Оглавление
- Структура ШИМ-контроллеров NCP1237, NCP1238, NCP1287 и NCP1288
- Необходимость установки
- ШИМ управление
- Принцип работы ШИМ
- Выбор контроллера
- Формирование ШИМ-сигналов
- Широтно-импульсная модуляция (ШИМ). Аналоговая и цифровая
- Q: Как правильно определить используемое количество фаз?
- Характеристики ШИМ сигнала
- Диагностика неисправностей
- Принцип работы ШИМ контроллера
- Откуда берётся ШИМ
- Зачем нужен программный ШИМ?
- Подведём итог ремонта
Структура ШИМ-контроллеров NCP1237, NCP1238, NCP1287 и NCP1288
Микросхемы этих типов практически идентичны по цоколевке и схеме включения. В них используется режим управления по току с фиксированной частотой преобразования. Микросхемы предназначены для применения в обратноходовых преобразователях (Flyback) c гальванической развязкой (трансформатор, управление — обратная связь по напряжению через оптрон, по току — через дополнительную обмотку силового трансформатора). На рис. 4 показана структурная схема ШИМ-контроллера NCP1237.
Рис. 4. Структурная схема ШИМ-контроллера NCP1237
Встроенная схема Dynamic Self-Supply (DSS) упрощает проектирование и обеспечивает уменьшение дополнительных элементов. Наличие режима Soft-Skip с пропуском циклов обеспечивает повышение эффективности преобразования при малых нагрузках с сохранением низкого потребления в дежурном режиме. Также поддерживается и понижение частоты преобразования до 31 кГц (frequency foldback) с гистерезисом. Порог включения режима — 1,5 В, обратный переход в рабочий режим происходит при превышении порога 1 В. При понижении напряжения сигнала обратной связи ниже порога 0,7 В активизируется режим пропуска циклов Soft-Skip, который позволяет уменьшить потребление дополнительно, а также уменьшить возникновение акустического шума на трансформаторе и конденсаторах, использовать более дешевые трансформаторы. Встроенный двухпороговый защитный таймер служит для защиты при сбоях и нарушениях работы схемы управления вследствие скачков тока. Встроенная схема формирования джиттера частоты обеспечивает «размывание» спектра и уменьшение пиковых уровней ЭМИ. Контроллер также включает новую схему высоковольтного каскада, которая совместно со схемой старта позволяет оценивать уровень сигнала с токового датчика как в цепи переменного напряжения, так и в цепи постоянного выпрямленного напряжения. ON Semiconductor использует высоковольтную технологию входных цепей контроллера, поэтому NCP1288 может подключаться по питающим цепям непосредственно к шине высокого напряжения питания.
Режим блокировки для NCP1237 (рис. 5) может активизироваться по одному из двух условий: при повышении уровня напряжения выше порогового на входе Latch за счет перенапряжения или при уменьшении напряжения ниже другого заданного порога за счет терморезистора с отрицательным температурным коэффициентом, стоящего на силовом транзисторе.
Рис. 5. Типовая схема включения ШИМ-контроллера NCP1237
Токовый источник HV startup обеспечивает заряд конденсатора VCC до порогового напряжения VCC (on) и работает, пока входное напряжение более VHV (start), обеспечивая режим включения. Затем контроллер производит плавный пуск Soft-Start, во время которого ток потребления линейно возрастает перед включением режима регулирования. Во время периода плавного старта блокировка игнорируется, а ток блокировки удваивается, обеспечивая быстрый предзаряд конденсатора на входе вывода блокировки.
В микросхемах реализована защита от короткого замыкания на выходе.
Частота преобразования — 65/100/133 кГц и определяется модификацией микросхем. Микросхемы рассчитаны на использование в расширенном температурном диапазоне от -40 до +125 °С, что особенно актуально для промышленных приложений. Типовые применения контроллеров:
- сетевые источники питания принтеров, мониторов;
- зарядные устройства для аккумуляторов;
- встроенные сетевые источники бытовой аппаратуры.
