Активные и индуктивные сопротивления проводов

Сопротивление кабелей с бумажной, резиновой и поливинилхлоридной изоляцией на напряжение 6 — 35 кВ

3. Справочник по проектированию электроснабжению. Ю.Г. Барыбина. 1990 г. Таблица 2.63, страницы 175-176.

4. Справочная книга электрика. Григорьева В.И. 2004г. Таблицы 3.9.7; 3.9.11; страницы 448-449

Если значения активных и реактивных сопротивлений кабелей, вы не нашли в приведенных таблицах. В этом случае, сопротивление кабеля можно определить по приведенным формулам с подстановкой в них фактических параметров кабелей.

Методика расчета представлена в книге: «Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г, страницы 45-48».

Активное сопротивление кабеля

1. Активное сопротивление однопроволочной жилы, определяется по формуле 2-1, Ом:

где:

  • l — длина жилы, м;
  • s – поперечное сечение жилы, мм2, определяется по формуле: π*d2/4;
  • d – диаметр жилы кабеля;
  • α20 – температурный коэффициент сопротивления, равный при 20 °С:
  • 0,00393 1/град – для меди;
  • 0,00403 1/град – для алюминия;
  • ρ20 – удельное сопротивление материала жилы при 20 °С (температура изготовления жилы), можно принять согласно книги «Справочная книга электрика. Григорьева В.И. 2004г.» Таблица 1.14, страница 30.

tж – допустимая температура нагрева жилы, согласно ПУЭ п.1.3.10 и 1.3.12.

2. Активное сопротивление многопроволочной жилы определяется также по формуле 2-1, но из-за конструктивных особенностей многопроволочной жилы, вместо значений ρ20 вводиться в формулу ρр равное:

  • 0,0184 Ом*мм2/м – для медных жил;
  • 0,031 Ом*мм2/м – для алюминиевых жил.

3. Удельное активное сопротивление жилы, отнесенное к единице длины линии 1 км, определяется из следующих зависимостей, Ом/км:

Индуктивное сопротивление кабеля

1. Удельное реактивное (индуктивное) сопротивление кабеля определяется по формуле 2-8, Ом/км:

где:

  • d – диаметр жилы кабеля.
  • lср – среднее геометрическое расстояние между центрами жил кабеля определяется по формуле :

где:

  • lА-В — расстояние между центрами жил фаз А и В;
  • lВ-С — расстояние между центрами жил фаз В и С;
  • lС-А — расстояние между центрами жил фаз С и А.

Пример

Определить активное и индуктивное сопротивление кабеля марки АВВГнг(А)-LS 3х120 на напряжение 6 кВ производства «Электрокабель» Кольчугинский завод». Длина кабельной линии L = 300 м.

Решение

1. Определяем поперечное сечение токопроводящей жилы кабеля имеющую круглую форму:

S = π*d2/4 = 3,14*13,52/4 = 143 мм2

Расчет поперечного сечение секторной жилы, а также размеры секторных жил на напряжение 0,4 — 10 кВ представлен в статье: «Расчет поперечного сечения секторной жилы кабеля«.

где: d = 13,5 мм – диаметр жилы кабеля (многопроволочные уплотненные жилы), определяется по ГОСТ 22483— 2012 таблица С.3 для кабеля с токопроводящей жилой класса 2. Класс токопроводящей жилы указывается в каталоге завода-изготовителя кабельной продукции.

Ниже представлена классификация жил кабелей, согласно ГОСТ 22483— 2012:

2. Определяем удельное активное сопротивление кабеля марки АВВГнг(А)-LS 3х120, отнесенное к единице длины линии 1 км, Ом/км:

где:

  • l = 1000 м – длина жилы, м;
  • α20 – температурный коэффициент сопротивления, равный при 20 °С:
  • 0, 00393 1/град – для меди;
  • 0,00403 1/град – для алюминия;
  • ρр – удельное сопротивление материала многопроволочной жилы, равное:
  • 0,0184 Ом*мм2/м – для медных жил;
  • 0,031 Ом*мм2/м – для алюминиевых жил;
  • tж = 65 °С — допустимая температура нагрева жилы, для кабеля напряжением 6 кВ, согласно ПУЭ п.1.3.10.

