Солнечные панели (батареи): виды свойства и принцип действия

Солнечная батарея для дома, дачи

Что делать, если на даче по какой-то причине нет электричества? Можно, конечно, приспособиться и к такой жизни, наслаждаясь проверенными временем технологиями: для освещения пользоваться свечами и керосиновой лампой, для хранения продуктов выкопать погреб, воду носить ведрами и греть на огне, от телевизора отказаться и т.д. Однако такой «отдых» вряд ли будет по-настоящему комфортным: рано или поздно все равно придется искать способы получения электричества с помощью альтернативных источников энергии.

Чаще всего об этом задумываются в следующих случаях:

  • нет возможности подключить дачный или загородный дом к электросети;
  • подключение к электросети стоит неоправданно дорого;
  • на подстанции постоянно происходят аварии, из-за которых подолгу не бывает света;
  • участку выделена слишком малая мощность и ее постоянно не хватает (обычно это случается в садовых товариществах со старыми электросетями);
  • хочется сэкономить на чрезмерно высоких счетах за электричество.

Самый простой и доступный из альтернативных источников энергии – солнечные батареи. Фотоэлементы на основе кремния, соединенные в электрическую цепь для преобразования энергии солнечного света в электроэнергию, были изобретены в США и начали использоваться на американских и советских космических спутниках еще в 1958 году. В наше время на них работает портативная техника (калькуляторы, термометры, фонарики), космические аппараты, электромобили и яхты, даже разрабатывается самолет, который будет летать за счет энергии, полученной от солнечных батарей.

Во многих странах созданы крупные солнечные электростанции, а правительство Франции планирует уложить 1 000 км автодорог со встроенными солнечными панелями, чтобы каждый километр такого покрытия обеспечивал электроэнергией 5 000 человек (без учета отопления). Солнечные батареи нашли применение даже в медицине: в Южной Корее крошечные фотоэлементы вживляют в кожу пациента для бесперебойной работы имплантированных приборов, например, кардиостимулятора. Такой длительный опыт и широкое применение солнечных батарей свидетельствует о надежности, экономичности и высокой эффективности этой технологии.

В этой статье я расскажу о собственном опыте использования солнечных батарей на даче. Прежде всего необходимо заметить, что для обеспечения потребностей небольшого дачного дома в электроэнергии требуется собрать целую мини-электростанцию, в которую, кроме самих солнечных батарей, входят аккумуляторы для накопления заряда, контроллер для управления системой и инвертор для преобразования постоянного тока в переменный.

Солнечные батареи для квартиры плюсы и минусы

Современные тенденции в применении чистых источников энергии позволяют сделать вывод об этих источниках энергии, что это самое перспективное направление на ближайшее будущее.

Основные достоинства такого источника энергии:

  • Независимость от городской электросети;
  • За выработанное электричество не придется ежемесячно платить;
  • Как мы уже писали, эти девайсы обладают длительным периодом службы 20–30 лет;
  • Простота конструкции придает надежность собранной системе;
  • Простота в работе. Какого либо особого ухода не требуется.

Недостатки тоже есть:

  • Продуктивность системы зависит от временного промежутка в течение суток и погодных условий;
  • Довольно высокая себестоимость, при большом периоде самоокупаемости;
  • Низкая производительность;
  • Все-таки, это дополнительный источник электричества, а не постоянный;
  • Все приборы необходимо оградить от попадания на них атмосферных осадков. Сам балкончик должен быть остеклен и утеплён.

Солнечные батареи с использованием новейших инноваций

Большинство производителей панелей предлагают ряд моделей, это могут быть монокристаллические и поликристаллические варианты продукции с различной номинальной мощностью. За последние несколько лет эффективность панелей существенно возросла благодаря многим достижениям в технологии и материалах, из которых делают солнечные батареи.

На текущий момент можно отметить 8 основных технологий, при производстве высокоэффективных солнечных батарей:

  • PERC (Passivated Emitter Rear Cell) — диэлектрический слой на обратной стороне ячейки;
  • Bifacial — Двухсторонние;
  • Multi Busbar — Многолинейные;
  • Split panels – Половинчатые;
  • Dual Glass — Безрамочные, с двойным стеклом;
  • Shingled Cells — Безразрывные элементы;
  • IBC (Interdigitated Back Contact cells) — переплетеные контакты сзади ячейки;
  • HJT (Heterojunction cells) — гетероструктурные ячейки.