Необходимость установки
Обязательно используются контроллеры для схем, в которых присутствуют свинцово-кислотные АКБ. Это связано с тем, что такие элементы питания негативно воспринимают как перезаряд, так и значительное разряжение. В первом случае может произойти быстрый выход из строя батареи за счет закипания электролита или даже взрыва банок с ним. Во втором случае процесс приводит к разрушению пластин.
Нередко для импульсных источников питания или в источники бесперебойного питания встраивают PWM-элементы. Встречаются они и в инверторах.
Интегральный ШИМ-контроллер с токовым режимом управления в компактном корпусе TSOP-6
Обычно разъединение происходит при достижении двенадцативольтовым аккумулятором уровня 10,5 или 11 В. В таком случае за 10 часов непрерывной работы падение емкости составит со 100% до примерно 20%. В процессе более быстрого разряжения емкость будет уменьшаться.
В определенных условиях допускается коррекция напряжения отключения во время изготовления или настроечного процесса. Однако, на прилавках доминирует не регулятор напряжения, а прибор с типовым уровнем выходных параметров.
Ориентироваться по затратам поможет таблица:
Блок | Период эксплуатации, лет | Стоимость (% от стоимости оборудования) |
Солнечный потребитель | 25-30 | 20-30% |
Контроллер заряда | 10 | 2-5% |
АКБ | 2-6 | 45-60% |
Дополнительное оборудование | более 10 | 10% |
Исходя из пропорций затрат, очевидно, что PWM-элементы не являются большой статьей затрат в схеме. При этом они играют важную роль в процессе обеспечения эффективности системы, продлевая срок службы остального оборудования.
ШИМ управление
Наиболее популярный метод управления скоростью вращения вентилятора — это ШИМ управление. При таком методе управления вентилятор подключается к минусой шине питания через ключ, а на управляющий вход ключа подается ШИМ сигнал. В данном случае к вентилятору всегда приложено либо нулевое, либо рабочее напряжение питания и не возникает таких энергопотерь, как при линейном методе управления. На рисунке 5 показана типовая схема реализующая ШИМ управление.
Рисунок 5. ШИМ управление.
Преимущество данного метода управления — простота реализации, дешевизна, эффективность и широкий диапазон регулирования скорости вращения. Однако недостатки у этого метода тоже есть.
Один из недостатков ШИМ управления — это «порча» тахосигнала. Этот недостаток можно устранить, используя так называемую pulse stretching технику, то есть удлиняя импульс ШИМ сигнала на несколько периодов тахосигнала. Конечно, при этом скорость вращения вентилятора может немного увеличится. На рисунке 6 показан пример.
Рисунок 6. Удлинение импульса для получения информации о скорости вращения.
Другой недостаток ШИМ управления — это коммутационный шум. Во-первых коммутация индуктивной нагрузки вызывает появление помех в цепях питания, во-вторых может возникать акустический шум — пищание, жужжание. Электрические шумы подавляют фильтрами, а для борьбы с акустический шумом частоту ШИМ сигнала поднимают до 20 кГц.
Также стоит снова упомянуть о 4-х проводных вентиляторах, в которых схема управления уже встроена. В таких вентиляторах коммутируется плюсовая шина питания, что помогает избежать проблем с тахосигналом. Одна из микросхем, предназначенных для реализации ШИМ управления 4-х проводными вентиляторами, — это ADT7467. Условная схема приведена на рисунке 7.
Рисунок 7. Схема ШИМ управления 4-х проводным вентилятором
Принцип работы ШИМ
Сигнал, промодулированный по ширине импульса, формируется двумя способами:
- аналоговым;
- цифровым.