3. Определяем удельное активное сопротивление кабеля, исходя из длины кабельной трассы:

где: L = 0,3 км – длина кабельной трассы, км;

4. Определяем среднее геометрическое расстояние между центрами жил кабеля, учитывая что жилы кабеля расположены в виде треугольника.

где:

  • lА-В = 20,3 мм — расстояние между центрами жил фаз А и В;
  • lВ-С = 20,3 мм — расстояние между центрами жил фаз В и С;
  • lС-А = 20,3 мм — расстояние между центрами жил фаз С и А.

Что бы определить расстояние между центрами жил кабеля, нужно знать диаметр жил кабеля d = 13,5 мм и толщину изоляции жил из поливинилхлоридного пластиката dи.ж = 3,4 мм, согласно ГОСТ 16442-80 таблица 4. Определяем расстояние между центрами жил фаз равное 20,3 мм (см.рис.1).

5. Определяем удельное реактивное (индуктивное) сопротивление кабеля марки АВВГнг(А)-LS 3х120, Ом/км:

где: d = 13,5 мм – диаметр жилы кабеля;

6. Определяем удельное реактивное сопротивление кабеля, исходя из длины кабельной трассы:

Удельное сопротивление

Удельное сопротивление – это табличная величина, для каждого металла она своя. Она нужна для расчета и зависит от кристаллической решетки металла и структуры атомов.

Из таблицы видно, что самое меньшее сопротивление у серебра, для медного кабеля оно равняется 0,017 Ом*мм2/м. Такая размерность говорит нам, сколько приходится Ом при сечении в 1 миллиметр квадратный и длине в 1 метр.

Кстати, серебряное покрытие используется в контактах коммутационных аппаратов, автоматических выключателей, реле и прочего. Это снижает переходное контактное сопротивление, повышает срок службы и уменьшает нагрев контактов. При этом в контактах измерительной и точной аппаратуры используют позолоченные контакты из-за того, что они слабо окисляются или вообще не окисляются.

У алюминия, который часто использовался в электропроводке раньше, сопротивление в 1,8 раза больше чем у меди, равняется 2,82*10-8 Ом*мм2/м. Чем больше сопротивление проводника, тем сильнее он греется. Поэтому при одинаковом сечении алюминиевый кабель может передать меньший ток, чем медный, это и стало основной причиной почему все современные электрики используют медную электропроводку. У нихрома, который используется в нагревательных приборах оно в 100 раз больше чем у меди 1,1*10-6 Ом*мм2/м.

Удельное сопротивление

Удельное электрическое сопротивление определяется как отношение между напряженностью электрического поля внутри металла к плотности тока в нем:

где:
ρ — удельное сопротивление металла (Ом⋅м),
Е — напряженность электрического поля (В/м),
J — величина плотности электрического тока в металле (А/м2)

Если напряженность электрического поля (Е) в металле очень большая, а плотность тока (J) очень маленькая, это означает, что металл имеет высокое удельное сопротивление.

Обратной величиной удельного сопротивления является удельная электропроводность, указывающая, насколько хорошо материал проводит электрический ток:

где:

σ — проводимость материала, выраженная в сименс на метр (См/м).

Зависимость сопротивления проводника от длины, площади поперечного сечения и материала.

На основании опытов было установлено, что сопротивление проводника прямо пропорционально его длине и обратно пропорционально его поперечному сечению

Где р — коэффициент пропорциональности, или Удельное сопротивление проводника, I — длина проводника, S — поперечное сечение проводника.

Удельным сопротивлением Является сопротивление проводника из данного вещества единичной длины и единичного поперечного сечения. Удельное сопротивление проводника зависит от материала проводника.