Пять основных типов солнечных панелей с использованием новейших технологий солнечных фотоэлементов в 2020 году:

Применяя инновационные решения, в производстве солнечных модулей, постоянно происходят различные улучшения эффективности, уменьшения влияния затенения и повышения надежности, при этом несколько производителей в настоящее время дают гарантию производительности до 30 лет.

Учитывая все новые доступные варианты выбора современных солнечных батарей, стоит провести некоторые исследования, прежде чем инвестировать в солнечную установку

В нашей полной обзорной статье о солнечных панелях мы расскажем, как выбрать надежную солнечную панель и на что обратить внимание

Принцип работы солнечной батареи

В результате перетечки зарядов на границе p- и n- слоев, в n-слое образуется зона нескомпенсированного положительного заряда, а в p-слое – отрицательного заряда, т.е. известный всем из школьного курса физики p-n-переход. Разность потенциалов, возникающая на переходе контактная разность потенциалов (потенциальный барьер) препятствует прохождению электронов с p-слоя, но беспрепятственно пропускает неосновные носители в направлении противоположном, что позволяет получить фото-ЭДС при попадании на ФЭП солнечного света.  

При облучении солнечным светом, поглощенные фотоны начинают генерировать неравновесные электронно-дырочные пары. Генерируемые же вблизи перехода электроны, из p-слоя переходят в n-область.

Аналогичным образом попадают в p-слой избыточные дырки и слоя n (рисунок а). Получается, что в p-слое накапливается  положительный заряд,  а в n- слое – отрицательный, вызывая напряжение во внешней цепи (рисунок б). У источника тока есть два полюса: положительный — p-слой и отрицательный — n-слой.

Это основной принцип работы солнечный элементов. Электроны, таким образом, будто бегают по кругу, т.е. выходят из p-слоя и возвращаются в n-слой, проходя нагрузку (аккумулятор).

Фотоэлектрический отток в однопереходном элементе обеспечивают лишь те электроны, которые обладают энергией выше, чем ширина некой запрещенной зоны. Те же, которые обладают меньшей энергией, в этом процессе не участвуют. Это ограничение снять позволяют структуры многослойные, состоящие из более чем один СЭ, у которых ширина запрещенной зоны различная. Их называют каскадными, многопереходными или тандемными. Фотоэлектрическое преобразование у них выше за счет того, что работают такие СЭ с более широким солнечным спектром. В них фотоэлементы располагаются по мере уменьшения ширины запрещенной зоны. Солнечные лучи вначале попадают на фотоэлемент с самой широкой зоной, при этом происходит поглощение фотонов с наибольшей энергией.

Затем, фотоны, пропущенные верхним слоем, попадают на следующий элемент и т.д. В области каскадных элементов основным направлением исследования является использование в качестве одного компонента или нескольких арсенида галлия. У таких элементов  эффективность преобразования составляет 35%. Элементы соединяют в батарею, поскольку  изготовить отдельный элемент большого размера (следовательно, и мощности) не позволяют технические возможности.

Солнечные элементы способны работать длительное время. Они себя зарекомендовали как стабильный и надежный источник энергии, пройдя испытания в космосе, где главной опасностью для них является метеорная пыль и радиация, которые приводят к эрозии кремниевых элементов. Но, поскольку, на Земле эти факторы не оказывают на них столь негативного действия, можно предположить, что срок службы элементов будет еще более продолжительным.

Солнечные батареи уже находятся на службе человека, являясь источником питания для  различных устройств, начиная от мобильных телефонов и заканчивая электромобилями.

И это уже вторая попытка человека обуздать безграничную солнечную энергию, заставив работать ее себе во благо. Первой попыткой было создание солнечных коллекторов, электричество в которых вырабатывалось за счет нагрева сконцентрированными лучами солнца воды до температуры кипения.

Термальная солнечная электростанция в Испании (город Севилья)

Преимущество солнечных батарей в  том, что они непосредственно производят электричество, теряя энергии намного меньше, чем солнечные многоступенчатые коллекторы, в которых процесс ее получения связан с концентраций лучей Солнца, нагревом воды, выделением пара, вращающего паровую турбину и только после этого выработке генератором электричества. Основные параметры солнечных батарей – в первую очередь, мощность

Затем важно, каким запасом энергии они обладают

Зависит этот параметр от емкости аккумуляторов и их числа. Третьим параметром является пиковая мощность потребления, означающая количество одновременно возможных подключений приборов. Еще одним важным параметров является номинальное напряжение, от которого зависит выбор дополнительного оборудования: инвертора, солнечной панели, контроллера, аккумулятора.

