки о его типе и особенностях конструкции. Единственной доступной информацией при этом может быть лишь серийная маркировка на корпусе, остальное — мощность, тип, возможные системы управления двигателем – придется поискать в технических справочниках.

Проверка проводных выходов и корпуса на короткое замыкание — застрахует от аварий. Для этого, после визуального осмотра на предмет следов возгорания, при помощи мультиметра нужно сделать прозвон всех контактов и корпуса, затем проверить обмотки и выводы, и также конденсаторы при наличии.

Намотка

Намотка электродвигателей производится как в специализированных цехах, так и специалистами – любителями. Для проведения подобного ремонта нужно ясно представлять себе, что потребуется делать в этой модели, ее данные, расположение статорных обмоток, их соединение. Такая работа требует знания обмоточных данных аппарата, а в некоторых случаях – проведения дополнительных расчетов, например, расчет сопротивлений и индуктивностей катушек.

Большинство информации можно получить в специальных таблицах, которые содержат обмоточные данные на те или иные модели. Вот расчеты по двигателю АИР:

Схемы подключения однофазных электродвигателей

Вопрос как подключить однофазный электродвигатель очень часто возникает на практике из-за высокой популярности применения подобных агрегатов для решения различных бытовых задач.

Схема подключения однофазного электродвигателя достаточно проста и требует учета всего одного принципиального момента: для обеспечения его работоспособности необходимо вращающееся магнитное поле. При наличии только однофазной сети переменного тока на момент запуска электродвигателя его приходится формировать искусственно через применение соответствующих схемных решений.

ОГЛАВЛЕНИЕ

  • Обмотки электромотора
  • Особенности формирования вращающего момента
  • Конденсаторы
  • Косвенное включение
  • Особенности применения магнитного пускателя
  • Заключение

Обмотки электромотора

Укладка обмоток в статоре однофазного электродвигателя

Конструкция любого однофазного электродвигателя предполагает использование как минимум трех катушек. Две из них являются элементов конструкции статора,включены параллельно.

Одна из них является рабочей, а вторая выполняет функции пусковой. Их клеммы выведены на корпус двигателя и используются для подключения к сети. Обмотка ротора выполнена короткозамкнутой.

К сети подключатся две из них, остальные служат для коммутации.

Визуально идентифицировать рабочую и пусковую обмотку можно по сечению провода: у первой из них оно заметно больше. Можно замерить сопротивление тестером подключением его к клеммам: у рабочей обмотки его величина будет меньше. Как правило, сопротивления обмоток будет составлять не более нескольких десятков Ом.

Особенности формирования вращающего момента

Магнитное поле, создаваемое катушками электродвигателя, имеет фазовый сдвиг на 90 градусов. Это обычно достигается через конденсатор, который последовательно включается в цепь запуска. Возможные варианты соединения показаны на рисунке ниже.

Варианты создания сдвига фаз

Пусковая катушка может работать постоянно. Допустима также схема, основанная на ее отключении после достижения номинальной частоты вращения ротора. Постоянное подключение пусковой обмотки усложняет конструкцию двигателя, но улучшает его характеристики. На особенностях подключения к сети эти различия не сказываются.

Однофазный электромотор позволяет простыми средствами изменить направление вращения вала на противоположное. Для этого производится сдвиг фазы тока, поступающего от сети и протекающего через цепи запуска, меняется на противоположный. Данная процедура реализуется простым изменением порядка включения пусковой обмотки при ее соединении с рабочей обмоткой.

Устройство обмоток

Катушка обмотки из двух секций

Статорная обмотка улаживается в специальные пазы. Она состоит из катушек, которые соединяются друг с другом со сдвигом по фазам. Катушка, в свою очередь, – это отдельные витки изолированного провода, называемые секциями и намотанные согласно обмоточным данным. Если в паз производится укладка одной катушки, то это однослойная обмотка, а если двух, тогда двухслойная.

Расчет числа пазов на полюсное деление проводят по формуле: Q = Z/2p, где Z – это количество пазов в статоре, а 2р – число полюсов.

Можно также посчитать число пазов, которые приходят на фазу и на полюс трехфазной обмотки: q = Q/3 = z/(3*2p)

Также считаются все необходимые коэффициенты, а также сопротивление обмоток и значения индуктивности.

Общая схема однослойной трехфазной обмотки выглядит таким образом:

Коэффициент заполнения паза обязательно стоит учитывать, ведь чем толще провод, тем сложнее намотка. Расчет этого коэффициента проводят по формуле:

Видно, что он прямо пропорционален сечению проводов вместе с изоляцией и обратно пропорционален площади самого паза.

