Шкала электромагнитных волн

Шкала электромагнитных волн

Электромагнитные волны различных частот существенно различаются по своим свойствам. Поэтому их можно условно разделить на виды, построив шкалу электромагнитных волн.

Низкочастотные (сверхдлинные) волны ($10^4$ Гц и менее)

Электромагнитные волны такой частоты имеют большую длину волны (порядка километров), они способны огибать препятствия больших размеров, способны проникать в толщу воды и грунта. Но, их сложно генерировать и принимать. Кроме того, низкая частота обуславливает малую информационную емкость таких волн. Поэтому, хотя электрические колебания низких частот находят очень широкое применение в народном хозяйстве, электромагнитные волны этого диапазона используются в основном лишь в научных исследованиях Земли.

Радиоволны (^4$ Гц – ^{11}$ Гц)

Электромагнитные волны этого диапазона имеют длину от сантиметров до километра, достаточно легко генерируются и принимаются. При этом, радиоволны частотой менее 3 МГц достаточно хорошо огибают кривизну Земли, способны проходить сквозь не слишком толстые непроводящие преграды и распространяются на несколько сотен километров, а радиоволны частотой до 30МГц – дополнительно способны отражаться от верхних слоев атмосферы, и полностью огибать Землю. Поэтому радиоволны этих диапазонов очень широко используются для связи.

Радиоволны частотами свыше 1 ГГц очень слабо проходят сквозь препятствия, отражаясь от них. Поэтому радиоволны такой частоты используются в радиолокации.

Световое излучение ($10^{11}$ Гц – $10^{18}$ Гц)

Электромагнитные волны данного диапазона имеют длину волны от единиц до тысяч нанометров и включают себя инфракрасное излучение нагретых тел, видимый свет и ультрафиолетовое излучение. Такие волны генерируются нагретыми предметами, чем больше температура – тем больше частота излучения.

Видимый свет в этом диапазоне занимает узкую полосу $3.5×10^{14}$ Гц – $7.5×10^{14}$ Гц. Прозрачность атмосферы Земли для данного диапазона обуславливает огромное значение зрения для живых существ.

Рентгеновское излучение ($10^{18}$ Гц – $10^{20}$ Гц)

Для генерации излучения таких частот необходимы либо очень высокие температуры, либо возбуждение атомов вещества потоком частиц (так происходит в катодных трубках), поскольку длина волны сравнима с размерами атомов. Это излучение обладает высокой проникающей способностью сквозь непроводящие вещества, что дает возможность широкого использования его в медицине и дефектоскопии.

Гамма-излучение ($10^{20}$ Гц и выше)

Излучение таких высоких частот генерируют ядра атомов при ядерных реакциях, длина волны здесь сравнима с размером атомных ядер. Также гамма-излучение является основной составляющей космических лучей, в которых оно имеет наиболее высокие частоты (и наиболее высокие энергии). Поэтому гамма-излучение играет большую роль при космических исследованиях. Кроме того, поскольку гамма-лучи оказывают разрушительное влияние на живую ткань, они находят применение в лечении онкологических заболеваний.

Резюмируя все сказанное, можно построить таблицу шкалы электромагнитных волн:

Рис. 3. Таблица шкалы электромагнитных волн.

Что мы узнали?

Весь диапазон электромагнитных волн можно условно разбить на поддиапазоны, в которых свойства волн достаточно отличаются друг от друга, составив своеобразную шкалу. В нее войдут свехдлинные волны, радиоволны, световое, рентгеновское и гамма-излучение.

  1. /5

    Вопрос 1 из 5

Как появляются и распространяются электромагнитные волны

Представьте себе неподвижный точечный заряд. Пусть его окружают еще много таких зарядов. Тогда он будет действовать на них с некоторой кулоновской силой (и они на него). А теперь представьте, что заряд сместился. Это приведет к изменению расстояния по отношению к другим зарядам, а, следовательно, и к изменению сил, действующих на них. В результате они тоже сместятся, но с некоторым запаздыванием. При этом начнут смещаться и другие заряды, которые взаимодействовали с ними. Так распространяется электромагнитные взаимодействия.

Теперь представьте, что заряд не просто сместился, а он начал быстро колебаться вдоль одной прямой. Тогда по характеру движения он будет напоминать шарик, подвешенный к пружине. Разница будет только в том, что колебания заряженных частиц происходят с очень высокой частотой.