Виды солнечных батарей

Все солнечные панели кажутся на первый взгляд одинаковыми – покрытые стеклом темные элементы с металлическими полосками, проводящими ток, помещенными в алюминиевую раму.

Но, солнечные батареи классифицируют по мощности вырабатываемого ею электричества, зависит которая от  конструкции и площади панели (они могут быть миниатюрными пластинками с мощностью до десяти ватт и широкими «листами» на двести и более ватт).

Кроме этого, различаются они  по типу образующих их фотоэлементов: фотохимические, аморфные, органические, а также созданные на основе кремниевых полупроводников, у которых коэффициент фотоэлектрического преобразования в несколько раз больший. Следовательно, больше и мощность (особенно во время солнечной погоды). Конкурентом последних может быть солнечная батарея на основе арсенида галлия. То есть, на рынке сегодня встретить можно пять типов солнечных батарей.

Они отличаются материалами, используемыми для их изготовления:

1. Панели из поликристаллических фотоэлектрических элементов, с характерным синим цветом солнечной панели, кристаллической структурой и КПД, равным 12-14%.

Поликристаллическая панель

2. Панели из монокристаллических элементов – более дорогие, но и более эффективные (КПД – до 16%).

Монокристаллическая панель

3. Панели солнечные из аморфного кремния, у которых КПД самый низкий – 6-8%, но вырабатывают они наиболее дешевую энергию.

Панель из аморфного кремния

4. Панели из теллурида кадмия, создаваемые по пленочным технологиям (КПД – 11%).

Панель, в основе которой лежит теллурид кадмия

5. Наконец, солнечные панели на основе полупроводника CIGS, состоящего из селена, индия, меди, галлия. Технологии их получения тоже пленочные, но КПД доходит до пятнадцати процентов.

Панель солнечная на основе CIGS

Кроме этого, панели солнечные могут быть гибкими и портативными.

Создание фотоэлектрического элемента

Чтобы кремний мог вырабатывать энергию, в него добавляют бор (B) и фосфор (P). Благодаря этому слой фосфора получает свободные электроны (сторона n-типа), сторона бора – отсутствие электронов, т.е. дырки (сторона p-типа). По причине этого между фосфором и бором появляется p-n переход. Когда свет будет падать на ячейку, из атомной решетки будут выбиваться дырки и электроны, появившись на территории электрического поля, они разбегаются в сторону своего заряда. Если присоединить внешний проводник, они будут стараться компенсировать дырки на другой части пластинки, появится напряжение и ток. Именно для его выработки с обеих сторон пластины припаиваются проводники.

Напряжение

Как правило, панели выпускаются с выходным напряжением 12 В. Но для заряда аккумуляторов необходимо иметь в системе напряжение выше, чем из рабочее, да и преобразование из постоянного в переменное выгоднее по КПД производить с более высоких значений.

Какое выходное напряжение на Ваших солнечных панелях?

12 В / 24 В36 В / 48 В

Поэтому принята стандартная практика использовать напряжения:

  • 12 В для систем с потреблением на более 1 кВт.
  • 24 В или 36 В – при потреблении до 5 кВт.
  • 48 В – при мощности свыше 5 кВт.

Для получения таких напряжений используют последовательное включение панелей (наборов панелей).

Схема электропитания дома от солнца

Система солнечного электроснабжения включает:

  1. Гелиопанели.
  2. Контроллер.
  3. Аккумуляторы.
  4. Инвертор (трансформатор).

Контроллер в этой схеме защищает как солнечные батареи, так и АКБ. С одной стороны он препятствует протеканию обратных токов по ночам и в пасмурную погоду, а с другой – защищает аккумуляторы от чрезмерного заряда/разряда.

Для трансформации постоянного тока на 12, 24 либо 48 Вольта в переменный 220-вольтовый нужен инвертор. Автомобильные аккумуляторы применять в такой схеме не рекомендуется из-за их неспособности выдерживать частые перезарядки. Лучше всего потратиться и приобрести специальные гелиевые AGM либо заливные OPzS АКБ.

