Сила лоренца просто и понятно: определение, формула, правило левой руки

Правило левой руки

Правило левой руки звучит так.

Если расположить левую руку так, чтобы четыре пальца были направлены по направлению движения положительного заряда (или по направлению тока), а линии магнитной индукции входили в ладонь, «прокалывая» её, то большой палец покажет направление силы Лоренца (или силы Ампера).

Как пользоваться этим правилом? Разберём примеры.

Допустим, ток по проводнику течёт слева направо. А линии магнитной индукции направлены вверх.

Направляем левую руку четырьмя пальцами вправо. Ладонь должна «смотреть» вниз, так, чтобы линии магнитной индукции входили в ладонь и «прокалывали» её. Отставленный большой палец покажет направление назад.

Это и будет направление силы Ампера в данном случае. Действительно, плоскость, образованная векторами тока и магнитной индукции, — вертикальна, и сила Ампера перпендикулярна ей.

Другой пример. Электрон движется назад, «на наблюдателя», между полюсами магнита, причём северный находится справа.

Линии магнитной индукции направлены справа налево, следовательно, ладонь левой руки должна быть направлена вправо. Электрон заряжен отрицательно, то есть четыре пальца руки должны быть направлены против его движения — вперёд. Отставленный большой палец будет направлен вверх. Это и будет направление силы Лоренца в данном случае.

Рис. 3. Правило левой руки.

Что мы узнали?

Правило левой руки — это правило, предназначенное для определения направления силы Лоренца или силы Ампера. По этому правилу, если четыре пальца левой руки будут указывать направление движения положительного заряда (направление тока), а линии магнитной индукции будут входить в ладонь, «прокалывая» её, то отставленный большой палец покажет направление силы Лоренца или Ампера.

Тест по теме

  1. Вопрос 1 из 10

Начать тест(новая вкладка)

Какое правило применить

Слова синонимы: рука, винт, буравчик

Вначале разберем слова-синонимы, многие начали спрашивать себя: если тут повествование должно затрагивать буравчик, почему текст постоянно касается рук. Введем понятие правой тройки, правой системы координат. Итого, 5 слов-синонимов.

Потребовалось выяснить векторное произведение векторов, оказалось: в школе это не проходят. Проясним ситуацию любознательным школьникам.

Декартова система координат

Школьные графики на доске рисуют в декартовой системе координат Х-Y. Горизонтальная ось (положительная часть) направлена вправо – надеемся, вертикальная – указывает вверх. Делаем один шаг, получая правую тройку. Представьте: из начала отсчета в класс смотрит ось Z. Теперь школьники знают определение правой тройки векторов.

В Википедии написано: допустимо брать левые тройки, правые, вычисляя векторное произведение, несогласны. Усманов в этом плане категоричен. С разрешения Александра Евгеньевича приведем точное определение: векторным произведением векторов называют вектор, удовлетворяющий трем условиям:

  1. Модуль произведения равен произведению модулей исходных векторов на синус угла меж ними.
  2. Вектор результата перпендикулярен исходным (вдвоем образуют плоскость).
  3. Тройка векторов (по порядку упоминания контекстом) правая.

Правую тройку знаем. Итак, если ось Х – первый вектор, Y – второй, Z будет результатом. Почему назвали правой тройкой? По-видимому, связано с винтами, буравчиками. Если закручивать воображаемый буравчик по кратчайшей траектории первый вектор-второй вектор, поступательное движение оси режущего инструмента станет происходить в направлении результирующего вектора:

  1. Правило буравчика применяется к произведению двух векторов.
  2. Правило буравчика качественно указывает направление результирующего вектора этого действия. Количественно длина находится выражением, упомянутым (произведение модулей векторов на синус угла меж ними).

Простые приемы запоминания правил буравчика

Люди забывают, что силу Лоренца проще определять правилом буравчика с левосторонней резьбой. Желающий понять принцип действия электрического двигателя должен как дважды два щелкать подобные орешки. В зависимости от конструкции число катушек ротора бывает значительным, либо схема вырождается, становясь беличьей клеткой. Ищущим знания помогает правило Лоренца, описывающее магнитное поле, где движутся медные проводники.

Для запоминания представим физику процесса. Допустим, движется электрон в поле. Применяется правило правой руки для нахождения направления действия силы. Доказано: частица несет отрицательный заряд. Направление действия силы на проводник находится правилом левой руки, вспоминаем: физики совершенно с левых ресурсов взяли, что электрический ток течет в направлении противоположном тому, куда направились электроны. И это неправильно. Поэтому приходится применять правило левой руки.