Вокруг колеблющегося заряда начнет периодически изменяться электрическое поле. Очевидно, что период изменений этого поля, будет равен периоду колебаний заряда. Периодически меняющееся электрическое поле будет порождать периодически меняющееся магнитное поле. Это магнитное поле, в свою очередь, будет создавать переменное электрическое поле, но уже на большем расстояние от заряда, и т.д. В результате появления взаимно порождаемых полей в пространстве, окружающем заряд, возникает система взаимно перпендикулярных, периодически меняющихся электрических и магнитных полей. Так образуется электромагнитная волна, которая распространяется от колеблющегося заряда во все стороны.

Электромагнитная волна не похожа на те возмущения вещественной среды, которые вызывают механические волны. Посмотрите на рисунок. На нем изображены векторы напряженности →E и магнитной индукции →Bв различных точках пространства, лежащих на оси Oz, в фиксированный момент времени. Никаких гребней и впадин среды при этом не появляется.

В каждой точке пространства электрические и магнитные пол меняются во времени периодически. Чем дальше расположена точка от заряда, тем позднее ее достигнут колебания полей. Следовательно, на разных расстояниях от заряда колебания происходят с различными фазами. Колебания векторов →E и →B в любой точке совпадают по фазе.

Определение

Длина электромагнитной волны — расстояние между двумя ближайшими точками, в которых колебания происходят в одинаковых фазах.

Длина электромагнитной волны обозначается как λ. Единица измерения — м (метр).

Обратите внимание на рисунок выше. Векторы магнитной индукции и напряженности поля, являющиеся периодически изменяющимися величинами, в любой момент времени перпендикулярны направлению распространения волны

Следовательно, электромагнитная волна — поперечная волна.

Электрическое поле — санитарные нормы

Кстати о нормах: их неплохо знать. Так вот: «Санитарные нормы и правила защиты населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи № 2971-84 устанавливают следующие предельно-допустимые уровни:

  • внутри жилых зданий — 0,5 кВ/м;
  • на территории зоны жилой застройки — 1 кВ/м;
  • в населенной местности вне зоны жилой застройки — 5 кВ/м;
  • на участках пересечения ВЛ с автомобильными дорогами I-IV категории — 10 кВ/м;
  • в труднодоступной местности — 20 кВ/м.

При значительном превышении норм возможно плохое самочувствие. В соответствии с Федеральным Законом от 30 марта № 52-ФЗ «О санитарно-эпидемиологическом благополучии населения», «… Заселение жилых помещений, признанных в соответствии с санитарным законодательством Российской Федерации непригодными для проживания, равно как и предоставление гражданам для постоянного или временного проживания нежилых помещений не допускается» (ст. 23, п.2).Нарушение санитарно-эпидемиологических требований к жилым помещениям, эксплуатации производственных, общественных помещений, зданий, сооружений, оборудования и транспорта влечет административную ответственность должностных лиц (ст. 55).

Для владельцев дачных участков полезна будет также следующая информация из тех же санитарных норм и правил № 2971-84: Минимальные расстояния от проекции на землю крайних фазных проводов в направлении, перпендикулярном к ВЛ:

  • 20 м — для ВЛ напряжением 330 кВ;
  • 30 м — 500 кВ;
  • 40 м — 750 кВ;
  • 55 м — 1 150 кВ.

Как правило, базовые станции сотовой связи не создают сколько-нибудь значимого уровня электромагнитного излучения, представляющего опасность для населения, так как излучаемые уровни намного ниже предельно-допустимых значений. Превышение норм возможно при использовании организациями, предоставляющими услуги сотовой связи некачественной или не сертифицированной аппаратуры связи или при нарушении условий ее эксплуатации. При выявлении превышения ПДУ техническое решение по приведению уровней излучения к норме принимается совместно с владельцами соответствующей аппаратуры. Предельно-допустимый уровень составляет 10 мкВт/см2 .

Ежедневно нарастающее воздействие на человека электромагнитного поля различных частот подвергает нас определённому воздействию, причём основные источники такого воздействия — многочисленные носители электроэнергии. По данным Всемирной организации здравоохранения, ещё в 1979 году исследователи Липер и Вертхаймер (Leeper and Wertheimer) определили взаимосвязь между заболеваемостью детской лейкемией и интенсивностью действия электромагнитного излучения.