Мощность и напряжение

Мощность панелей определяют следующим образом:

  • Рассчитывают среднюю суммарную мощность потребления (по показателям электросчетчика, счетам за электроэнергию). Для среднедневного потребления показатели за месяц делят на количество дней.
  • К полученному результату добавляют 20-30%, чтобы получить запас с учетом КД преобразования (потерь на заряд аккумуляторов и работу инвертора).
  • По полученным данным рассчитывают выходную мощность панелей с учетом длительности светового дня. Для расчетов она принимается равной 6 ч, соответственно мощность батареи должна превосходить среднее потребление в 4 раза.
  • Выбирают напряжение панели. Как правило, производители предлагают батареи с выходным напряжением 12В. Однако для заряда накопителей и повышения КПД преобразования постоянного напряжения переменное на инверторе (особенно при большой мощности), выгоднее иметь более высокие значения.Стандартно используют:
    • 12 В для систем для мощностей до 1 кВт.
    • 24 В или 36 В – до 5 кВт.
    • 48 В – более 5 кВт.

Такие напряжения получают последовательным соединением панелей.

  • Определяют пиковую мощность, для чего суммируют мощности всех потребителей в доме.
  • Определяют пиковую мощность с запасом 10-20%, например, на пусковые токи электродвигателей и работу нагревательных элементов системы ГВС, стиральной и посудомоечной машин и т.д.
  • По пиковой мощности определяют максимальный ток панелей.
  • В справочниках находят коэффициент инсоляции (в летнее и зимнее время) для местности.

Для дальнейших расчетов следует воспользоваться формулой:

P = Kc * Wn * Ki, учитывающей

  • Кс – сезонный коэффициент, для летнего времени принимается равным 0.5, для зимнего — 0.7;
  • Ki – коэффициент инсоляции, для летнего и зимнего времени;
  • Wn – номинальную мощность панели.

Выбрав в каталогах производителей несколько моделей батарей для каждой из них рассчитывают мощность генерации в зимнее и летнее время.

Затем определяют необходимое количество панелей, разделив рассчитанную выше среднюю мощность потребления (с запасом) на мощность генерации. Вычисления ведут для зимнего и летнего периода, в качестве итога принимают большее значение.

Мнение эксперта
Гребнев Вадим Савельевич
Монтажник отопительных систем

Округления ведут до большего целого числа. При напряжениях более 12 В округляют до чисел кратных 2 для систем с питание 24В, 3 для 36В и 4 для 48 В.

После расчетов проверяют:

  • Максимальную токовую нагрузку на панели по пиковому потреблению. Если максимальный ток больше, чем обеспечивают соединенные параллельно батареи, следует выбрать более мощные.
  • Бюджет. Определяют общую стоимость панелей и сравнивают с выделенной на их покупку суммой.

Гетероструктурные HJT солнечные элементы

Гетероструктурные HJT солнечные элементы в основе имеют обычные кристаллические элементы, покрытые дополнительными тонкопленочными слоями аморфного кремния на каждой стороне. Эти пленки формируют так называемые гетеропереходы, в дополнение к основному переходу в кристаллическом элементе. Известно, что разные типы переходов преобразуют разные участки спектра солнечного света  в электричество. За счет этого эффекта достигается повышение общего КПД преобразования солнечной энергии в гетероструктурном солнечном элементе. 

Сейчас HJT элементы на основе обычных солнечных элементов с токосъемными шинами имеют КПД 22-23%. Ожидается, что максимальный КПД может быть повышен до 26,5% за счет комбинации гетероструктуры с IBC технологией формирования токосъемных контактов (см. ниже). Конечно же, перечисленные выше технологии улучшения токосъема (half-cut, multibusbar, shingled) также позволяют повысить КПД гетероструктурных элементов. 

К преимуществам HJT технологии также относится малый температурный коэффициент. Они меньше нагреваются при работе и меньше теряют мощность при нагреве. Температурный коэффициент в лучших HJT элементах улучшен на 40% по сравнению с обычными поликристаллическими и монокристаллическими модулями. Для лучших HJT модулей температурный коэффициент мощности составляет 0.26%/°C (против 0.38% … 0.42% /°C для обычных модулей). Это приводит к тому, что в жаркий безветренный солнечный день HJT солнечные батареи могут вырабатывать дополнительно до 20% электроэнергии. 


Улучшенный температурный коэффициент позволяет получать больше энергии от HJT солнечной батареи

Примечание: температура солнечной панели и солнечных элементов также зависит от цвета крыши под ними, угла наклона и скорости ветра. Поэтому при монтаже модулей на темной крыше вплотную к поверхности без вентиляционного зазора для обдува ветром температура модулей может быть существенно выше, а общая выработка в жаркую погоду сильно снизиться. 