Не всегда следует идти такими дебрями. Казалось бы, правила больше запутывают, не совсем так. Правило правой руки часто применяется для вычисления угловой скорости, которая является геометрическим произведением ускорения на радиус: V = ω х r. Многим поможет визуальная память:

  1. Вектор радиуса круговой траектории направлен из центра к окружности.
  2. Если вектор ускорения направлен вверх, тело движется против часовой стрелки.

Посмотрите, здесь опять действует правило правой руки: если расположить ладонь так, чтобы вектор ускорения входил перпендикулярно в ладонь, персты вытянуть по направлению радиуса, отогнутый на 90 градусов большой палец укажет направление движения объекта. Достаточно однажды нарисовать на бумаге, запомнив минимум на половину жизни. Картинка действительно простая. Больше на уроке физики не придется ломать голову над простым вопросом – направление вектора углового ускорения.

Аналогичным образом определяется момент силы. Исходит перпендикулярно из оси плеча, совпадает направлением с угловым ускорением на рисунке, описанном выше. Многие спросят: зачем нужно? Почему момент силы не скалярная величина? Зачем направление? В сложных системах непросто проследить взаимодействия. Если много осей, сил, помогает векторное сложение моментов. Можно значительно упростить вычисления.

Формулировка и формулы

Частица с зарядом q испытывает силу F, когда движется со скоростью v в электрическом (E) и магнитном (B) полях. Определяется она как F = qE + qv x B и измеряется в единицах СИ — N (ньютон). С точки зрения декартовых компонентов имеется:

  • F x = q (E x + ⱴ y B z — ⱴ z B y);
  • F y = q (E y + ⱴ z B x — ⱴ x B z);
  • F z = q (E z + ⱴ x B y — ⱴ y B x).

Ускорение частицы будет происходить в той же линейной ориентации, что и поле E, но станет изгибаться перпендикулярно как вектору мгновенной скорости v, так и полю B. Это говорит о соответствии формулы силы Лоренца и «правила левой руки». Также здесь будет работать и «правило буравчика» (если пальцы расширяются, чтобы указывать в направлении v, а затем скручиваются, показывая в сторону B, тогда большой палец будет смотреть на F).

Комбинация q E называется электрической силой, а q (v + B) — магнитной. В этом контексте её можно называть силой Лапласа. Она не влияет на мощность, потому что всегда перпендикулярна скорости частицы.

Для непрерывного распределения заряда в движении уравнение принимает вид dE = dq (E + v + B). Если обе части равенства будут разделены на объём небольшого фрагмента dV, результат будет выглядеть следующим образом: f = p (E + v x B). Поэтому непрерывным аналогом уравнения является f = pE + J x B, где J — плотность тока.

Суммарная сила — интеграл объёма по распределению заряда: F = ∫∫∫ (p E + J x B) dV. Устраняя p и J, используя уравнения Максвелла и манипулируя с помощью теорем векторного исчисления, эту форму можно использовать для получения тензора напряжения σ. В свою очередь, это можно объединить с вектором Пойнтинга s для получения электромагнитного тензора энергии-импульса T, используемого в общей теории относительности. Если разделить полный заряд и ток на их связанные частицы, то получится плотность силы Лоренца. Она, в свою очередь, может объяснить крутящий момент.

Основы специальной теории относительности (СТО)

К оглавлению…

Релятивистское сокращение длины:

Релятивистское удлинение времени события:

Релятивистский закон сложения скоростей. Если два тела движутся навстречу друг другу, то их скорость сближения:

Релятивистский закон сложения скоростей. Если же тела движутся в одном направлении, то их относительная скорость:

Энергия покоя тела:

Любое изменение энергии тела означает изменение массы тела и наоборот:

Полная энергия тела:

Полная энергия тела Е пропорциональна релятивистской массе и зависит от скорости движущегося тела, в этом смысле важны следующие соотношения:

Релятивистское увеличение массы:

Кинетическая энергия тела, движущегося с релятивистской скоростью:

Между полной энергией тела, энергией покоя и импульсом существует зависимость:

Подключение к карте палатки

Воспроизведение результатов Лоренца, созданных в системе Mathematica . Точки над красной линией соответствуют лепесткам переключения системы.