Национальная академия наук США в 1996 году, наконец, официально удостоверила наличие прямой связи между вероятностью подвергнуться заболеванию злокачественной опухолью и степенью удалённости места проживания человека от линии электропередач с возможным риском 1,5. Доказано неоспоримое воздействие электромагнитного излучения на определённые части головного мозга, в особенности на эпифиз — железу, вырабатывающую гормон мелатонин, который отвечает за правильный ход биологического ритма у человека (ночной сон меняется дневным бодрствованием и наоборот).

Сбой в выработке мелатонина вызывает постоянную усталость, нарушение концентрации внимания, потерю работоспособности, непроходящую депрессию и другие отрицательные явления. В нашей стране тщательное исследование воздействия на человека электромагнитных полей началось в 60-е годы, в результате чего к настоящему времени скопилась большая база информации по этой проблеме.

Именно российские учёные определили, что человеческая нервная система, высшая нервная деятельность в особенности, очень чувствительна к электромагнитным полям и что электромагнитное поле наносит патогенное влияние. Несмотря на это, исследовательские работы в последнее время резко сократились, хотя ещё до конца не изучены особенно важные аспекты этой проблемы. Кроме того, из Санитарных норм и правил исключили параметры, ограничивающие наиболее негативную составляющую ЭМП – магнитную. Также пропущено возможное отрицательное воздействие на человека комбинированного и модулированного действия радиочастотного и СВЧ–излучения.

Шкала электромагнитных излучений

Отличаясь друг от друга количественно, электромагнитные волны определенным образом могут быть получены с использованием приборов. Существуют естественные и искусственные источники явления. Помимо приборов и источников волн на Земле, электромагнитные волны излучаются и космическими объектами.

Низкочастотные волны, радиоволны, инфракрасное световое излучение, оптическое излучение, рентгеновские спектры, невидимые излучения гамма — различные участки условной шкалы, показывающей области λ — области длин волн.

Таблица спектра электромагнитных излучений

Название Длина волн Частота Источники, Космические источники
Низкочастотные излучения более 10000м 0-30 кГц Генератор переменного тока, домашняя и офисная электротехника, ЛЭП и др. Магнитное поле Земли
Радиоволны 1мм-10000м 30кГц-300ГГц Переменный ток в колебательном контуре, полупроводниковые приборы Солнце, планеты и малые тела Солнечной системы, облака межзвездного газа, реликтовое излучение на ранней стадии расширения Вселенной, квазары
Инфракрасное световое излучение 1мм-780нм 300ГГц-429ТГц Тепловые источники, лазер, ртутно-кварцевая лампа Солнце, межзвездная и околозвездная пыль, реликтовое излучение на ранней стадии расширения Вселенной, планеты, малые тела Солнечной системы
Видимое излучение световое 780-380нм 429-750ТГц Лампа накаливания, пламя, молния, лазер Солнце, другие звезды (с температурой 10-100 тысяч градусов)
Ультрафиолетовое излучение 380-10нм 7,5*1000000000000000-3*100000000000000000Гц Углеродная дуга Солнце, горячие Звезды, высокотемпературная плазма
Рентгеновское излучение 10-5*10в-3 степени нм 3*100000000000000000-6*100000000000000000000Гц Рентгеновская трубка Солнце, нейтронные звезды и, возможно, черные дыры, шаровые звездные скопления, к внегалактическим источникам – квазары, отдаленные галактики и их скопления.
Гамма-излучение менее 5*10 в 3 степени нм более 6*100000000000000000000 Гц Атомные ядра, Кобальт-60 Солнце, фоновое Космическое излучение, некоторые пульсары (нейтронные звезды), сверхновые звезды, Млечный Путь, области галактического центра, многих галактик и квазаров

Чувствительность человеческого глаза Одно из главных свойств электромагнитных волн является степень их поглощения веществом. Различие можно обнаружить между длинноволновыми и коротковолновыми излучениями. Первые поглощаются с гораздо большей интенсивностью, чем коротковолновые, однако обладают дополнительным свойством: при поглощении обнаруживают свойства частиц.