В СИ единица измерения удельного сопротивления

Зависимость сопротивления проводника от температуры

Сопротивление проводников зависит от температуры. Величина, характеризующая зависимость изменения сопротивления проводника от температуры, называется Температурным коэффициентом сопротивления И обозначается А. Температурный коэффициент сопротивления показывает, на какую часть первоначального сопротивления изменяется сопротивление этого проводника при нагревании от 0° С до Г С, то есть

Из этой формулы можно получить единицы измерения температурного коэффициента сопротивления

Проделав соответствующие преобразования, получим

Сопротивление всех металлов при нагревании возрастает, их температурные коэффициенты сопротивления положительны. Сопротивление растворов солей, кислот, щелочей, а также угля при нагревании уменьшается, их температурные коэффициенты отрицательны, для них формулу зависимости сопротивления от температуры можно записать так:

В формуле (1), заменив

Получим общую формулу сопротивления

Где р0 — удельное сопротивление проводника при 0° С. Если в формуле (2) заменить

Где Pt — удельное сопротивление проводника при температуре t° С.

Сверхпроводимость.

С приближением температуры чистых металлов к абсолютному нулю их сопротивление резким скачком падает до нуля (рис. 77).

Ток, идущий по замкнутому проводнику, при температурах, близких к абсолютному нулю, может циркулировать в нем достаточно долгое время. Такое явление называется Сверхпроводимостью.

Источник электрической энергии, включенный в замкнутую электрическую цепь, расходует энергию на преодоление сопротив­ления внешней и внутренней цепей.

В различных веществах содержится различное количество электронов, а атомы, между которыми эти электро­ны движутся, имеют различное расположение. Поэтому сопротив­ление проводников электрическому току зависит от материала, из которого они изготовлены, от длины и площади поперечного сече­ния проводника. Если сравнить два проводника, изготовленных из одного и того же материала, то более длинный проводник имеет большее сопротивление при равных площадях поперечных сечений, а проводник с большим поперечным сечением имеет меньшее сопро-тивление при равных длинах.

Выбор сечения кабелей

Для крупных расчетов можно использовать специализированный калькулятор на справочном сайте либо соответствующее программное обеспечение. Следующий алгоритм применяют для последовательного вычисления рабочих параметров по формулам:

  • при передаче в подключенную нагрузку мощности P = 1 600 Вт в линии с напряжением U = 220 V постоянный ток (I) определяют следующим образом: I = P/U ≈ 7,27А;
  • сопротивление медного проводника (в обе стороны) длиной 800 м и сечением 2,5 мм кв.: R = (2*I*p)/S = (2*800*0,0175)/2,5 = 11,2 Ом;
  • потери по напряжению в этой трассе: ΔU = (2*L*I)/((1/p)*S) = (2*800*7,27)/((1/0,0175)*2,5) = 11 520/ 142,86 = 80,63 V.

Удельное сопротивление

При необходимости последнее выражение несложно математически преобразовать для выбора площади поперечного сечения проводника по суммарному значению подключаемой нагрузки:

S = (2*I*L)/((1/p)*ΔU.

В рассмотренном примере потери напряжения составляют более 36%. Этот результат свидетельствует о необходимости корректировки расчета сопротивления проводника. По действующим нормативам допустимо уменьшение контрольного параметра не более, чем на 5 %. Увеличив диаметр провода, можно получить необходимый результат. При сечении 19 мм кв. напряжение уменьшится до 209,41 V (4,81%).

С учетом увеличенного сопротивления алюминиевого провода предполагаются пропорциональные изменения потерь. Выполнив аналогичный расчет, можно получить рекомендованное сечение 31 мм кв. Использование такого проводника в аналогичных условиях снизит напряжение до 209,2 V, что позволит обеспечить соответствие нормативам – 4,92%.

К сведению. Для проверки расчетных данных можно использовать мультиметр. Измерения выполняют в соответствующем диапазоне с учетом амплитуды сигнала, переменного (постоянного) тока.