Обмотка должна плотно входить в пазы, иначе будет появляться паразитная индуктивность, вызывающая лишний нагрев.

Находим выход проводов

В процессе ремонта электродвигателя возникает необходимость определения начала и конца его выводов. Представим ситуацию: есть шесть проводов от катушек, их необходимо правильно соединить между собой. Как это сделать, чтобы не попутать фазы?

Наши читатели рекомендуют! Для экономии на платежах за электроэнергию наши читатели советуют ‘Экономитель энергии Electricity Saving Box’. Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Эта операция, состоящая из нескольких шагов, делается методом измерений при помощи комбинированного прибора. Сперва определяем, какие вывода к каким катушкам относятся. Просто меряем их сопротивление между собой, находим три катушки.

Теперь соединяем две катушки таким образом:

Можно подать не 220, а 100 вольт и посмотреть показания вольтметра. Если он покажет напряжение, значит, обмотки включены правильно, если ничего не покажет, или очень мало, то их вывода нужно переключить наоборот и проверить еще раз, чтобы убедиться в правильном фазном подключении. Аналогичным образом остается найти правильность соединения третьей катушки. Теперь начала и концы катушек найдены.

Виды электромеханических устройств

Статор — понятие и принцип действия

Используют ротор в таких электромеханических устройствах, как двигатели, работающие на постоянном и переменном электрическом токе, генераторы.

Агрегаты, работающие на переменном токе

К таким агрегатам относятся различные электродвигатели. Наиболее распространенная модель данного устройства состоит из следующих частей:

  • Алюминиевый или чугунный ребристый корпус с монтажной коробкой для подключения обмоток статора и ротора;
  • Статор – неподвижная часть в виде полого цилиндра, расположенная внутри корпуса. Обмотка статора состоит из 3 пар расположенных друг напротив друга намотанных в пазы корпуса катушек из медного изолированного провода
  • Цельнометаллический цилиндрический ротор с валом и пазами, в которые впаяны обладающие высокой токопроводящей способностью алюминиевые стержни.

Двигатель, запитываемый от переменного тока

Вращается ротор на двух опорных подшипниках, запрессованных на его валу. Охлаждение работающего на больших оборотах электродвигателя происходит, благодаря крыльчатке – небольшому вентилятору, состоящему из множества лопастей и расположенному на одном из концов вала ротора. Также эффективному охлаждению работающего агрегата способствует ребристая структура алюминиевого корпуса.

Принцип работы подобного двигателя заключается в следующем:

  1. При подключении тока к агрегату он попеременно проходит через одну из трех пар катушек статора.
  2. При протекании по парам статорных катушек электрического тока они создают магнитное поле, силовые линии которого пересекают ротор.
  3. Попеременно запитываемые пары катушек создают подвижное магнитное поле, которое по закону электромагнитной индукции провоцирует появление в неподвижных металлических стержнях ротора электрического тока.
  4. Индуцированный ток в роторе приводит к появлению силы, выталкивающей его из магнитного поля статора. Так как частота подачи тока на катушки статора в среднем составляет порядка 30 импульсов в секунду, появившаяся в роторе выталкивающая сила приводит к его вращению с большой скоростью.

Важно! В зависимости от одновременности вращения ротора и порождающего это движение магнитного поля электрический двигатель переменного тока может быть синхронный (ротор агрегата вращается синхронно с магнитным полем статора) и асинхронный (вращение якоря не синхронизировано с движением магнитного поля статора). Первый вид отличается высокой мощностью и надежностью, в то время как второй характеризуется большим разнообразием конструкций и областей применения

Машины постоянного тока

Наиболее распространенный электродвигатель постоянного тока щеточного вида представляет собой электрический агрегат, состоящий из:

  • Чугунного корпуса с ребрами охлаждения и специальным монтажным коробом для подключения обмоток агрегата;
  • Вала из прочной инструментальной стали с двумя подшипниками;
  • Якоря, состоящего из сердечника (набора пластин из специальной электротехнической стали), якорной обмотки (размещенных в пазах сердечника катушек из медного провода);
  • Индуктора, состоящего из полюсов возбуждения с намотанными на них катушками из медного провода;
  • Коллектора – расположенных на валу медных пластин, к которым подключаются выводы катушек якорной обмотки;
  • Подпружиненных графитовых или металлографитовых щеток (щеточной группы).

Охлаждается такой двигатель, как и аналог, работающий от переменного тока, – расположенной на валу крыльчаткой.