Спектральная чувствительность глаза

Преобразуя энергию, идущую от источника видимого светового диапазона, в зрительной системе человек получает сигналы из окружающей среды. Свет попадает на сетчатку глаза, возбуждает фоторецепторы, от которых сигнал передается в нейронные связи коры головного мозга, находящиеся в затылочной доле коры больших полушарий. В головном мозге в результате подобных преобразований формируется зрительный образ.

Развиваясь эволюционно, человеческий глаз сформировался наилучшим образом для восприятия солнечного света. В результате зрительный орган современного человека улавливает электромагнитное излучение в диапазоне длин волн 400–750 нм (видимое излучение). От более низковолновых излучений (ультрафиолета) глаз защищен областью хрусталика с низкой прозрачностью.

Свойства электромагнитных волн

Для излучения электромагнитных волн заряд не обязательно должен совершать колебательное движение; главное — чтобы у заряда было ускорение. Любой заряд, движущийся с ускорением, является источником электромагнитных волн

. При этом излучение будет тем интенсивнее, чем больше модуль ускорения заряда.

Так, при равномерном движении по окружности (скажем, в магнитном поле) заряд имеет центростремительное ускорение и, стало быть, излучает электромагнитные волны. Быстрые электроны в газоразрядных трубках, налетая на стенки, тормозятся с очень большим по модулю ускорением; поэтому вблизи стенок регистрируется рентгеновское излучение высокой энергии (так называемое тормозное излучение

).

Электромагнитные волны оказались поперечными

— колебания векторов напряжённости электрического поля и индукции магнитного поля происходят в плоскости, перпендикулярной направлению распространения волны.

Рассмотрим, например, излучение заряда, совершающего гармонические колебания с частотой вдоль оси вокруг начала координат. Во все стороны от него бегут электромагнитные волны — в частности, вдоль оси . На рис. 5 показана структура излучаемой электромагнитной волны на большом расстоянии от заряда в фиксированный момент времени.

Рис. 5. Синусоидальная электромагнитная волна

Скорость волны направлена вдоль оси . Векторы и в каждой точке оси совершают синусоидальные колебания вдоль осей и соответственно, меняясь при этом синфазно.

Кратчайший поворот вектора к вектору всегда совершается против часовой стрелки, если глядеть с конца вектора .

В любой фиксированный момент времени распределение вдоль оси значений модуля векторов и имеет вид двух синфазных синусоид, расположенных перпендикулярно друг другу в плоскостях и соответственно. Длина волны

— это расстояние между двумя ближайшими точками оси , в которых колебания значений поля происходят в одинаковой фазе (в частности — между двумя ближайшими максимумами поля, как на рис. 5).

Частота, с которой меняются значения и в данной точке пространства, называется частотой электромагнитной волны

; она совпадает с частотой колебаний излучающего заряда. Длина электромагнитной волны , её частота и скорость распространения c связаны стандартным для всех волн соотношением:

(2)

Эксперименты показали, что электромагнитным волнам присущи те же основные свойства, что и другим видам волновых процессов.

1. Отражение волн

. Электромагнитные волны отражаются от металлического листа — это было обнаружено ещё Герцем. Угол отражения при этом равен углу падения.

2. Поглощение волн

. Электромагнитные волны частично поглощаются при прохождении сквозь диэлектрик.

3. Преломление волн

. Электромагнитные волны меняют направление распространения при переходе из воздуха в диэлектрик (и вообще на границе двух различных диэлектриков).

4. Интерференция волн

. Герц наблюдал интерференцию двух волн: первая приходила к приёмному вибратору непосредственно от излучающего вибратора, вторая — после предварительного отражения от металлического листа.

Меняя положение приёмного вибратора и фиксируя положения интерференционных максимумов, Герц измерил длину волны . Частота собственных колебаний в приёмном вибраторе была Герцу известна. По формуле (2) Герц вычислил скорость распространения электромагнитных волн и получил приближённо м/с. Именно такой результат предсказывала теория, построенная Максвеллом!

5. Дифракция волн

. Электромагнитные волны огибают препятствия, размеры которых соизмеримы с длиной волны. Например, радиоволны, длина волны которых составляет несколько десятков или сотен метров, огибают дома или горы, находящиеся на пути их распространения.