В России гетероструктурные элементы производит завод Хевел, они есть в нашем ассортименте.

Устройство панелей

Растущая в цене электроэнергия поневоле заставляет задуматься об экономии. И отличной альтернативой в данном случае считаются природные источники энергии. Оптимальным решение для частного дома является альтернативная электростанция – солнечная батарея.

Изначально может показаться, что вся система солнечной батареи слишком большая, а принцип ее работы невероятно сложен. И чтобы понять, как функционирует солнечная батарея в деле, необходимо детально рассмотреть ее конструкцию.

В действительности гелиосистема устроена довольно просто и состоит из четырех основных элементов.

  • Солнечная батарея – по форме и размерам представляет собой прямоугольную панель с определенным количеством пластинок. В основу солнечной батареи входят полупроводниковые материалы. Миниатюрные преобразователи собираются в модули, а модули – в единую систему гелиоколлектора.
  • Контроллер – выполняет функцию посредника между солнечным модулем и аккумулятором. Он необходим для отслеживания уровня заряда аккумулятора. Его роль крайне важна во всей цепи – контроллер не дает закипать или падать электрическому потенциалу, который необходим для стабильного функционирования всей системы.
  • Инвертор – преобразует постоянный ток солнечного модуля в переменный 220-230 вольт. Гибридный сетевой инвертор может использовать для своей работы как постоянный, так и переменный ток. Но стоит учитывать, что для работы инвертора тоже необходима энергия, и его расход составляет порядка 30% потерь на преобразование. И в пасмурную погоду или в темное время суток вся энергия для работы будет расходоваться из аккумулятора. То есть если аккумулятор разрядится, то инвертор перестанет работать.
  • Аккумулятор – преобразованная в электричество солнечная энергия не всегда используется в доме в полном объеме. Излишки могут накапливаться в аккумуляторе и использоваться в темное время суток и в пасмурную погоду.

Но перед тем как приступить к выбору и установке солнечной батареи на крыше, необходимо разобраться в принципах работы устройства, а также рассчитать рабочие узлы гелиосистемы.

Технические характеристики

Основным элементом каждой солнечной батареи является фотоэлектрический преобразователь.

В массовом производстве используется три типа элементов из кремния.

  • Монокристаллические – искусственно выращенные кремниевые кристаллы нарезаются на тонкие пластины. В основу модуля входит очищенный чистый кремний. Поверхность больше похожа на пчелиные соты или небольшие ячейки, которые соединяются между собой в единую структуру. Готовые маленькие пластинки соединяются между собой сеткой из электроводов. В данном случае процесс производства более трудоемкий и энергозатратный, что отражается на конечной стоимости солнечной батареи. Но монокристаллические элементы обладают большей производительностью, а средний КПД составляет около 24%. Срок службы монокристаллических батарей больше, они прослужат в среднем около 30 лет.
  • Поликристаллические – в основе кремниевый расплав. Такие модули считаются оптимальным решением для жилого частного дачного дома. Несколько кристаллов из кремния объединяются в один фотоэлемент. Поверхность поликристаллической солнечной батареи имеет неоднородную поверхность, из-за чего хуже поглощает свет. И КПД, соответственно, ниже, находится в пределах 20%. Срок службы поликристаллической панели составляет 20-25 лет. Они имеют характерное отличие – темно-синий цвет покрытия. Такие модули дешевле аналогов, что позволяет окупить всю систему примерно за 3 года.
  • Тонкопленочные – имеют гибкую подложку, что позволяет монтировать батарею на любую поверхность с углами и изгибами. Тонкий слой полупроводников наносится методом напыления на поверхность батареи. Такие системы имеют очевидный недостаток – маленький КПД. Производительность в среднем составляет около 10%. То есть для обеспечения энергией дома потребуется в два раза больше тонкопленочных батарей, чем поликристаллических. И срок службы таких панелей меньше других аналогов – в среднем ресурс работы составляет около 20 лет.

Принцип работы солнечной электростанции в домашних условиях

Солнечная электростанция – это система состоящая из панелей, инвертора, аккумулятора и контроллера. Солнечная панель трансформирует лучистую энергию в электричество (как было сказано выше). Постоянный ток попадает в контроллер, который распределяет ток по потребителям (например, компьютер или освещение). Инвертор преобразовывает постоянный ток в переменный и обеспечивает работу большинства электрических бытовых приборов. В аккумуляторе накапливается энергия, которая можно расходовать в темное время суток.