При аналоговом способе создания ШИМ-сигнала несущая в виде пилообразного или треугольного сигнала подается на инвертирующий вход компаратора, а информационный – на неинвертирующий. Если мгновенный уровень несущей выше модулирующего сигнала, то на выходе компаратора ноль, если ниже – единица. На выходе получается дискретный сигнал с частотой, соответствующей частоте несущего треугольника или пилы, и длиной импульса, пропорциональной уровню модулирующего напряжения.
В качестве примера приведена модуляция по ширине импульса треугольного сигнала линейно-возрастающим. Длительность выходных импульсов пропорциональна уровню выходного сигнала.
Аналоговые ШИМ-контроллеры выпускаются и в виде готовых микросхем, внутри которых установлен компаратор и схема генерации несущей. Имеются входы для подключения внешних частотозадающих элементов и подачи информационного сигнала. С выхода снимается сигнал, управляющий мощными внешними ключами. Также имеются входы для обратной связи – они нужны для поддержания установленных параметров регулирования. Такова, например, микросхема TL494. Для случаев, когда мощность потребителя относительно невелика, выпускаются ШИМ-контроллеры со встроенными ключами. На ток до 3 ампер рассчитан внутренний ключ микросхемы LM2596.
Цифровой способ осуществляется применением специализированных микросхем или микропроцессоров. Длина импульса регулируется внутренней программой. Во многих микроконтроллерах, включая популярные PIC и AVR, «на борту» имеется встроенный модуль для аппаратной реализации ШИМ, для получения PWM-сигнала надо активировать модуль и задать параметры его работы. Если такой модуль отсутствует, то ШИМ можно организовать чисто программным методом, это несложно. Этот способ дает более широкие возможности и предоставляет больше свободы за счёт гибкого использования выходов, но задействует большее количество ресурсов контроллера.
Выбор контроллера
Солнечный контроллер, подключенный к солнечным батареям и аккумулятору, обеспечивает своевременную подзарядку аккумуляторной батареи (АКБ), защищает ее от преждевременной деградации и выполняет следующие функции:
- Автоматическое подключение АКБ к фотоэлектрическим модулям для подзарядки.
- Автоматическое отключение аккумулятора от фотоэлектрических панелей (ФЭП) при достижении максимального уровня зарядки (защита аккумулятора от перезаряда).
- Автоматическое отсоединение АКБ от потребителей электроэнергии при достижении недопустимого уровня разряда (защита аккумулятора от глубокого разряда).
- Повторное подключение нагрузки к аккумулятору при восполнении уровня его заряда.
Контроллер способен автоматически отключать нагрузку, подключаемую на выход «Load» устройства. К этому выходу подключаются маломощные потребители постоянного тока (светодиодные лампы).
Максимально допускаемая нагрузка на выход «Load» указывается производителем в паспорте устройства.
Все потребители переменного тока (бытовые электроприборы, электроинструмент и т. д.) не имеют прямого подключения ни контроллеру, ни к солнечным панелям. Они через инвертор подключаются к аккумуляторной батарее.
При такой схеме подключения от глубокого разряда аккумулятор защищается не контроллером, а инвертором. К вопросам переразряда АКБ и способов защиты от него с помощью солнечного инвертора мы вернемся чуть позже.
Формирование ШИМ-сигналов
Создавать ШИМ-сигналы нужной формы достаточно трудно. Тем не менее индустрия сегодня может порадовать замечательными специальными микросхемами, известными как ШИМ-контроллеры. Они недорогие и целиком решают задачу формирования широтно-импульсного сигнала. Сориентироваться в устройстве подобных контроллеров и их использовании поможет ознакомление с их типичной конструкцией.
Стандартная схема контроллера ШИМ предполагает наличие следующих выходов:
Общий вывод (GND). Он реализуется в виде ножки, которая подключается к общему проводу схемы питания устройства.
Вывод питания (VC). Отвечает за электропитание схемы
Важно не спутать его с соседом с похожим названием — выводом VCC.