Как проверить уровень электромагнитного излучения в домашних условиях

Точно обрисовать, как обстоят дела с электромагнитным излучением в вашем доме, могут только специалисты. Когда в службу СЭС поступает объявление о превышении допустимой нормы ЭМИ, на место выезжают работники со специальными приборами, позволяющими получить точные данные. Показатели обрабатываются. Если они завышены, предпринимаются определенные меры. Первым делом выясняют причину неполадки. Это может быть ошибка в строительстве, проектировании, неправильная эксплуатация.

Watch this video on YouTube

Для самостоятельного определения степени излучения понадобятся отвертка с индикатором и радиоприемник.

  1. Выдвиньте антенну из приемника;
  2. Прикрутите к ней проволочную петлю диаметром 40 см;
  3. Настройте радио на пустую частоту;
  4. Обойдите помещение. Прислушивайтесь к звукам приемника;
  5. Место, где слышатся отчетливые звуки, и является источником излучения;
  6. Поднесите индикаторную отвертку со светодиодом. Индикатор станет красным, а интенсивность цвета скажет о силе излучения.

Увидеть значение в цифрах позволит ручной прибор. Он работает на разных частотах и улавливает напряжение электромагнитного поля. Прибор настраивается на нужный режим частот, выбирая единицы измерения: вольт/метр или микроватт/см2, отслеживает выбранную частоту и выводит результат на компьютер.

Также хорошим прибором является АТТ-2592. Устройство портативное, имеет дисплей с подсветкой. Измерение выполняет изотропным методом, автоматически выключается через 15 минут.

Что такое шаговое напряжение и как покинуть опасную зону

Что такое электромагнитное реле, их виды и принцип работы

Что такое светодиод, его принцип работы, виды и основные характеристики

Что такое цветовая температура светодиодных ламп?

Клетка Фарадея своими руками

Как выбрать потолочный инфракрасный обогреватель?

Виды электромагнитного излучения

ЭМИ разделено на виды по характеристикам длины и частоты.

Длина волн колеблется в таких диапазонах:

  1. Радиоволны (от 0,1 мм до 10 км и более) делятся на короткие, ультракороткие, средние, длинные и сверхдлинные. Ультракороткие радиоволны относятся к сверхвысокочастотным (СВЧ) волнам.
  2. Инфракрасные лучи (от 1 мм до 780 нм).
  3. Ультрафиолетовые лучи (от 380 мм до 10 нм).
  4. Видимый свет (от 780 мм до 380 нм).
  5. Рентген-излучение (от 10 нм до 5 пм).
  6. Гамма-лучи (до 5 пм).

Частота волн варьируется от 30 кГц (для радиоволн) до 6×10¹9 Гц и более (для гамма-лучей).

Волны разной длины образуются разными способами:

  • рентгеновские появляются тогда, когда быстро движущиеся электроны переходят в состояние с меньшей энергией вследствие торможения;
  • ультрафиолетовое излучается вследствие движения ускоренных электронов;
  • инфракрасное излучение испускается раскаленными предметами;
  • радиоволны образуются из высокочастотных токов, движущихся по антеннам;
  • ионизирующее гамма-излучение испускается в процессе ядерных реакций.

Вышеперечисленные виды волн поглощаются веществами неодинаково: рентгеновские и гамма-волны проникают сквозь ткани организма и почти не поглощаются, инфракрасные лучи проходят сквозь ряд непрозрачных объектов, при поглощении происходит нагрев вещества.

Свойства электромагнитных волн

Важнейшим результатом, который вытекает из сформулированной Максвеллом теории электромагнитного поля, стало предсказание возможности существования электромагнитных волн. Электромагнитная волна – распространение электромагнитных полей в пространстве и во времени.

Источник электромагнитного поля – электрические заряды, движущиеся с ускорением.

Электромагнитные волны, в отличие от упругих (звуковых) волн, могут распространяться в вакууме или любом другом веществе.

Электромагнитные волны в вакууме распространяются со скоростью c=299 792 км/с, то есть со скоростью света.

В веществе скорость электромагнитной волны меньше, чем в вакууме. Соотношение между длиной волна, ее скоростью, периодом и частотой колебаний, полученные для механических волн выполняются и для электромагнитных волн:

Колебания вектора напряженности E и вектора магнитной индукции B происходят во взаимно перпендикулярных плоскостях и перпендикулярно направлению распространения волны (вектору скорости).