Измерение сопротивления кабеля мультиметром

При подключении источника питания переменного тока алгоритм вычислений усложняется. Для таких исходных условий пользуются формулой:

ΔU = ((Pа * Rа + Pр * Rи) *L)/ U,

где:

  • Pа (Pр) – активная (реактивная) мощность;
  • Rа (Rи) – относительное активное (индуктивное) сопротивление линии в Ом на километр.

Для определенных материалов проводников исходные данные берут из справочника. По аналогии с упомянутыми нормативами уменьшение напряжения не должно быть в общем случае более 5%. Дополнительные ограничения применяют с учетом особенностей электрических сетей и подключаемых потребителей (от 1% до 12%). Действующие правила уточняют по тексту последней редакции ПУЭ.

Приведенные итоги расчетов убедительно подтверждают преимущества меньшего удельного сопротивления медного провода. При использовании алюминиевого аналога значительно увеличивается количество материала для передачи электроэнергии с нормативными потерями. Для комплексного анализа следует учитывать лучшие показатели меди по прочности, гибкости.

Алюминий отличается меньшей стоимостью, легкостью. Но при работе с этим материалом следует исключить вибрационные воздействия и перемещения в процессе эксплуатации. Особо тщательно проектируют изгибы, чтобы сохранить целостность проводника. Электрический контакт нарушается образованием окислов на поверхности изделий, изготовленных из этого металла.

К сведению. В определенных ситуациях многое будет значить свободное место для прокладки трассы. По экономии пространства преимущественными параметрами обладает медь.

Выбор сечения проводника по допустимому нагреву

По мере увеличения силы тока повышается температура проводящего металла. На определенном уровне повреждается слой защитной изоляции, созданный из полимеров. Это провоцирует короткие замыкания и образование пламени. Опасные ситуации предотвращают корректным расчетом площади поперечного сечения. Определенное значение имеет способ прокладки (совместный/ раздельный).

Выбор кабельных изделий с учетом нагрева

Выбор сечения по потерям напряжения

Как показано в расчетах, при большой длине трасы нужно учитывать снижение напряжения и соответствующие энергетические потери. В крупных проектах рассматривают всю цепь тока с распределительными устройствами и подключаемыми нагрузками.

Выбор по допустимым потерям

Для точного определения подходящей кабельной продукции рассматривают особенности процесса эксплуатации. Делают необходимый запас, чтобы предотвратить аварийные ситуации при подключении новых потребителей и бросках напряжения в сети питания.

Как правильно рассчитать сопротивление провода по сечению

Проектируя электрическую сеть, необходимо правильно подобрать сечение кабеля, чтобы его резистентность не была высокой. Большой импеданс вызовет падение напряжения выше допустимого значения. В результате подключенное к сети электрическое устройство может не заработать. Также, провода начнут перегреваться.

Для правильного расчета минимального сечения необходимо учесть следующие факторы:

  • По стандартам ПУЭ падение напряжения не должно быть больше 5%.
  • В бытовых условиях ток проходит по двум проводам. Поэтому, при расчете величину сопротивления нужно умножить на 2.
  • Учитывать нужно мощность всех подключенных приборов на линии. Для развития предусмотреть запас по нагрузке.

Как вычислить сопротивление проводника по формуле? Для примера можно рассмотреть задачу. Требуется определить: достаточно ли будет медного кабеля сечением 2,5 мм2 и длиной 30 метров для подключения оборудования мощностью 9 кВт.

Формулы электрической цепи

Задача решается следующим образом:

Резистентность медного кабеля будет равна:

2 ∙ (ρ ∙ L) / S = 2 ∙ (0,0175 ∙ 30) / 2,5 = 0,42 Ом.

Для нахождения падения напряжения нужно определить силу тока, по формуле: I= P/U.

Вам это будет интересно Особенности DC тока

Здесь P — суммарная мощность оборудования, U — напряжение в цепи. Тогда сила тока будет равна: I = 9000 / 220 = 40,91 А.

  • Используя закон Ома, можно найти падение напряжения по кабелю: ΔU = I ∙ R = 40, 91 ∙ 0,42 = 17,18 В.
  • От 220 В процент падения составит: U% = (ΔU / U) ∙ 100% = (17,18 / 220) ∙ 100% = 7, 81%>5%.