Вывод контроля питания (VCC). Как правило, чип контроллера ШИМ принимает на себя руководство силовыми транзисторами (биполярными либо полевыми)
В случае если напряжение на выходе снизится, транзисторы станут открываться лишь частично, а не целиком. Стремительно нагреваясь, они в скором времени выйдут из строя, не справившись с нагрузкой. Для того чтобы исключить такую возможность, необходимо следить за показателями напряжения питания на входе микросхемы и не допускать превышения расчетной отметки. Если напряжение на данном выводе опускается ниже установленного специально для этого контроллера, управляющее устройство отключается. Как правило, данную ножку соединяют напрямую с выводом VC.
Широтно-импульсная модуляция (ШИМ). Аналоговая и цифровая
Принцип ШИМ – широтно-импульсная модуляция заключается в изменении ширины импульса при постоянстве частоты следования импульса. Амплитуда импульсов при этом неизменна.
Широтно-импульсное регулирование находит применение там, где требуется регулировать подаваемую к нагрузке мощность. Например, в схемах управления электродвигателями постоянного тока, в импульсных преобразователях, для регулирования яркости светодиодных светильников, экранов ЖК-мониторов, дисплеев в смартфонах и планшетах и т.п.
Большинство вторичных источников питания электронных устройств в настоящее время строятся на основе импульсных преобразователей, применяется широтно-импульсная модуляция и в усилителях низкой (звуковой) частоты класса D, сварочных аппаратах, устройствах зарядки автомобильных аккумуляторов, инверторах и пр. ШИМ позволяет повысить коэффициент полезного действия (КПД) вторичных источников питания в сравнении с низким КПД аналоговых устройств.
Широтно-импульсная модуляция бывает аналоговой и цифровой.
Аналоговая широтно-импульсная модуляция
Как уже упоминалось выше, частота сигнала и его амплитуда при ШИМ всегда постоянны. Один из важнейших параметров сигнала ШИМ – это коэффициент заполнения, равный отношению длительности импульса t к периоду импульса T. D = t/T. Так, если имеем сигнал ШИМ с длительностью импульса 300 мкс и периодом импульса 1000 мкс, коэффициент заполнения составит 300/1000 = 0,3. Коэффициент заполнения также выражается в процентах, для чего коэффициент заполнения умножается на 100%. По примеру выше процентный коэффициент заполнения составляет 0,3 х 100% = 30%.
Скважность импульса – это отношение периода импульсов к их длительности, т.е. величина, обратная коэффициенту заполнения
S = T/t.
Частота сигнала определяется как величина, обратная периоду импульса, и представляет собой количество полных импульсов за 1 секунду. Для примера выше при периоде 1000 мкс = 0,001 с, частота составляет F = 1/0,001 – 1000 (Гц).
Сигнал ШИМ формируется микроконтроллером или аналоговой схемой. Этот сигнал обычно управляет мощной нагрузкой, подключаемой к источнику питания через ключевую схему на биполярном или полевом транзисторе. В ключевом режиме полупроводниковый прибор либо разомкнут, либо замкнут, промежуточное состояние исключается. В обоих случаях на ключе рассеивается ничтожная тепловая мощность. Поскольку эта мощность равна произведению тока через ключ на падение напряжения на нем, а в первом случае к нулю близок ток через ключ, а во втором напряжение.
В переходных состояниях на ключе присутствует значительное напряжение с прохождением значительного тока, т.е. значительна и рассеиваемая тепловая мощность. Поэтому в качестве ключа необходимо применение малоинерционных полупроводниковых приборов с быстрым временем переключения, порядка десятков наносекунд.
Если ключевая схема управляет светодиодом, то при малой частоте сигнала светодиод будет мигать в такт с изменением напряжения сигнала ШИМ. При частоте сигнала выше 50 Гц мигания сливаются вследствие инерции человеческого зрения. Общая яркость свечения светодиода начинает зависеть от коэффициента заполнения – чем ниже коэффициент заполнения, тем слабее светится светодиод.