Электромагнитная волна переносит энергию.

Диапазон электромагнитных волн

Вокруг нас сложный мир электромагнитных волн различных частот: излучения мониторов компьютеров, сотовых телефонов, микроволновых печей, телевизоров и др. В настоящее время все электромагнитные волны разделены по длинам волн на шесть основных диапазонов.

Радиоволны – это электромагнитные волны (с длиной волны от 10000 м до 0,005 м), служащие для передачи сигналов (информации) на расстояние без проводов. В радиосвязи радиоволны создаются высокочастотными токами, текущими в антенне.

Электромагнитные излучения с длиной волны, от 0,005 м до 1 мкм, т.е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением. Инфракрасное излучение испускают любые нагретые тела. Источником инфракрасного излучения служат печи, батареи, электрические лампы накаливания. С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте.

К видимому свету относят излучения с длиной волны примерно 770 нм до 380 нм, от красного до фиолетового цвета. Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения.

Невидимое глазом электромагнитное излучение с длиной волны меньше, чем у фиолетового цвета, называют ультрафиолетовым излучением. Оно способно убивать болезнетворные бактерии.

Рентгеновское излучение невидимо глазом. Оно проходит без существенного поглощения через значительные слои вещества, непрозрачного для видимого света, что используют для диагностики заболеваний внутренних органов.

Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными ядрами и возникающее при взаимодействии элементарных частиц.

Длина волны

Это самая важная характеристика для волны. Ей называется расстояние между двумя точками этой волны, колеблющихся в одной фазе. Если проще, то это расстояние между двумя «гребнями».

Обозначается эта величина буквой λ и измеряется в метрах.

Еще длиной волны можно назвать расстояние, пройденное волной, за один период колебания.

Период

Период — это время, за которое происходит одно колебание. То есть, если дано время распространения волны и количество колебаний, можно рассчитать период.

Формула периода колебания волны

T = t/N

T — период

t — время

N — количество колебаний

Для электромагнитных волн есть целая шкала длин волн. Она показывает длину волны и частоту для разных типов электромагнитных волн.

Частота

Частота — это величина, обратно пропорциональная периоду. Она определяет, сколько колебаний в единицу времени совершила волна.

Формула частоты колебания волны

υ = N/t = 1/T

υ — частота

t — время

N — количество колебаний

T — период

Скорость

Также важной характеристикой распространения волны является ее скорость. Чтобы вывести формулу скорости через длину волны, нужно вспомнить формулу скорости из кинематики — это раздел физики, в котором изучают движение тел без учета внешнего воздействия

Чтобы вывести формулу скорости через длину волны, нужно вспомнить формулу скорости из кинематики — это раздел физики, в котором изучают движение тел без учета внешнего воздействия.

Формула скорости

? = S/t

? — скорость [м/с]

S — путь

t — время

Переходя к волнам, можно провести следующие аналогии:

  • путь — длина волны
  • время — период

А для скорости даже аналогия не нужна — скорость и Африке скорость.

Формула скорости волны

? = λ/T

? — скорость [м/с]

λ — длина волны

T — период

Для электромагнитной волны скорость равна скорости света — ? = 3*10^8 м/с. Поэтому формулу скорости чаще всего используют для нахождения из нее длины волны или периода.

Задачка

Определить цвет освещения, проходящий расстояние, в 1000 раз больше его длины волны за 2 пс.

Решение:

Для начала переведем 2 пикасекунды в секунды — это 2*10^-12 с.

Теперь возьмем формулу скорости

? = S/t

По условию S = 1000λ

То есть

? = 1000λ/t

Выражаем длину волны

λ = ?t/1000

Подставляем значения скорости света и известного нам времени:

λ = 3*108* 2*10-121000 =600 нм

И соотносим со шкалой видимого света

Из шкалы видно, что длине волны в 600 нм соответствует оранжевый цвет излучения.

Ответ: цвет освещения при заданных условиях будет оранжевым.

Симптомы поражения

Негативное влияние ЭМИ на здоровье человека было доказано многочисленными медицинскими исследованиями.