Видео описание

Наглядный пример расчетов, показывающий, сколько панелей нужно для обеспечения автономного энергоснабжения, смотрите в этом видеоролике:

Как солнечная энергия используется для получения тепла

 Гелиосистемы применяются для нагревания воды и отопления жилища. Они могут давать тепло (по желанию владельца) даже тогда, когда отопительный сезон закончится, и обеспечивать дом горячей водой бесплатно. Простейшее устройство представляет собой металлические панели, которые устанавливают на крыше дома. Они аккумулируют энергию и согревают воду, которая циркулирует по скрытым под ними трубам. Функционирование всех гелиосистем основано на этом принципе, несмотря на то, что конструктивно они могут отличаться друг от друга.

Солнечные коллекторы состоят из:

  • бака-аккумулятора;
  • насосной станции;
  • контроллера;
  • трубопроводы;
  • фиттингов.

По типу конструкции различают плоские и вакуумные коллекторы. У первых дно покрыто теплоизоляционным материалом, а жидкость циркулирует по стеклянным трубам. Вакуумные коллекторы отличаются большой эффективностью, потому что теплопотери в них сведены к минимуму. Этот тип коллектора обеспечивает не только отопление солнечными батареями частного дома – его удобно использовать для систем горячего водоснабжения и подогрева бассейнов.

Принцип действия солнечного коллектораИсточник 21ek.ru

Популярные производители солнечных батарей

Чаще всего на прилавках встречается продукция компаний Yingli Green Energy и Suntech Power Ко. Также популярностью пользуются панели HiminSolar (Китай). Их солнечные батареи производят электроэнергию даже в дождливую погоду.

Производство солнечных батарей налажено и у отечественного производителя. Этим занимаются такие компании:

  • ООО «Хевел» в Новочебоксарске;
  • «Телеком-СТВ» в Зеленограде;
  • «Sun Shines» (ООО «Автономные Системы Освещения») в Москве;
  • ОАО «Рязанский завод металлокерамических приборов»;
  • ЗАО «Термотрон-завод» и другие.

По стоимости всегда можно найти подходящий вариант. Например в Москве на солнечные батареи для дома стоимость будет варьироваться от 21 000 до 2 000 000 руб. Стоимость зависит от комплектации и мощности устройств.

Солнечные батареи не всегда плоские – есть ряд моделей, которые фокусируют свет в одной точкеИсточник pinterest.com

Этапы монтажа батарей

  1. Для установки панелей выбирается самое освещенное место – чаще всего это крыши и стены зданий. Чтобы устройство функционировало максимально эффективно, панели монтируются под определенным углом к горизонту. Учитывается также уровень затемненности территории: окружающие предметы, которые могут создавать тень (постройки, деревья и т. п.)
  2. Устанавливаются панели при помощи специальных крепежных систем.
  3. Затем модули соединяются с аккумулятором, контроллером и инвертором, и производится наладка всей системы.

Для монтажа системы всегда разрабатывается персональный проект, который учитывает все особенности ситуации: как будет выполняться установка солнечных батарей на крыше дома, цена и сроки. В зависимости от вида и объема работ, все проекты рассчитываются в индивидуальном порядке. Клиент принимает работу и получает на нее гарантию.

Установка солнечных батарей должна производиться профессионалами и с соблюдением мер безопасностиИсточник pinterest.ca

Как итог – перспективы развития солнечных технологий

Если на Земле максимально эффективной работе солнечных батарей мешает воздух, который в известной мере рассеивает излучение Солнца, то в космосе такой проблемы не существует. Учеными ведется разработка проектов гигантских орбитальных спутников с солнечными батареями, которые будут работать 24 часа в сутки. От них энергия будет передаваться на наземные приемные устройства. Но это дело будущего, а для уже существующих батарей усилия направлены на повышение энергоэффективности и уменьшение размеров устройств.

Преимущества

Солнечная батарея для отопления дома обладает несколькими довольно весомыми преимуществами:

— Ваш дом будет обеспечен необходимым теплом на протяжении всего года. Температурный режим можно регулировать так, как вам этого захочется.

— Вы обретете независимость от жилищно-коммунальных служб. Ваши счета за отопление уже не будут пугать вас страшными суммами.