На рисунке 4 своей статьи Лоренц построил относительное максимальное значение в направлении z, полученное системой, против предыдущего относительного максимума в направлении z. Эта процедура позже стала известна как карта Лоренца (не путать с графиком Пуанкаре , который отображает пересечения траектории с заданной поверхностью). Полученный участок имеет форму, очень похожую на карту палатки . Лоренц также обнаружил, что когда максимальное значение z выше определенного порогового значения, система переключится на следующий лепесток. Объединив это с хаосом, который, как известно, демонстрируется картой палатки, он показал, что система переключается между двумя лепестками хаотично.

Обзор

В 1963 году Эдвард Лоренц с помощью Эллен Феттер разработал упрощенную математическую модель атмосферной конвекции . Модель представляет собой систему трех обыкновенных дифференциальных уравнений, теперь известных как уравнения Лоренца:

dИксdтзнак равноσ(у-Икс),dуdтзнак равноИкс(ρ-z)-у,dzdтзнак равноИксу-βz.{\ displaystyle {\ begin {align} {\ frac {\ mathrm {d} x} {\ mathrm {d} t}} & = \ sigma (yx), \\ {\ frac {\ mathrm {d } y} {\ mathrm {d} t}} & = x (\ rho -z) -y, \\ {\ frac {\ mathrm {d} z} {\ mathrm {d} t}} & = xy- \ beta z. \ end {выровнено}}}

Уравнения связывают свойства двумерного слоя жидкости, равномерно нагретого снизу и охлаждаемого сверху. В частности, уравнения описывают скорость изменения трех величин относительно времени: пропорциональна скорости конвекции, горизонтальному изменению температуры и вертикальному изменению температуры. Константы , и являются параметрами системы , пропорционального числа Прандтля , число Рэлея , а также некоторые физических размерами самого слоя.
Икс{\ displaystyle x}у{\ displaystyle y}z{\ displaystyle z}σ{\ displaystyle \ sigma}ρ{\ displaystyle \ rho}β{\ displaystyle \ beta}

Уравнения Лоренца также возникают в упрощенных моделях лазеров , динамо , термосифонов , бесщеточных двигателей постоянного тока , электрических цепей , химических реакций и прямого осмоса . Уравнения Лоренца также являются определяющими уравнениями в пространстве Фурье для водяного колеса Малкуса . Водяное колесо Malkus демонстрирует хаотическое движение, при котором вместо того, чтобы вращаться в одном направлении с постоянной скоростью, его вращение будет ускоряться, замедляться, останавливаться, менять направление и непредсказуемо колебаться взад и вперед между комбинациями такого поведения.

С технической точки зрения система Лоренца является нелинейной , непериодической, трехмерной и детерминированной . Уравнения Лоренца были предметом сотен исследовательских статей и по крайней мере одного исследования длиной в книгу.

Сила упругости

При изменении формы тела (его деформации) появляется сила, которая стремится вернуть телу его первоначальную форму. Этой силе дали название «сила упругости». Возникает она вследствие электрического взаимодействия частиц, из которых состоит тело.

Рассмотрим простейшую деформацию: растяжение и сжатие. Растяжение сопровождается увеличением линейных размеров тел, сжатие – их уменьшением. Величину, характеризующую эти процессы, называют удлинением тела. Обозначим ее «x». Формула силы упругости напрямую связана с удлинением. Каждое тело, подвергающееся деформации, имеет собственные геометрические и физические параметры. Зависимость упругого сопротивления деформации от свойств тела и материала, из которого оно изготовлено, определяется коэффициентом упругости, назовем его жесткостью (k).

Математическая модель упругого взаимодействия описывается законом Гука.

Сила, возникающая при деформации тела, направлена против направления смещения отдельных частей тела, прямо пропорциональна его удлинению:

Fy = -kx (в векторной записи).

Знак «-» говорит о противоположности направления деформации и силы.

В скалярной форме отрицательный знак отсутствует. Сила упругости, формула которой имеет следующий вид Fy = kx, используется только при упругих деформациях.

Использование правила правой руки в электродинамике

Если в магнитном поле подвесить на тонком и гибком проводе рамку с током, то она будет поворачиваться и расположится определенным образом. Аналогично поведение магнитной стрелки. Это свидетельствует о векторном характере физической величины, характеризующей магнитное поле. При этом направление этого вектора будет связано с ориентацией рамки и стрелки. Физической векторной величиной, которая характеризует магнитное поле, стал вектор магнитной индукции ($\vec{B}$).