Падение напряжение выходит за пределы допустимого значения, значит необходимо использовать кабель большего сечения.

Какое оборудование использовать?

Для замера этого показателя лучше всего пользоваться мультиметром. Это универсальное устройство, которым можно измерять также силу тока, напряжение проводника, емкость батареи.

Существует два типа мультиметров:

  • Цифровые — современные устройства, которые моментально выводят интересующие показатели на экран. Преимущества — в высокой скорости, удобстве работы, точности. Замер сопротивления провода мультиметром — дело нескольких секунд. Недостаток — дороговизна и сложность ремонта по сравнению с аналоговыми приборами. Поэтому не стоит рассматривать подобный вариант, если есть деньги только на дешевую модель — изделие может быстро выйти из строя, а его ремонт окажется нецелесообразным.
  • Аналоговые — показатели отображаются на шкале, по которой перемещается стрелка. Работать с подобными изделиями сложнее, но они проще устроены. Средние по стоимости модели служат намного дольше аналогичных в своей категории цифровых устройств.

Если есть прибор, позволяющий замерить только напряжение и силу тока, узнать интересующий показатель можно с помощью расчета. Формула, выходящая из закона Ома:

R = U/I, где R — искомая величина, U — напряжение, I — сила тока.

Sn00pi › Блог › Как проверить ВВ провода? Поиск неисправностей.

Как проверить высоковольтные провода зажигания?

Автомобильные высоковольтные (ВВ) провода играют важную роль для ДВС, поскольку с их помощью происходит передача высокого тока от катушки зажигания на свечи зажигания. От исправности и эффективности проводов зависит своевременность и интенсивность воспламенения топливно-воздушной смеси, а значит — правильная и бесперебойная работа двигателя. Несмотря на свою простоту, провода имеют множество различных «болячек» и могут доставить кучу неприятностей своему владельцу, которые так или иначе отразятся его на нервах и кармане.

Неисправности высоковольтных проводов (распространенные болячки):

Как правило, неисправность сводится к тому, что ток либо вовсе не поступает на свечу, либо поступает, но в ограниченном количестве. Происходить это может по следующим причинам: — Произошел разрыв токопроводящей жилы, по которой идет импульс. — Есть утечка тока, то есть изоляция повреждена и ток бьет на сторону. — Сопротивление превышает допустимое значение. — Проблемы в контактах (со свечой или катушкой зажигания).

В случае разрыва токопроводящей жилы возникает эффект внутренней искры, другими словами — образуется электрический разряд между концами разорванного провода, которое снижает напряжение и становится причиной электромагнитного паразитического импульса. Этот импульс, в свою очередь, негативно влияет на правильность работы многих датчиков автомобиля. Один такой поврежденный высоковольтный провод может стать причиной вибрации и перебоев в работе двигателя. Из-за поврежденного высоковольтного провода воспламенение в цилиндре происходит с опозданием или через раз, в итоге нарушается синхронная работа цилиндров и двигателя в целом.

Как проверить высоковольтные провода? Эффективные способы:

Прежде всего необходимо проверить ВВ на предмет отсутствия видимых повреждений (трещины, переломы и т. д.). Убедитесь в отсутствии пробоя, это можно определить даже без приборов, достаточно заглянуть под капот в темное суток, в случае пробоя во время работы двигателя будет видна искра на ВВ проводе. Проверить высоковольтные провода можно при помощи провода. Для этого нужно в темное время взять кусок провода и зачистить его с двух сторон. Затем один конец нужно замкнуть на «массу» (корпус машины), а вторым кончиком провести по всей длине ВВ проводов, а также стыкам, колпачкам и т. д. В местах пробоя будет образовываться искра.

Это интересно: Что делать, если ваше авто угнали?

Можно также проверить сопротивление высоковольтных проводов, для этого вам понадобится мультиметр. — Включите режим омметра. — Снимите провод со свечи первого цилиндра и катушки зажигания. — Подключите электроды мультиметра к концам провода и посмотрите на показания.