При управлении посредством ШИМ скорости вращения двигателя постоянного тока частота ШИМ должна быть очень высокой, и лежать за пределами слышимых звуковых частот, т.е. превышать 15-20 кГц, в противном случае двигатель будет «звучать», издавая раздражающий слух писк с частотой ШИМ. От частоты зависит и стабильность работы двигателя. Низкочастотный сигнал ШИМ с невысоким коэффициентом заполнения приведет к нестабильной работе двигателя и даже возможной его остановке.
Тем самым, при управлении двигателем желательно повышать частоту сигнала ШИМ, но и здесь существует предел, определяемый инерционными свойствами полупроводникового ключа. Если ключ будет переключаться с запаздываниями, схема управления начнет работать с ошибками. Чтобы избежать потерь энергии и добиться высокого коэффициента полезного действия импульсного преобразователя, полупроводниковый ключ должен обладать высоким быстродействием и низким сопротивлением проводимости.
Q: Как правильно определить используемое количество фаз?
A: Для начала, нужно определить к какому напряжению относятся расположенные на плате элементы систем питания. В случае сомнений можно использовать мультиметр для замеров напряжения на дросселях. Запоминаем количество дросселей, относящихся к нужному нам напряжению, исключив из них те, что стоят на входном напряжении (обычно это одна из линий БП – +12V/+5V/+3.3V). Далее недалеко от них находим микросхему контроллера напряжения. По маркировке контроллера определяем производителя и модель. Ищем информацию об этом контроллере. Сначала конечно стоит поискать последнюю версию datasheet на сайте производителя или хотя бы страницу с кратким описанием, распиновкой и схемой включения. Если не получается найти на нужную нам модель, попробуйте поискать по маркировке без буквенных суффиксов (то есть без «А», «B», «CRZ», «CBZ» и т.п. на конце маркировки). Не всегда различные вариации одного и того же контроллера существенно отличаются между собой. Но нередко для них создается и выкладывается один общий файл с документацией. Также в сети существуют архивы с даташитами, в том числе с теми, что были удалены с сайтов производителей.
После того как узнаем максимальное количество фаз, поддерживаемых контроллером, сравниваем его с количеством дросселей, определенных ранее. Если это количество совпало, значит с большой долей вероятности система питания реализована без виртуальных фаз и количество дросселей равно количеству фаз. Но могут быть и исключения – например, если задействована только половина из возможных фаз контроллера, но при этом на каждую фазу установлено по два дросселя (мне такие варианты пока не встречались, но теоретически они тоже возможны). Если дросселей меньше, чем количество фаз контроллера, это означает, что не все фазы контроллера были задействованы и количество фаз равно количеству дросселей. Если же дросселей больше (в 2 или даже 3 раза), чем поддерживает контроллер напряжения, то тут у нас вариант с виртуальными фазами. В этом случае количество реальных фаз определяется контроллером напряжения, а количество виртуальных фаз — дросселями.
Сложнее всего, когда по контроллеру напряжения нет никакой информации в свободном доступе. В этом случае о его характеристиках остается судить лишь по косвенным признакам. Но даже в этом случае можно попытаться определить количество фаз по количеству драйверов. Необходимо только учитывать, что драйверы существуют как одноканальные (управляют только одной парой мосфетов), так и двухканальные (управляют сразу двумя парами мосфетов). Двухканальных драйверов достаточно вдвое меньше, чем одноканальных, чтобы обеспечить работу такого же количества фаз.
В случае если система питания основана на контроллере производства Intersil или uPI Semiconductor, можно попробовать поикать микросхемы ISL6611A или uP6284, использующиеся для удвоения фаз. Шесть таких микросхем в сочетании с 6-фазным контроллером позволяют получить 12 независимых фаз в системе питания, без использования параллельного соединения.
Характеристики ШИМ сигнала
Важными характеристиками ШИМ сигнала являются:
амплитуда (U);
частота (f);
скважность (S) или коэффициент заполнения D.