Готовые работы на аналогичную тему

Курсовая работа Правило левой и правой руки для магнитного поля 480 ₽ Реферат Правило левой и правой руки для магнитного поля 270 ₽ Контрольная работа Правило левой и правой руки для магнитного поля 220 ₽ Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Это один из главных параметров, описывающих состояние магнитного поля, поэтому необходимо уметь находить его величину и, конечно, направление.

Для определения направления вектора магнитной индукции используют:

  • правило правого винта или
  • правило правой руки.

Направлением вектора магнитной индукции, в месте локализации рамки с током, считают направление положительного перпендикуляра ($\vec{n}$) к этой рамке. Положительная нормаль ($\vec{n}$) будет иметь направление такое же, как направление поступательного перемещения правого винта, если его головку вращать по току в рамке (рис.1 (a)).

Рисунок 1. Определение направления вектора магнитной индукции. Автор24 — интернет-биржа студенческих работ

Так, обладая пробной рамкой с током, помещая ее в исследуемое поле, давая ей свободно вращаться в нем, можно определить, как направлен вектор магнитной индукции в каждой точке поля. Необходимо только дать рамке прийти в положение равновесия, затем использовать правило правого винта.

Появились вопросы по этой теме? Задай вопрос преподавателю и получи ответ через 15 минут! Задать вопрос

Теперь обратимся к правилу правой руки. Сожмем правую руку в неплотный кулак (рис.2). Отогнем большой палец на 90°. Руку разместим так, чтобы большой палец указывал направление течения тока, тогда согнутые остальные четыре пальца укажут направление линий магнитной индукции поля, которое создает ток. А мы помним, что касательная в каждой точке поля к силовой линии (линии магнитной индукции) указывает направление $\vec{B}$.

Рисунок 2. Правило правой руки. Автор24 — интернет-биржа студенческих работ

Рассмотрим соленоид. Обхватим правой ладонью его так, чтобы четыре пальца совпали с направлением тока в нем, тогда отогнутый на девяносто градусов палец укажет, как направлено магнитное поле, создаваемое у него внутри.

Нам известно, что если в магнитном поле перемещать проводник, то в этом проводнике будет возникать ток индукции. Правило правой руки можно использовать для определения направления течения тока индукции в таких проводниках. При этом:

  • линии индукции магнитного поля должны входить в открытую ладонь правой руки,
  • палец этой руки отогнуть на девяносто градусов, и направить по скорости перемещения проводника,
  • вытянутые четыре пальца будут указывать, как направлен ток индукции.

Правилом правой руки можно воспользоваться при определении направления ЭДС индукции в контуре:

Согнутыми четырьмя пальцами правой руки охватить контур, в котором индуцируется ЭДС при изменении магнитного потока, отогнуть на девяносто градусов большой палец этой руки и направить его по направлению магнитного потока при его увеличении (или против направления магнитного потока при его уменьшении), тогда согнутые пальцы укажут на направление противоположное ЭДС.

Правило левой руки

В электротехнике довольно часто возникают вопросы, связанные с определением силы Ампера. Для решения задач подобного рода применяется алгоритм, называемый правилом левой руки (иллюстрация на рис. 4) – мнемоническое правило, описывающее способ определения направленности Амперовой силы, выталкивающей точечный заряд либо проводник, по которому протекает электроток.

Алгоритм применения левой руки состоит в следующем: если левую ладонь будут перпендикулярно пронизывать силовые линии, а пальцы расположатся по направлению тока, то действующие на проводник силы будут устремляться в сторону, куда указывает оттопыренный большой палец.

Интерпретация для точечного заряда

Заметим, что сформулированное правило справедливо для решения задач по определению ориентации силы Лоренца. Перефразируем правило: если ладонь левой руки поместить в магнитное поле таким образом, чтобы линии индукции перпендикулярно входили в неё, а выпрямленные пальцы направить в сторону движения положительного заряда, тонаправление вектора силы Лоренца совпадёт с отставленным на 90º большим пальцем.