Двигатель, работающий от постоянного тока

Важно! В отличие от электродвигателя переменного тока частотой вращения ротора в таком силовом агрегате управляет специальный блок, который при помощи установленного на валу датчика Холла определяет положение ротора и его скорость. Работает подобный агрегат следующим образом:

Работает подобный агрегат следующим образом:

  1. На обмотку возбуждения подается напряжение, создавая тем самым постоянное магнитное поле;
  2. Через щетки и коллектор напряжение подается на катушки сердечника якоря – возникающее при этом магнитное поле отталкивается от такого же, образованного индуктором, вследствие чего двигатель начинает вращаться («запускается»);
  3. Впоследствии при вращении через щетки запитываются остальные катушки якорной обмотки, что приводит к равномерному вращению якоря с определённой скоростью.

Останавливают вращение такого агрегата прекращением подачи напряжения на щеточную группу.

Помимо описанных выше электромоторов, к машинам, работающим на постоянном токе, относится также роторный стартер – устройство, необходимое для запуска бензиновых и дизельных автомобильных двигателей внутреннего сгорания.

Перемотка электродвигателя своими руками в домашних условиях

Техника часто подвергается перегрузкам и механическим повреждениям. Стоит всего раз уронить или что-нибудь пролить на инструмент, как на обмотке ротора появляется ржавчина, а сам якорь смещается. Последствия плачевны: электродвигатель перегревается, искрит и вибрирует. Работа с таким инструментом опасна.

Если у вас есть навыки ремонта техники и минимальный набор инструментов, то устранить неисправность поможет перемотка якоря в домашних условиях. Дело в том, что именно обмотка принимает на себя первые «удары» неправильной эксплуатации. Жилы проводника разрываются и обгорают. Их замена продлит жизнь техники и увеличит производительность двигателя.

Проверка якоря коллекторного двигателя

Осциллограф — понятие и конструкция прибора

У якоря коллекторного электродвигателя надо проверять два основных типа неисправностей:

  1. Механические;
  2. Электрические.

На заметку. К механическим неисправностям, как правило, относится выработка ресурса подшипников. Появляются сильный шум при работе двигателя, нагрев подшипников, продольный и радиальный люфт якоря.

Электрические неисправности включают в себя:

  • Обрыв провода в обмотке;
  • Межвитковое замыкание;
  • Пробой обмотки на корпус якоря и самого мотора;
  • Износ контактных ламелей коллектора.

Следует рассмотреть, как проверить якорь на межвитковое замыкание. Сделать это удобно с помощью цифрового мультиметра либо, при его отсутствии, стрелочным тестером.


Электронный мультиметр

Как прозвонить якорь? Следует поочередно измерять сопротивление обмоток якоря, касаясь щупами мультиметра противоположных ламелей коллектора. Значительное отклонение величины сопротивления позволит узнать неисправную обмотку. Пробой на корпус проверяется мультиметром в диапазоне сопротивления 20 кОм. Один щуп присоединяется к валу ротора, другим поочередно касаются ламелей коллектора. Прибор должен показывать состояние «разрыв». По показанию мультиметра менее 20 кОм можно узнавать о неисправности обмотки, и, следовательно, необходимости ремонта якоря.

5.13. ПУСК, РЕГУЛИРОВАНИЕ ЧАСТОТЫ ВРАЩЕНИЯ И ТОРМОЖЕНИЕ АСИНХРОННОГО ДВИГАТЕЛЯ.

На практике замечено, что
ток, потребляемый обмоткой статора в первый момент пуска двигателя, очень большой.
В ряде случаев он превышает номинальный ток в 6 — 10 раз.

Такой нагрузки может не
выдержать не только питающая сеть, но и сама обмотка статора. Поэтому для пуска
крупных асинхронных двигателей применяют специальные устройства, снижающие пусковой
ток. На рис. 5.13.1. показаны схемы пуска мощных двигателей с помощью реакторов
и автотрансформатора.

Принцип ограничения тока
заключается в том, что к статорной обмотке двигателя на период пуска подводится
пониженное напряжение. После разгона его дополнительные устройства от двигателя
отключаются.

Иногда для снижения напряжения,
подаваемого в обмотки статора, изменяют схему переключения обмоток. Например,
асинхронный двигатель нормально работает по схеме «треугольник». Если
на период пуска его обмотки включить «звездой», то на каждую фазу
придется напряжение в раз меньшее.

Двигатели с фазным ротором
пускаются в работу с помощью дополнительных сопротивлений. Вводя дополнительные
сопротивления в цепь ротора, добиваются ограничения пускового тока.

Регулирование частоты вращения асинхронного двигателя определяется формулой:


.