Амплитуда в вольтах задается в зависимости от нагрузки. Она должна обеспечивать номинальное напряжение питания потребителя.
Частота сигнала, модулируемого по ширине импульса, выбирается из следующих соображений:
Чем выше частота, тем выше точность регулирования.
Частота не должна быть ниже времени реакции устройства, которым управляют с помощью ШИМ, иначе возникнут заметные пульсации регулируемого параметра.
Чем выше частота, тем выше коммутационные потери. Он возникают из-за того, что время переключения ключа конечно. В запертом состоянии на ключевом элементе падает все напряжение питания, но ток почти отсутствует. В открытом состоянии через ключ протекает полный ток нагрузки, но падение напряжения невелико, так как проходное сопротивление составляет единицы Ом. И в том, и в другом случае рассеяние мощности незначительно. Переход от одного состояния к другому происходит быстро, но не мгновенно. В процессе отпирания-запирания на частично открытом элементе падает большое напряжение и одновременно через него идёт значительный ток. В это время рассеиваемая мощность достигает высоких значений. Этот период невелик, ключ не успевает значительно разогреться. Но с повышением частоты таких временных промежутков за единицу времени становится больше, и потери на тепло повышаются
Поэтому для построения ключей важно использование быстродействующих элементов.
При управлении электродвигателем частоту приходится уводить за пределы слышимого человеком участка – 25 кГц и выше. Потому что при более низкой частоте ШИМ возникает неприятный свист.
Эти требования часто находятся в противоречии друг к другу, поэтому выбор частоты в некоторых случаях – это поиск компромисса.
Величину модуляции характеризует скважность. Так как частота следования импульсов постоянна, то постоянна и длительность периода (T=1/f)
Период состоит из импульса и паузы, имеющих длительность, соответственно, tимп и tпаузы, причем tимп+tпаузы=Т. Скважностью называется отношение длительности импульса к периоду – S=tимп/T. Но на практике оказалось удобнее пользоваться обратной величиной – коэффициентом заполнения: D=1/S=T/tимп. Еще удобнее выражать коэффициент заполнения в процентах.
Диагностика неисправностей
Одна из часто встречающихся проблем – пробой ключевых транзисторов. Результаты можно увидеть не только при попытке запуска устройства, но и при его обследовании с помощью мультиметра.
Кроме того, существуют и другие неисправности, которые несколько сложнее обнаружить. Перед тем как проверить ШИМ-контроллер непосредственно, можно рассмотреть самые распространенные случаи поломок. К примеру:
- Контроллер глохнет после старта – обрыв петли ОС, перепад по току, проблемы с конденсатором на выходе фильтра (если таковой имеется), драйвером; возможно, разладилось управление ШИМ-контроллером. Надо осмотреть устройство на предмет сколов и деформаций, замерить показатели нагрузки и сравнить их с типовыми.
- ШИМ-контроллер не стартует – отсутствует одно из входных напряжений или устройство неисправно. Может помочь осмотр и замер выходного напряжения, в крайнем случае, замена на заведомо рабочий аналог.
- Напряжение на выходе отличается от номинального – проблемы с петлей ООС или с контроллером.
- После старта ШИМ на БП уходит в защиту при отсутствии КЗ на ключах – некорректная работа ШИМ или драйверов.
- Нестабильная работа платы, наличие странных звуков – обрыв петли ООС или цепочки RC, деградация емкости фильтра.
Принцип работы ШИМ контроллера
Задача ШИМ контроллера состоит в управлении силовым ключом за счёт изменения управляющих импульсов. Работая в ключевом режиме, транзистор находится в одном из двух состояний (полностью открыт, полностью закрыт). В закрытом состоянии ток через p-n-переход не превышает несколько мкА, а значит, мощность рассеивания стремится к нулю. В открытом состоянии, несмотря на большой ток, сопротивление p-n-перехода чрезмерно мало, что также приводит к незначительным тепловым потерям. Наибольшее количество тепла выделяется в момент перехода из одного состояния в другое. Но за счёт малого времени переходного процесса по сравнению с частотой модуляции, мощность потерь при переключении незначительна.