В исправных проводах сопротивление должно варьироваться в пределах от 3,5 до 10 кОм, в зависимости от типа самых проводов. Информация о сопротивлении указана чаще всего на изоляции высоковольтных проводов. Проверьте каждый провод, разброс между ними не должен превышать — 2-4 кОма. В случае большого разброса замените провода. Кстати, они меняются комплектно, то есть все вместе.

В завершении вашему показанию сопротивления наиболее популярных высоковольтных проводов: Tesla — 6 кОм Slon — от 4 кОм до 7 кОм (4 кОм — 1-й цилиндр и до 7 кОм — на последнем цилиндре) ProSport — почти нулевое сопротивление Cargen — 0,9 кОм

Примечание! Сопротивление высоковольтных проводов варьируется в зависимости от длины, толщины, а также материала из которого изготовлены провода.

Что такое сопротивление медного провода

В металлах ток образуется при появлении электрического поля. Оно «заставляет» двигаться электроны упорядоченно, в одном направлении. Электроны дальних орбит атома, слабо удерживаемые ядром, формируют ток.


Медные провода

При прохождении отрицательных частиц сквозь кристаллическую решетку молекул меди, они сталкиваются с атомами и другими электронами. Возникает препятствие или сопротивление направленному движению частиц.

Для оценки противодействия току была введена величина «электрическое сопротивление» или «электрический импеданс». Обозначается она буквой «R» или «r». Вычисляется сопротивление по формуле Георга Ома: R=, где U — разность потенциалов или напряжение, действующее на участке цепи, I — сила тока.


Понятие сопротивления

Важно! Чем выше значение импеданса металла, тем меньший ток проходит по нему, и именно медные проводники так широко распространены в электротехнике, благодаря этому свойству. Исходя из формулы Ома, на величину тока влияет приложенное напряжение при постоянном R

Но резистентность медных проводов меняется, в зависимости от их физических характеристик и условий эксплуатации

Исходя из формулы Ома, на величину тока влияет приложенное напряжение при постоянном R. Но резистентность медных проводов меняется, в зависимости от их физических характеристик и условий эксплуатации.

Примеры решения задач

Решение примеров позволяет лучше разобраться в теме. При этом не только быстрее запоминаются формулы, но и становится понятным, где можно использовать полученные знания. Существует ряд заданий для самостоятельной проработки. Вот некоторые из них:

  1. На катушку электромагнита намотан медный провод сечением 0,003 мм2 длиною 200 метров. Найти сопротивление и массу обмотки. Для решения задачи нужно воспользоваться справочником по электрофизике. Из него взять значение удельного сопротивления меди и её плотность. Согласно справочным данным: p = 1,7 * 10−8 Ом * м, а V = 8900 кг/м3. В первом действии нужно определить массу. Для этого выразить её из формулы f = m / V и подставить заданные значения: m = V * f = l * S * f = 2 * 10|2 м * 3 * 10-8 м2 8,9 * 103 кг/м3 = 53,4 грамма. Теперь можно определить искомое сопротивление по формуле: R = (f * l) / S = (0,017 (Ом * мм2) / м * 200 м) / 0,03 мм2 = 3,4 / 0,003 = 113 Ом.
  2. Нужно изготовить провод длиною 100 метров и сопротивлением 1 Ом. Определить, из какого материала вес изделия будет меньше: меди или алюминия. Нужно вычислить, чему будет равно отношение масс: MCu / MAl. Из справочника взять данные: fAl = 2700 кг/м3; fCu = 8900 кг/м3; pAl = 2,8 * 10−8 Ом/м; pCu = 1,7 10−8 Ом/м. Для решения нужно выразить массы через плотность, длину и площадь поперечного сечения: m = f *l * S. Длина одинаковая, значит, отношения масс примет вид: (fCu * SCu) / (fAl * SAl). Площадь поперечного сечения будет вычисляться из правила нахождения сопротивления. Конечная формула примет вид: MCu / Mal = (fCu * RCu) / (fAl * RAl) = (8900 * 1,7) / (2700 * 2,8) = 2. Изделие из алюминия будет весить в 2 раза меньше.
  3. Имеется электрическая цепь, подключённая к сети 120 В. Если к ней подключить 2 последовательных сопротивления ток будет равен 3 A, а если параллельно — 16 А. Найти сопротивление. Задача решается с помощью закона Ома и формул вычисления сопротивления цепи: Iпосл = U / (r1 + r2); Iпар = U * (r1 + r2) / r1 * r2. Из них можно выразить искомые величины: r1 + r2 = U /Iпосл и r1 * r2 = U2 / Iпар * Iпос. Выполнив вычисления, можно найти, что r1 = 30 Ом, r2 = 10 Ом.