Визуальная интерпретация правила левой руки представлена на рисунке 5

Обратите внимание на то, что алгоритм действий для определения сил Ампера и Лоренца практически одинаков

Рис. 5. Интерпретация правил левой руки

Правило левой руки для силы Ампера: в чём оно заключается

Расположим левую руку вдоль проводника так, чтобы пальцы были направлены в сторону протекания тока. Большой палец будет указывать в сторону вектора силы Ампера, а в направлении руки, между большим и указательным пальцем будет направлен вектор магнитного поля. Это и будет правило левой руки для силы ампера, формула которой выглядит так:

Правило левой руки для силы Лоренца: отличия от предыдущего

Располагаем три пальца левой руки (большой, указательный и средний) так, чтобы они находились под прямым углом друг к другу. Большой палец, направленный в этом случае в сторону, укажет направление силы Лоренца, указательный (направлен вниз) – направление магнитного поля (от северного полюса к южному), а средний, расположенный перпендикулярно в сторону от большого, – направление тока в проводнике.

Применение для силы Лоренца

Формулу расчёта силы Лоренца можно увидеть на рисунке ниже.

Обзор [ править ]

В 1963 году Эдвард Лоренц с помощью Эллен Феттер разработал упрощенную математическую модель атмосферной конвекции . Модель представляет собой систему трех обыкновенных дифференциальных уравнений, теперь известных как уравнения Лоренца:

dИксdтзнак равноσ(yИкс),dydтзнак равноИкс(ρz)y,dzdтзнак равноИксyβz.{\displaystyle {\begin{aligned}{\frac {\mathrm {d} x}{\mathrm {d} t}}&=\sigma (y-x),\\{\frac {\mathrm {d} y}{\mathrm {d} t}}&=x(\rho -z)-y,\\{\frac {\mathrm {d} z}{\mathrm {d} t}}&=xy-\beta z.\end{aligned}}}

Уравнения связывают свойства двумерного слоя жидкости, равномерно нагретого снизу и охлаждаемого сверху. В частности, уравнения описывают скорость изменения трех величин относительно времени: пропорциональна скорости конвекции, горизонтальному изменению температуры и вертикальному изменению температуры. Константа , и являются параметры системы , пропорциональные числа Прандтля , число Рэлея , а также некоторые физических размеров самого слоя. x{\displaystyle x}y{\displaystyle y}z{\displaystyle z}σ{\displaystyle \sigma }ρ{\displaystyle \rho }β{\displaystyle \beta }

Уравнения Лоренца также возникают в упрощенных моделях для лазеров , динамо , термосифонов , бесщеточных двигателей постоянного тока , электрических цепей , химических реакций и прямого осмоса . Уравнения Лоренца также являются определяющими уравнениями в пространстве Фурье для водяного колеса Малкуса . Водяное колесо Malkus демонстрирует хаотическое движение, при котором вместо того, чтобы вращаться в одном направлении с постоянной скоростью, его вращение будет ускоряться, замедляться, останавливаться, менять направление и непредсказуемо колебаться взад и вперед между комбинациями такого поведения.

С технической точки зрения система Лоренца является нелинейной , непериодической, трехмерной и детерминированной . Уравнения Лоренца были предметом сотен исследовательских статей и по крайней мере одного исследования длиной в книгу.

Принцип относительности одновременности

Еще одно важное следствие, которое необходимо знать, – это положение о том, что любая одновременность относительна. Пример 2

Пример 2

Например, если в системе отсчета K’ взять две разные точки, в которых некий процесс будет протекать одновременно (с позиции стороннего наблюдателя), то в системе наблюдатель будет иметь следующее:

x1=x’1+υt’1-β2, x2=x’2+υt’1-β2⇒x1≠x2,t1=t’+υx’1c21-β2, t2=t’+υx’2c21-β2⇒t1≠t2.

Из этого вытекает пространственная разобщенность данных событий в системе K, следовательно, они не могут считаться одновременными. Нельзя сразу сказать, какое событие будет происходить первым, а какое вторым, поскольку это определяется особенностями системы отсчета – знак разности будет определен знаком выражения υ(x’2–x’1).

Если между событиями имеется причинно-следственная связь, то данный вывод специальной теории относительности для них использовать нельзя. Однако мы можем показать, что при этом не нарушается принцип причинности, и события следуют в нужном порядке в любой инерциальной системе отсчета.

Разберем пример, показывающий, что одновременность разобщенных в пространстве событий является относительной.

Пример 3

Возьмем систему отсчета K’ и расположим в ней длинный жесткий стержень. Его положение будет неподвижным и ориентированным вдоль оси абсцисс. Установим на оба его конца часы, синхронизированные между собой, а в центр поместим импульсную лампу. Также у нас будет система K’, совершающая движение вдоль оси x в системе K.