Широтно-импульсная модуляция разделяется на два вида: аналоговая и цифровая. Каждый из видов имеет свои преимущества и схемотехнически может реализовываться разными способами.
Аналоговая ШИМ
Принцип действия аналогового ШИ-модулятора основан на сравнении двух сигналов, частота которых отличается на несколько порядков. Элементом сравнения выступает операционный усилитель (компаратор). На один из его входов подают пилообразное напряжение высокой постоянной частоты, а на другой – низкочастотное модулирующее напряжение с переменной амплитудой. Компаратор сравнивает оба значения и на выходе формирует прямоугольные импульсы, длительность которых определяется текущим значением модулирующего сигнала. При этом частота ШИМ равна частоте сигнала пилообразной формы.
Цифровая ШИМ
Широтно-импульсная модуляция в цифровой интерпретации является одной из многочисленных функций микроконтроллера (МК). Оперируя исключительно цифровыми данными, МК может формировать на своих выходах либо высокий (100%), либо низкий (0%) уровень напряжения. Однако в большинстве случаев для эффективного управления нагрузкой напряжение на выходе МК необходимо изменять. Например, регулировка скорости вращения двигателя, изменение яркости светодиода. Что делать, чтобы получить на выходе микроконтроллера любое значение напряжения в диапазоне от 0 до 100%?
Вопрос решается применением метода широтно-импульсной модуляции и, используя явление передискретизации, когда заданная частота переключения в несколько раз превышает реакцию управляемого устройства
Изменяя скважность импульсов, меняется среднее значение выходного напряжения. Как правило, весь процесс происходит на частоте в десятки-сотни кГц, что позволяет добиться плавной регулировки. Технически это реализуется с помощью ШИМ-контроллера – специализированной микросхемы, которая является «сердцем» любой цифровой системы управления
Активное использование контроллеров на основе ШИМ обусловлено их неоспоримыми преимуществами:
Технически это реализуется с помощью ШИМ-контроллера – специализированной микросхемы, которая является «сердцем» любой цифровой системы управления. Активное использование контроллеров на основе ШИМ обусловлено их неоспоримыми преимуществами:
- высокой эффективности преобразования сигнала;
- стабильность работы;
- экономии энергии, потребляемой нагрузкой;
- низкой стоимости;
- высокой надёжности всего устройства.
Получить на выводах микроконтроллера ШИМ сигнал можно двумя способами: аппаратно и программно. В каждом МК имеется встроенный таймер, который способен генерировать ШИМ импульсы на определённых выводах. Так достигается аппаратная реализация. Получение ШИМ сигнала с помощью программных команд имеет больше возможностей в плане разрешающей способности и позволяет задействовать большее количество выводов. Однако программный способ ведёт к высокой загрузке МК и занимает много памяти.
Примечательно, что в цифровой ШИМ количество импульсов за период может быть различным, а сами импульсы могут быть расположены в любой части периода. Уровень выходного сигнала определяется суммарной длительностью всех импульсов за период. При этом следует понимать, что каждый дополнительный импульс – это переход силового транзистора из открытого состояния в закрытое, что ведёт к росту потерь во время переключений.
Откуда берётся ШИМ
Вариант 1 — аналоговый
ШИМ сигнал создаётся специально сконструированными устройствами – генераторами ШИМ сигнала или генераторами прямоугольных импульсов. Они могут быть собраны как на аналоговой базе, так и на основе микроконтроллеров, как в виде схемы из нескольких транзисторов, так и в виде интегральной микросхемы.
Самый простой вариант это микросхема NE555, собирается всё по схеме:
Схема ШИМ генератора на NE555
Но если лень разбираться и паять, то китайцы за нас всё уже давно сделали.