Клинические проявления действия ЭМИ

Симптомы поражения мощным излучением:

  • головные боли;
  • расстройство памяти и внимания;
  • снижение зрения;
  • бессонница;
  • упадок сил;
  • повышение давления и температуры тела;
  • тошнота;
  • нарушения психики и функций ЦНС;
  • эндокринные расстройства.

Опасное последствие воздействия сверхвысоких ЭМИ — повреждения на клеточном уровне и нарушение работы систем организма. Вредное излучение способно накапливаться в организме, приводя к отравлению.

Как применить метод на практике

  • Уложенная под штукатурку металлическая арматура — идеальный экран от стороннего излучения. Разумеется, при условии, что сетка заземлена. Пусть это не вызывает ассоциаций с сюжетами из фильмов про агента 007 – материал продается в любом строительном магазине.

  • Металлизированные пленки на окна — интересное решение, только при условии наличия контакта для заземляющего проводника. Такой метод был популярен в эпоху компьютерных мониторов с электронно-лучевой трубкой (кинескопом).
  • Металлизированные занавески с декоративными нитями (опять же, при условии заземления).
  • Алюминиевая фольга за батареями отопления будет выполнять не только функции отражателя тепла, но и защиты от электромагнитных излучений.
  • Стальные входные двери (они также должны быть соединены с «землей», как минимум в рамках системы выравнивания потенциалов).

Правда у этих средств защиты есть побочный эффект: сквозь такие стены и окна не пробивается сигнал сотовой связи. Радио и телепередачи также будут приниматься лишь на внешнюю антенну. С учетом пользы для здоровья, это не проблема.

А бытовые приборы, расположенные внутри, необходимо подключать к шине заземления. Большинство электрооборудования имеет металлический корпус (даже пластиковые на первый взгляд телевизоры и музыкальные центры, имеют внутри токопроводящий каркас). Уровень излучение у заземленной техники приближается к нулю.

Действующие способы защиты

Самым эффективным способом защиты считается снижение мощности излучающих источников или простой уход из зоны его воздействия. Но если в домашних условиях, благодаря действующим СНиП и СанПиН, показатели напряжённости редко превышают действующие нормативы, то в производственных условиях избежать такого воздействия удаётся не всегда.

Уменьшение мощности источника может быть достигнуто несколькими способами:

  1. Применение поглощающих экранов и защитных конструкций.
  2. Установка блокирующих или отражающих устройств.

Все подобные средства относят к коллективной защите, в дополнение к ним применяют и СИЗ (средства индивидуальной защиты).

Большинство средств защиты от электромагнитного поля предназначены для промышленных условий. В их число входят:

  • Отражающие экраны, козырьки и другие сооружения, из металлической сетки, арматуры, металлических листов. На практике получили более дешёвые конструкции из стали, цветных металлов и их сплавов. Все эти конструкции должны быть обязательно заземлены. Принцип действия основан на появлении в материалах экранов токов Фуко (вихревых токов), которые по амплитуде имеют сходное значение, но находятся в противофазе. В результате результирующее поле теряет свою напряжённость и не может пройти через защитную конструкцию.
  • Поглощающие конструкции делают с применением полимерных материалов — пенополистирол, различные виды резины, поролон. Хорошие показатели и пропитанной специальными составами древесины, используют и пластины из ферромагнитных сплавов, но это уже более дорогой результат.
  • Чтобы придать различным конструкциям защитные свойства, применяют токопроводящие краски на основе порошкового графита, оксидов металлов, сажи, коллоидного серебра. В этом случае получают отражающие элементы защиты от электромагнитного излучения.
  • Получили распространение и ионизаторы, которые позволяют нейтрализовать заряды статического напряжения, возникающего под воздействием электрического и магнитного поля. Такие устройства применяются и в быту.

К индивидуальным средствам защиты относят:

  • Спецодежда и обувь, изготовленная из тканей с вплетением металлических нитей.
  • Защитные очки с металлизированными покрытиями, обладающими отражающими свойствами.
  • Для предотвращения воздействия инфракрасного излучения применяют стандартные теплоизолирующие костюмы.
  • Воздействие ультрафиолетового излучения нейтрализуют защитной одеждой и очками или маской со светофильтрами. Простой пример — комплект спецодежды электросварщика.

Привели только распространённые решения, которые дают возможность нейтрализовать или минимизировать воздействие электромагнитного излучения. Но в бытовых условиях такие варианты малоприменимы.