В определенный момент времени лампа включится и пошлет световые сигналы в направлении обоих концов жесткого стержня. Поскольку она находится точно в центре, эти сигналы должны дойти до концов в одно и то же время t, которое должно быть зафиксировано расположенными на них часами. Однако концы стержня движутся относительно системы K так, что один конец стремится навстречу световому сигналу, а другой конец свету приходится догонять. Скорость света, распространяющегося в оба направления, одинакова, но сторонний наблюдатель скажет, что до левого конца свет дошел быстрее, чем до правого.

Рисунок 4.4.1. Иллюстрация принципа относительности одновременности: достижение световым импульсом концов стержня в системе K’ в одно и то же время и в системе K в разное.

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!

Описать задание

Законы силы трения

Замечание 2

Сила трения возникает при движении и направлена против скольжения тела.

Статическая сила трения будет пропорциональна нормальной реакции. Статическая сила трения не лежит в зависимости от формы и размеров трущихся поверхностей. От материала тел, которые соприкасаются и порождают силу трения, зависит статический коэффициент трения. Однако законы трения нельзя назвать стабильными и точными, поскольку часто наблюдаются в результатах исследований различные отклонения.

Традиционное написание силы трения предполагает использование коэффициента трения ($\eta$), $N$ – сила нормального давления.

$F=\eta N$

Также выделяют внешнее трение, силу трения качения, силу трения скольжения, вязкую силу трения и другие виды трения.

Закон силы тяжести

Замечание 1 Сила тяжести является одним из случаев проявления действия гравитационных сил.

Силу тяжести представляют в виде такой силы, которая действует на тело со стороны планеты и придает ему ускорение свободного падения.

Свободное падение можно рассмотреть в виде $mg = G\frac{mM}{r^2}$, откуда получаем формулу ускорения свободного падения:

$g = G\frac{M}{r^2}$.

Формула определения силы тяжести будет выглядеть следующим образом:

${\overline{F}}_g = m\overline{g}$

Сила тяжести имеет определенный вектор распространения. Он всегда направлен вертикально вниз, то есть по направлению к центру планеты. На тело действует силы тяжести постоянно и это означает, что оно совершает свободное падение.

Траектория движения при действии силы тяжести зависит от:

Готовые работы на аналогичную тему

  • Курсовая работа Законы силы, формулы 450 руб.
  • Реферат Законы силы, формулы 270 руб.
  • Контрольная работа Законы силы, формулы 230 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

  • модуля начальной скорости объекта;
  • направления скорости движения тела.

С этим физическим явлением человек сталкивается ежедневно.

Силу тяжести можно также представить в виде формулы $P = mg$. При ускорении свободного падения учитываются также дополнительные величины.

Если рассматривать закон всемирного тяготения, который сформулировал Исаак Ньютон, все тела обладают определенной массой. Они притягиваются друг к другу с силой. Ее назовут гравитационной силой.

$F = G\frac{m_1m_2}{r^2}$

Эта сила прямо пропорциональна произведению масс двух тел и обратно пропорциональна квадрату расстояния между ними.

$G = 6,7\cdot {10}^{-11}\ {H\cdot m^2}/{{kg}^2\ }$, где $G$ — это гравитационная постоянная и она имеет по международной системе измерений СИ постоянное значение.

Определение 1

Весом называют силу, с которой тело действует на поверхность планеты после возникновения силы тяжести.

В случаях, когда тело находится в состоянии покоя или равномерно движется по горизонтальной поверхности, тогда вес будет равен силе реакции опоры и совпадать по значению с величиной силы тяжести:

Лень читать?

Задай вопрос специалистам и получи ответ уже через 15 минут!

Задать вопрос

$Р = тg$

При равноускоренном движении вертикально вес будет отличаться от силы тяжести, исходя из вектора ускорения. При направлении вектора ускорения в противоположную сторону возникает состояние перегрузки. В случаях, когда тело вместе с опорой двигаются с ускорением $а = g$, тогда вес будет равен нулю. Состояние с нулевым весом называют невесомостью.

Напряженность поля тяготения высчитывается следующим образом:

$g = \frac{F}{m}$

Величина $F$ — сила тяготения, которая действует на материальную точку массой $m$.

Тело помещается в определенную точку поля.