Стоит $0,5, работает стабильно при питании от 5 до 16 вольт
Выдаёт ШИМ сигнал амплитудой в 5 вольт, скважность можно менять подстроечным резистором (вон та синяя штуковина с вырезом под отвертку). При желании можно заменить подстроечный резистор на переменный и получим удобную ручку регулировки
Вариант 2 – цифровой
Более сложный для новичка – использование микроконтроллера, но вместе с тем более интересный и дающий широкие возможности. Звучит страшно, но самом деле реализуется довольно просто.
В качестве микроконтроллера удобнее всего взять отладочную плату ардуино.
Как с ней работать написано вот здесь. Подключаем ардуинку к компьютеру и заливаем в неё вот такой наисложнейший код:
void setup() {
pinMode(3,OUTPUT); // опреднляем пин D3 как выход
}
void loop() {
int duty = 30; // определяем скважность равной 30%
int value = 255/10*duty; // переводим значение скважности в 8 битный формат
analogWrite(3, value); // выводим ШИМ значением value на пин D3
1
2
3
4
5
6
7
voidsetup(){
pinMode(3,OUTPUT);// опреднляем пин D3 как выход
}
voidloop(){
intduty=30;// определяем скважность равной 30%
intvalue=25510*duty;// переводим значение скважности в 8 битный формат
analogWrite(3,value);// выводим ШИМ значением value на пин D3
Далее цепляемся осциллографом к пину D3 и видим:
ШИМ скважность 30%
Сигнал частотой (Freq) -526 Гц, амплитудой (Vmax)- 5 вольт и скважностью (duty) – 30.9 %. Меняем скважность в коде — меняется и скважность на выходе
Добавляем датчик температуры или освещённости, прописываем зависимость скважности на выходе от показаний датчиков и — готова регулировка с обратной связью
Меняем скважность в коде — меняется и скважность на выходе. Добавляем датчик температуры или освещённости, прописываем зависимость скважности на выходе от показаний датчиков и — готова регулировка с обратной связью
Зачем нужен программный ШИМ?
Затем, что на самом AVR (Atmega) каналов шим 1-2, что часто не хватает для того, что надо.
Пусть у нас есть 3 (три) светодиода и яркостью каждого их них мы хотим управлять индивидуально. Встроенных ШИМ каналов таймера не хватит. И, вообще, может мы еще какой-то особый контроль хотим осуществлять над каждым из них. Поэтому сажаем их на обычные ноги (в примере PORTC ноги 3,4,5) и управляем программно.
Схема:
Дополнительная информация по поводу подключения:
http://www.radiokot.ru/start/mcu_fpga/avr/05/ и в даташите к контроллеру.
Расчет резистора для светодиода:
Питание: 5В. Падение напряжения на светодиоде можно считать 1.5В. Тока на светодиоде должен быть не более 20мА (некоторые поспорят, что надо 15мА, но мне нравится поярче).
По закону Ома: I=U/R, R=U/I=(5-1.5)/0.02=175 Ом. Я поставил резисторы R1,R2 и R2 — 220 Ом.
Подведём итог ремонта
По нынешним меркам кризиса и роста цен, кто-нибудь, житель крупных городов, имеющий высокую по российским меркам зарплату, может скажет что сэкономлена не бог весть какая сумма, больше времени своего потрачено было. Но если вернуться к тому, что сейчас на дворе очередной кризис, экономия данной суммы для большинства людей умеющих держать в руках паяльник, проводить диагностику приборов и умеющих считать деньги, вряд ли была бы лишней, пусть даже для сборки своего личного системного блока. А раз так — то люди, имеющие опыт и практические знания в области электроники, уже имеют плюс по сравнению с людьми, которые этих знаний не имеют, а соответственно не имеют и данной возможности. Всем удачных ремонтов, автор статьи AKV.