Оглавление
- СН-142-10
- Как измерить среднеквадратичное значение напряжения
- Алгоритм определения применяемой для расчётов величины тарифа на передачу электроэнергии, при непосредственном подключении ЭПУ потребителя к объектам электросетевого хозяйства ТСО
- Значения емкостного сопротивления
- Что делать потребителю энергии?
- Причины техногенного характера
- Уровень напряжения
- Среднее номинальное напряжение
- Параметры переменного тока и напряжения
- Примечания
- Электрические сети. Номинальные напряжения. Допустимые отклонения
- Среднее и действующее значение переменного тока
- История
- Какой уровень напряжения указать в заявке на подключение к электросетям?
- Подводя итоги
СН-142-10
АОС.227.100 (-01…-03), АОС.227.200 (-01…03)
Техническая характеристика
Состав соединителя: вилка (блочная) и розетка (кабельная) |
|
Климатическое исполнение по ГОСТ 15150-69 |
УХЛ |
Степень защиты по ГОСТ 14254-96 (МЭК 529-89) |
IP67 |
Тип сочленения |
врубной |
Покрытие контактов |
золото |
Температурный диапазон, ºС |
минус 40… + 65 |
Сопротивление изоляции в нормальных климатических условиях, МОм |
>1000 |
Количество сочленений-расчленений |
500 |
Количество контактов |
10 |
Диаметр контактов, мм |
1,5 |
Максимальное рабочее напряжение, В |
700 |
Максимальный ток на один контакт, А |
9 |
Суммарный ток, А |
60 |
Максимальное сечение жилы подпаиваемого провода, мм2 |
1,5 |
Диаметр подсоединяемого к розетке кабеля, мм |
5…12 |
Различие исполнений вилки и розетки по наружным диаметрам подсоединяемых кабелей, материалам корпуса и фланца.
Как измерить среднеквадратичное значение напряжения
Для правильного замера среднеквадратического значения напряжения у нас должен быть мультиметр с логотипом T-RMS. RMS – как вы уже знаете – это среднеквадратическое значение. А что за буква “T” впереди? Думаю, вы помните, как раньше была мода на одно словечко: “тру”. “Она вся такая тру…”, “Ты тру или не тру?” и тд. Тру (true) – с англ. правильный, верный.
Так вот, T-RMS расшифровывается как True RMS – “правильное среднеквадратическое значение”. Мои токоизмерительные клещи могут замерять этот параметр без труда, так как на них есть логотип “T-RMS”.
мультиметр с True RMS
Проведем небольшой опыт. Давайте соберем вот такую схемку:
Выставим на моем китайском генераторе частоты треугольный сигнал с частотой, ну скажем, 100 Герц
генератор частоты
А вот осциллограмма этого сигнала. Внизу, в красной рамке, можно посмотреть его параметры
треугольный сигнал
И теперь вопрос: чему будет равно среднеквадратическое напряжение этого сигнала?
Так как один квадратик у нас равняется 1 Вольт (мы это видим внизу осциллограммы в красной рамке), то получается, что амплитуда Umax этого треугольного сигнала равняется 4 Вольта. Для того, чтобы рассчитать среднеквадратическое напряжение, мы воспользуемся формулой:
Итак, смотрим нашу табличку и находим интересующий нас сигнал:
Для нас не важно, пробивает ли сигнал “пол” или нет, главное, чтобы сохранялась форма сигнала. Видим, что наш коэффициент амплитуды Ka= 1,73
Подставляем его в формулу и вычисляем среднеквадратическое значение нашего треугольного сигнала
Проверяем нашим прибором, так ли оно на самом деле?
Супер! И в правду Тrue RMS.
Замеряем это же самое напряжение с помощью моего китайского мультиметра
Он меня обманул :-(. Он умеет измерять только среднеквадратическое значение синусоидального сигнала, а у нас сигнал треугольный.
Самый интересный сигнал в плане расчетов – это двуполярный меандр, ну тот есть тот, который “пробивает пол”.
Его амплитудное Umax, средневыпрямленное Uср.выпр. и среднеквадратичное напряжение U равняется одному и тому же значению. В данном случае это 1 Вольт.
Вот вам небольшая картинка, чтобы не путаться
среднее, среднеквадратичное и пиковое значения напряжения
- Сред. – средневыпрямленное значение сигнала. Это и есть площадь под кривой
- СКЗ – среднеквадратичное напряжение. Как мы видим, для синусоидальных сигналов, оно будет больше, чем средневыпрямленное.
- Пик. – амплитудное значение сигнала
- Пик-пик. – размах или двойная амплитаду. Или иначе, амплитуда от пика до пика.
Так что же все-таки показывает мультиметр при измерении переменного напряжения? Показывает он НЕ амплитудное, НЕ среднее и НЕ среднее выпрямленное напряжение, а среднее квадратическое, то есть действующее напряжение! Об этом всегда помним.