Потенциальная энергия гравитационного взаимодействия двух материальных точек, имеющих массы $m_1$ и $m_2$, должны находиться на расстоянии $r$ друг от друга.

Потенциал поля тяготения можно найти по формуле:

$\varphi = \Pi / m$

Здесь $П$ — потенциальная энергия материальной точки с массой $m$. Она помещена в определенную точку поля.

Урок физики в 9 классе по теме : » Решение задач по теме : «Сила Ампера. Сила Лоренца»»

Тема урока:

«Решение задач по теме «Сила Ампера. Сила Лоренца».

Место урока в системе уроков по теме:

На предыдущем уроке обучающиеся получили знания о векторе магнитной индукции, силе Ампера, силе Лоренца. Данный урок позволяет отработать навыки решения задач по формуле силы Ампера и силы Лоренца .

Цель урока:

показать теоретическую значимость закона Ампера при решении задач, научить применять полученные знания при решении задач.

Задачи урока:

  • Дидактическая

    – создавать условия для усвоения нового учебного материала через проблемно-деятельностный подход.

  • Образовательная

    – рассмотреть применение закона Ампера в ходе решения различных задач.

  • Развивающая

    – развивать логическое мышление обучающихся при решении задач на расчёт силы Амперы и силы Лоренца.

  • Воспитательная

    – прививать культуру умственной деятельности.

Планируемые результаты.

Обучающиеся должны:

  • овладеть алгоритмом решения задач по данной теме.
  • уметь решать задачи с применением закона Ампера, формулы для нахождения силы Лоренца .

Техническое обеспечение урока:

  1. Компьютер, проектор, экран.

Дополнительное методическое и дидактическое обеспечение урока:

  1. Презентация к уроку.
  2. Карточки с задачами.

Мобилизующее начало урока («исходная мотивация»). Позитивный настрой на урок.

Умение решать задачи — это практическое

искусство, подобное плаванию или катанию

на лыжах, или игре на фортепиано: научиться

этому можно, лишь подражая избранным

образцам и постоянно тренируясь”

Д. Пойа

В данной теме рассмотрим основные типы задач, а также попытаемся выделить общую методику их решений. В представленной теме можно выделить три типа задач:

1) на расчет полей (вычисление магнитной индукции, в какой либо точке магнитного поля);

2) о силовом действии магнитного поля на проводники или контур с током;

3) о силовом действии магнитного поля на движущиеся в нем заряженные частицы.

1.Фронтальный опрос:

1.Как называют физ. Величину характеризующую магнитное поле?

2. Какой буквой обозначают?

3. В каких единицах измеряют?

4. Что означает 1 Тл?

5.Какую силу называют силой Ампера? Запишите на доске формулу для расчёта Силы Ампера.

6. Как определяется направление силы Ампера? Сформулируйте правило левой руки.

7.Чему равен модуль вектора магнитной индукции?

8. Какую силу называют силой Лоренца? Запишите на доске формулу для расчёта Силы Лоренца

9. Как определяется направление силы Лоренца? Сформулируйте правило левой руки.

2. Решение задач :

Задача 1 Определить силу, с которой однородное магнитное поле действует на проводник длиной 20 см, если сила тока в нем 300 мА, расположенный под углом 45 градусов к вектору магнитной индукции. Магнитная индукция составляет 0,5 Тл.

Задача 2 Проводник с током 5 А находится в магнитном поле с индукцией 10 Тл. Определить длину проводника, если магнитное поле действует на него с силой 20Н и перпендикулярно проводнику.

Задача 3 Определить силу тока в проводнике длиной 20 см, расположенному перпендикулярно силовым линиям магнитного поля с индукцией 0,06 Тл, если на него со стороны магнитного поля действует сила 0,48 Н.

Задача 4 Проводник длиной 20см с силой тока 50 А находится в однородном магнитном поле с индукцией 40 мТл. Какую работу совершит источник тока, если проводник переместится на 10 см перпендикулярно вектору магнитной индукции (вектор магнитной индукции перпендикулярен направлению тока в проводнике).

Задача 5 Определить силу, действующую на заряд 0,005 Кл, движущийся в магнитном поле с индукцией 0,3 Тл со скоростью 200 м/с под углом 45o к вектору магнитной индукции.

Задача 6 Какова скорость заряженного тела, перемещающегося в магнитном поле с индукцией 2 Тл, если на него со стороны магнитного поля действует сила 32 Н. Скорость и магнитное поле взаимно перпендикулярны. Заряд тела равен 0,5 мКл.