Решение заданий по теме обычно не вызывает трудностей. Нужно лишь внимательно переводить единицы измерения, знать формулы и иметь радиофизический справочник.

Зависимость от свойств напряжения

Напряжение – это главная движущая сила электричества. Напряжение первично. Фактически это среда, в которой протекают разнообразные процессы, связанные с электрическим током. Важнейшей является связь электрического тока с электромагнитным полем. А его параметры, в свою очередь, определяются не только напряжением, но и пространственно-геометрическими характеристиками проводника.

Даже в том случае, когда проводник – это прямой отрезок проволоки в составе электрической цепи, его положение в пространстве при достаточно высоких частотах напряжения будет заметно влиять на величину его сопротивления. Это связано с тем, что в этих условиях проявляются его индуктивность и емкость, существующие лишь при переменном напряжении. Эти параметры проводника именуются реактивным сопротивлением, и также приводят к потерям электроэнергии.

Следовательно, если проводник находится под воздействием переменного напряжения, его сопротивление также зависит как от частоты этого напряжения, так и от его индуктивно-емкостных параметров.

Активное СП при этом остается в силе. А сопротивление проводника в целом именуется импедансом. Его принято обозначать буквой Z и рассчитывать с использованием комплексных чисел. Это довольно-таки специфические расчеты, которыми не стоит утомлять читателя нашей статьи. Но чтобы читатель в этом утверждении не усомнился, далее приведем формулу, по которой в общем случае рассчитывается импеданс:

Как измерять сопротивление мультиметром – итоги

Управление современных цифровых мультиметров, да и большинство аналоговых, сделано максимально удобным для оператора и не требует глубоких познаний. Оно интуитивно понятно даже непрофессионалу без профильного образования – зачастую для освоения и правильного использования прибора достаточно вспомнить школьные уроки физики по построению и проверке электроцепей. Желательно при проведении измерений помнить про перечисленные выше нюансы, ведь они в любом случае «вылезут» в процессе использования мультиметра.

Сопротивлением называют характеристику проводника, описывающую его способность препятствовать прохождению электрического тока. Она увеличивается с повышением силы и/или понижением напряжения тока, идущего по проводу. Другими словами, чем ниже сопротивление проводника, тем выше напряжение тока, который он способен пропускать. Поэтому сопротивление провода — важная характеристика.

Если сопротивление слишком высокое, произойдет перегрев металла, снизится напряжение тока. В реальных условиях подобные случаи приводят к пожару. Поэтому для изготовления проводников используют материалы, которые обладают одними из самых низких показателей — медь и алюминий. Лучше проводят электричество только серебро и золото. Но проводов из них не производят по понятным причинам.

Существует масса стандартов, которые не позволят производителю создавать продукцию, опасную для использования с переменным током 220 В/50 Гц. Поэтому можно не беспокоиться о том, подойдет ли купленный товар для применения. Необходимо знать, как проверить сопротивление, чтобы определить, есть ли разрывы на линии. При их наличии показатель повышается. Кроме этого, данная характеристика позволяет узнать о работоспособности трансформаторов, предохранителей, ТЭНов, плат — тех устройств, о состоянии которых нужно знать заранее, где недопустимо правило «Проверю во время работы агрегата».