Здесь возможны три различных способа реализации:

Первый заключается в изменении
частоты тока f, подаваемого в обмотки двигателя. Этот способ позволяет осуществлять
плавное регулирование частоты вращения двигателя. Регуляторы частоты тока пока
еще очень дороги, поэтому они мало применяются.

Второй способ связан с изменением пар полюсов p на статоре.

Укладывая на статоре несколько
обмоток, рассчитанных на различные числа пар полюсов (р=1,2,3,4),
можно обеспечить различные частоты вращения магнитного поля (соответственно:
3000, 1500, 1000, 750 об/мин). Подключение к сети необходимой обмотки производится
специальным переключателем.

Этот способ регулирования
ступенчатый, но в ряде металлообрабатывающих станков он нашел самое широкое
применение (например, для привода продольно-строгального станка при рабочем
и обратном ходе).

Третий способ регулирования
частоты вращения возможен лишь для двигателей с фазным ротором. Здесь изменение
скольжения S достигается введением в цепь ротора регулировочных сопротивлений.
Такие схемы широко используются на грузоподъемных кранах.

К категории регулирования
вращения вала двигателя относится так называемое реверсирование, т.е. изменение
направления вращения на обратное. Осуществляется оно путем изменения порядка
чередования фаз обмотки статора. На рис. 5.13.2. показана схема изменения направления
вращения вала двигателя.

Торможение асинхронного двигателя может быть механическим и электрическим.

К механическим относятся торможения муфтами, электромагнитными лентами, колодками и т.д.

Иногда применяют электродинамическое
торможение, когда после отключения двигателя от сети переменного тока в его
обмотки подается постоянный ток. В этом случае постоянное магнитное поле заметно
сокращает выбег ротора.

Чаще используется торможение
«противовыключением». После отключения двигателя от сети его кратковременно
включают на вращение в обратную сторону. Как только оставшаяся частота вращения
ротора n2 станет равной нулю, двигатель отключается от сети.

Трехфазный асинхронный двигатель с фазным ротором

До широкого распространения частотных преобразователей асинхронные двигатели средней и большой мощности делали с фазным ротором. Трехфазные асинхронные двигатели с фазным ротором (АДФР) обычно применяли в устройствах с тяжелыми условиями пуска, например в качестве крановых двигателей переменного тока, или же для привода устройств, требующих плавного регулирования частоты вращения.

Конструкция АДФР

Фазный ротор

Конструктивно фазный ротор представляет из себя трехфазную обмотку (аналогичную обмотки статора) уложенную в пазы сердечника фазного ротора. Концы фаз такой обмотки ротора обычно соединяются в “звезду”, а начала подключают к контактным кольцам, изолированным друг от друга и от вала. Через щетки к контактным кольцам обычно присоединяется трехфазный пусковой или регулировочный реостат. Асинхронные двигатели с фазным ротором имеют более сложную конструкцию, чем у двигателей с короткозамкнутым ротором, однако обладают лучшими пусковыми и регулировочными свойствами.

Фазный ротор

Статор АДФР

Статор асинхронного двигателя с фазным ротором по конструкции не отличается от статора асинхронного двигателя с короткозамкнутым ротором.

Обозначение выводов вторичных обмоток трехфазного АДФР

Обозначение выводов обмоток ротора вновь разрабатываемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза K1 K2
вторая фаза L1 L2
третья фаза M1 M2
Соединение в звезду (число выводов 3 или 4)
первая фаза K
вторая фаза L
третья фаза M
точка звезды (нулевая точка) Q
Соединение в треугольник (число выводов 3)
первый вывод K
второй вывод L
третий вывод M

Обозначение выводов обмоток ротора ранее разработанных и модернизируемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Соединение звездой (число выводов 3 или 4)
первая фаза Р1
вторая фаза Р2
третья фаза Р3
нулевая точка
Соединение треугольником (число выводов 3)
первый вывод Р1
второй вывод Р2
третий вывод Р3

Примечание: Контактные кольца роторов асинхронных двигателей обозначают так же, как присоединенные к ним выводы обмотки ротора, при этом расположение колец должно быть в порядке цифр, указанных в таблице, а кольцо 1 должно быть наиболее удаленным от обмотки ротора. Обозначение самих колец буквами необязательно.

Пуск АДФР

Пуск двигателей с фазным ротором производится с помощью пускового реостата в цепи ротора.

Применяются проволочные и жидкостные реостаты.

Металлические реостаты являются ступенчатыми, и переключение с одной ступени на другую осуществляется либо вручную с помощью рукоятки контроллера, существенным элементом которого является вал с укрепленными на нем контактами, либо же автоматически с помощью контакторов или контроллера с электрическим приводом.