3.Самостоятельная работа по карточкам

4. Рефлексия

5. Д.з.

Ссылки [ править ]

  • Берже, Пьер; Помо, Ив; Видаль, Кристиан (1984). Порядок в хаосе: к детерминистскому подходу к турбулентности . Нью-Йорк: Джон Вили и сыновья . ISBN 978-0-471-84967-4.
  • Хилборн, Роберт С. (2000). Хаос и нелинейная динамика: введение для ученых и инженеров (второе изд.). Издательство Оксфордского университета . ISBN 978-0-19-850723-9.
  • Хирш, Моррис В .; Смейл, Стивен ; Девани, Роберт (2003). Дифференциальные уравнения, динамические системы и введение в хаос (второе изд.). Бостон, Массачусетс: Academic Press . ISBN 978-0-12-349703-1.
  • Воробей, Колин (1982). Уравнения Лоренца: бифуркации, хаос и странные аттракторы . Springer.

История

Современное понятие электрических и магнитных полей сначала возникло в теориях Майкла Фарадея, особенно его идея линий силы, позже чтобы быть данным полное математическое описание лорда Келвина и Джеймса Клерка Максвелла. С современной точки зрения возможно определить в формулировке Максвелла 1865 года его уравнений поля форму уравнения силы Лоренца относительно электрических токов, однако, во время Максвелла, не было очевидно, как его уравнения имели отношение к силам при перемещении заряженных объектов. Дж. Дж. Томсон был первым, чтобы попытаться получить из уравнений поля Максвелла электромагнитные силы на перемещении заряженный объект с точки зрения свойств объекта и внешних областей. Заинтересованный определением электромагнитного поведения заряженных частиц в лучах катода, Thomson опубликовал работу в 1881 в чем, он дал силу на частицах из-за внешнего магнитного поля как

Thomson получил правильную каноническую форму формулы, но, из-за некоторых просчетов и неполного описания тока смещения, включал неправильный коэффициент пропорциональности половины перед формулой. Именно Оливер Хивизид, изобрел современное векторное примечание и применил их к уравнениям поля Максвелла, которые в 1885 и 1889 фиксировали ошибки происхождения Thomson и достигли правильной формы магнитной силы на перемещении заряженный объект. Наконец, в 1892, Хендрик Лоренц получил современную форму формулы для электромагнитной силы, которая включает вклады в полную силу и от электрического и от магнитных полей. Лоренц начал, оставив описания Maxwellian эфира и проводимости. Вместо этого Лоренц сделал различие между вопросом и luminiferous эфиром и стремился применить уравнения Максвелла в микроскопическом масштабе. Используя версию Хивизида уравнений Максвелла для постоянного эфира и применения лагранжевой механики (см. ниже), Лоренц достиг правильного, и заполните форму закона о силе, который теперь носит его имя.

Сила тяжести: формула

Как вычислить силу тяжести, направленную на определенное тело? Какие другие величины необходимо знать для того? Формула расчета силы тяжести довольно проста, ее изучают в 7-м классе общеобразовательной школы, в начале курса физики. Чтобы ее не просто выучить, но и понять, следует исходить из того, что сила тяжести, неизменно действующая на тело, прямо пропорциональна его количественной величине (массе).

Единица силы тяжести названа по имени великого ученого— Ньютон.

Сила тяжести (гравитация) всегда направлена строго вниз, к центру земного ядра, благодаря ее воздействию все тела равноускоренно падают вниз. Явления тяготения в повседневной жизни мы наблюдаем повсеместно и постоянно:

  • предметы, случайно или специально выпущенные из рук, обязательно падают вниз на Землю (или на любую препятствующую свободному падению поверхность);
  • запущенный в космос спутник не улетает от нашей планеты на неопределенное расстояние перпендикулярно вверх, а остается вращаться на орбите;
  • все реки текут с гор и не могут быть обращены вспять;
  • бывает, человек падает и травмируется;
  • на все поверхности садятся мельчайшие пылинки;
  • воздух сосредоточен у поверхности земли;
  • тяжело носить сумки;
  • из облаков и туч капает дождь, падает снег, град.

Наряду с понятием «сила тяжести» используется термин «вес тела». Если тело расположить на ровной горизонтальной поверхности, то его вес и сила тяжести численно равны, таким образом, эти два понятия часто подменяют, что совсем не правильно.