— Солнечная энергия вполне может использоваться и на обеспечение иных нужд бытового плана.

— Солнечная батарея для отопления дома характеризуется большим сроком эксплуатации. Устройство редко выходит из строя, поэтому не потребуется беспокоиться о таких нюансах, как замена или ремонт каких-то компонентов.

Если вас заинтересовала солнечная батарея для отопления дома, то следует знать о важных нюансах, на которые требуется обратить внимание перед окончательным выбором. Подобная система не подходит для всех

География проживания – это один из факторов, влияющих на эффективность системы. Если регион вашего проживания характеризуется тем, что солнце светит не слишком часто, то подобные решения не будут настолько эффективными. Еще один недостаток заключается в том, что солнечная батарея для отопления дома стоит довольно дорого

Но тут важно помнить, что подобное решение окупит себя очень быстро

Солнечные батареи для квартиры

В случае с квартирами ситуация будет немного отличаться. В многоэтажных домах можно использовать только комбинированные установки. Автономное питание установить не получится, поскольку присутствует сеть. Во время установки сетевых ФСЭ проблемы неизбежны.

Если станция будет обустроена частично, самое важное — правильно подобрать аккумулятор. То есть, подсчитать, как будет распределяться нагрузка по перекрытию

Чаще всего модули крепятся к стенам или на крышу балкона

Особое внимание уделяется освещенности места для монтажа

Цена монтажа для квартиры выше, по сравнению со станцией для дома. Это связано с необходимостью выполнять работы на высоте. Да и не в каждом доме есть возможность установить модули на юге, поэтому система может работать не так эффективно, как прописано в техпаспорте.

Выбор места установки

Эффективность работы солнечных батарей зависит от нескольких факторов, основным из которых является расположение панелей относительно солнца. В идеале лучи должны падать на поверхность перпендикулярно, это обеспечит максимальную производительность фотоэлектрических компонентов. Установка солнечных панелей должна соответствовать следующим требованиям:

  • выбирают участок с наибольшей освещенностью
  • поблизости не должны находиться высокие здания, деревья или холмы, создающие тень

Требования простые и понятные, однако, на практике добиться такого положения бывает затруднительно. Основной причиной возникающих сложностей является перемещение солнца по небосклону, изменяющееся положение источника относительно плоскости солнечных батарей. В крупных гелиосистемах используют трекинг-установки, автоматически изменяющие положение солнечных батарей в течение суток, а также учитывают сезонные изменения. Обычному домовладельцу приобрести такой комплекс сложно, и установить его негде. Поэтому выбирают некое среднее положение.

Для выбора оптимального расположения панелей руководствуются значениями угла наклона и азимута. Положение солнца над горизонтом зависит от географической широты региона. Кроме того, оно изменяется в течение года. Обеспечить правильный азимут проще — панели ориентируют точно на юг, что обеспечивает среднее значение угла наклона солнца к плоскости в течение светового дня.

Еще одним препятствием для оптимальной установки является конфигурация участка и его географическое расположение. Иногда места для монтажа солнечных батарей вовсе не имеется. Все эти соображения сделали наиболее удобным выбором места размещения панелей на скатах крыши.

Этот вариант имеет массу преимуществ:

  • открытость для солнечных лучей
  • невозможность повреждения панелей вандалами
  • отсутствие препятствий для получения энергии

Однако, имеются и недостатки:

  • расположение скатов крыши редко соответствует оптимальному направлению для панелей
  • очистка снега или пыли представляет сложную и опасную процедуру
  • сильный порыв ветра способен сорвать батареи с креплений

Недостатки существенные, но отсутствие альтернативных вариантов вынуждает мириться с ними. Однако, монтаж солнечных батарей на крыше — не единственный вариант. Иногда местом установки выбирают стену дома, обращенную на юг. Это удобно в регионах с большим количеством снега в зимний период, так как частая уборка требует времени и усилий. Вертикальное расположение панелей препятствует образованию сугробов на поверхности солнечных батарей. Кроме того, очистка панелей от пыли производится с земли, что безопасно и удобно для владельца.

Если ни один из этих способов по каким-либо причинам не подходит, остается использовать специальные опорные конструкции — фермы. Они представляют собой сооружение из металлических труб, прочно закрепленное на земной поверхности и поддерживающее профили для монтажа панелей. Этот вариант позволяет точнее ориентировать солнечные батареи на солнце, но требует места и обслуживания.