Жидкостный реостат представляет собой сосуд с электролитом, в котором опущены электроды. Сопротивление реостата регулируется путем изменения глубины погружения электродов .

Для повышения КПД и снижения износа щеток некоторые АДФР содержат специальное устройство (короткозамкнутый механизм), которое после запуска поднимает щетки и замыкает кольца.

При реостатном пуске достигаются благоприятные пусковые характеристики, так как высокие значения моментов достигаются при невысоких значениях пусковых токов. В настоящее время АДФР заменяются комбинацией асинхронного электродвигателя с короткозамкнутым ротором и частотным преобразователем.

ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.
ГОСТ 26772-85 Машины электрические вращающиеся. Обозначение выводов и направление вращения.
А.И.Вольдек. Электрические машины. Учебник для студентов высш. техн. заведений. изд. 2-е, перераб. и доп.-Ленинград: Энергия, 1974.

Неисправности электрической и механической частей

Чаще всего происходят короткие замыкания в обмотке, обрывы обмотки или наружной цепи.

  • Электродвигатель не запускается.
  • Обмотки сильно перегреваются.
  • Скорость вращения не нормальная.
  • Лишний шум – стук или гудение.
  • Неравный ток в отдельных фазах.

Что касается механики, то здесь чаще всего происходят поломки в работе подшипников, они могут перегреваться и из них может вытекать масло. Также к механическим повреждениям относится повреждение корпуса, обрыв крыльчатки, зацепление ротора за статор, проворачивание ротора на валу.

Аварийные ситуации

Есть неисправности, которые не связаны с двигателем, но влияющие на его работу.

К списку аварийных ситуаций относятся следующие пункты.

  • Вал подвергается излишней нагрузке, в таком случае клинит привод и механизмы;
  • Перекос напряжения питания происходит из-за проблем сети и внутренних проблем привода;
  • Может пропадать фаза;
  • Трудности с охлаждением, происходит из-за неисправной крыльчатки, остановки вентилятора или повышения температуры в помещении;

Эти повреждения вызываются механической перегрузкой или повышением тока.

Этапы осуществления процедуры перемотки статора

При работе важно получить строго определенное количество витков – оно должно быть идентично количеству витков старой обмотки. Проволоку нужно наматывать так, чтобы уплотнение было максимальным

Катушки ставятся в статор. Из того же материала, из которого сделана обмотка для катушек, делаются выводы. Их кончики нужно изолировать кембриками – трубочками, изготовленными из пластмассы.

До того как установить катушки, необходимо проверить, чтобы пазовые коробки были симметричны. Они должны закрывать обмотку. Если этого не происходит, при закладке проводов катушек ставят временные вкладыши. Эта простая мера позволит избежать повреждения.

Катушка монтируется над пазом, который находится ниже расточки. Проводники катушки устанавливают с помощью специальной пластины. Провода, расположенные в пазу, ни в коем случае не должны перекрещиваться. Их нужно укладывать точно так же, в той же последовательности, что и намотку. Проводники нужно устанавливать строго параллельно.

Чтобы выполнить следующую операцию, статор нужно немного повернуть – только на одно деление. В паз укладываются катушки из этой же группы. После окончания укладки нужно положить междуслойные прокладки. Выводы прикрутить к внешнему контуру так, чтобы они располагались параллельно внешнему контуру. Нижняя сторона катушек монтируется по такому же принципу. Операция повторяется до тех пор, пока пазы этого шага не заполнятся.

Когда обмотка закончена, концы можно загильзовать. Размеры гильз зависят от размеров статора. Толщина гильзы обычно бывает 0,2 мм, но при этом длина должна быть больше, чем габарит устройства запуска. Чаще всего это значение составляет около 1,5 мм. Для изготовления гильзы используется специальный картон. На него нужно намотать пленку (должна быть термоустойчивой). Всю получившуюся конструкцию заворачивают скотчем. Катушки с гильзами нужно установить в пазы статора. После этого можно провести проверку, правильно ли двигается якорь. Катушка полностью готова. Ее останется только обмотать киперной лентой, а сверху покрыть слоем лака. После того как лак высохнет, прибор полностью готов к использованию.

Когда речь заходит о перемотке статора, в подавляющем большинстве случаев, подразумевается ремонт инструмента. В качестве примера выполнения означенного процесса можно привести перемотку статора на болгарке.

Означенный процесс по замене обмоток в одной из частей электрического двигателя можно осуществить и бытовых условиях. Объяснить это можно полным повторением сгоревшей обмотки. То есть, выбирается точно такой же проводник, с точно такой же изоляцией.