Алгоритм определения применяемой для расчётов величины тарифа на передачу электроэнергии, при непосредственном подключении ЭПУ потребителя к объектам электросетевого хозяйства ТСО
Описанная выше логика, нам нужна, чтобы решить всего одну следующую задачу:
Идентифицировать величину тарифа на передачу электроэнергии, для дальнейшего его применения в расчётах между ТСО и потребителем услуг по передаче электроэнергии в рамках договора энергоснабжения с энергосбытовой организацией (далее по тексту – ЭСО) или в рамках прямого договора оказания услуг по передаче электроэнергии с ТСО.
Целевой результат выполнения данной задачи: Правильно идентифицированная величина тарифа на передачу электроэнергии.
Решается эта задача по следующему алгоритму:
Приведённый выше алгоритм касается только той ситуации, когда энергопринимающие устройства потребителя непосредственно подключены к объектам электросетевого хозяйства ТСО, и к ним применяются:
1. для ситуации когда «ГБП на источнике питания» положения абзаца 3 пункта 15(2) ПНД: «если граница раздела балансовой принадлежности объектов электросетевого хозяйства сетевой организации и энергопринимающих устройств … потребителя … установлена на объектах…, на которых происходит преобразование уровней напряжения (трансформация), принимается уровень напряжения, соответствующий значению питающего (высшего) напряжения указанных объектов …»
2. для ситуации когда «ГБП НЕ на источнике питания» положения части первой абзаца 5 пункта 15(2) ПНД, которые звучат так: «в иных случаях принимается уровень напряжения, на котором подключены энергопринимающие устройства и (или) иные объекты электроэнергетики потребителя электрической энергии (мощности)»
Значения емкостного сопротивления
Поскольку основная проводящая область варистора между двумя его выводами ведет себя как диэлектрик, ниже его напряжения зажима варистор действует как конденсатор, а не как резистор. Каждый полупроводниковый варистор имеет значение емкости, которое напрямую зависит от его площади и обратно пропорционально его толщине.
При использовании в цепях постоянного тока емкость варистора остается более или менее постоянной при условии, что приложенное напряжение не увеличивается выше уровня напряжения зажима и резко падает вблизи своего максимального номинального постоянного напряжения постоянного тока.
Читать также: Изготовить железный ящик выдвижной
Однако в цепях переменного тока эта емкость может влиять на сопротивление корпуса устройства в области непроводящей утечки его характеристик IV. Поскольку они обычно соединены параллельно с электрическим устройством для защиты от перенапряжения, сопротивление утечки варисторов быстро падает с увеличением частоты.
Это соотношение приблизительно линейно с частотой, и полученное в результате параллельное сопротивление, его реактивное сопротивление переменного тока Xc может быть рассчитано с использованием обычного 1 / (2πƒC), как для обычного конденсатора. Затем, когда частота увеличивается, увеличивается и ток утечки.
Но наряду с варисторами на основе кремниевых полупроводников были разработаны варисторы на основе оксидов металлов, чтобы преодолеть некоторые ограничения, связанные с их кузенами из карбида кремния.
Что делать потребителю энергии?
Наиболее простой способ защиты от скачков напряжения – отключение приборов в критической ситуации. Такие устройства базируются на реле контроля напряжения типа РН и электронных схемах управления. При чрезмерном перепаде в сети бытовая техника отключается, а при возврате в стабильное состояние – автоматически включается снова.
Такие устройства монтируются непосредственно на входе в электроприбор. С их помощью, чаще всего, защищаются аппараты длительной работы (холодильники, стиральные машины и т.п.). При частых и длительных колебаниях в сети необходимо позаботиться о непрерывном поддержании ее параметров в пределах нормы. Для этих целей используются специальные устройства – стабилизаторы напряжения.
Если колебание происходит в пределах рабочего диапазона, то аппарат постоянно удерживает напряжение на номинальном значении (220 В) с отклонением не более 1-2%. При скачках сверх допустимых значений прибор отключается и включается вновь при возврате в рабочие пределы. Современные стабилизаторы имеют рабочий диапазон порядка 160-250 В.
Если перепады напряжения вызваны внутриквартирными причинами (например, плохое качество проводки), то для исправления ситуации надо вызвать профессионального электрика. Он найдет причины и устранит неисправности. Другое дело, когда наблюдаются сетевые нарушения, и поступает на вход квартиры напряжение, не отвечающее требованиям ГОСТ. Если такие случаи фиксируются часто, то следует воспользоваться своим правом потребителя услуги.
Куда жаловаться?
С претензией на качество электроснабжения можно обратиться в:
- управляющую компанию;
- территориальную электросетевую компанию;
- департамент ЖКХ муниципалитета;
- Жилинспекцию;
- Роспотребнадзор.
Пожаловаться можно путем личного посещения организации, письмом по почте или через электронную почту. Порядок действия:
- подача заявки в организацию, обслуживающую дом, и вызов электрика;
- составление электриком акта об отклонениях от нормы;
- подача заявления с приложением акта в управляющую компанию с просьбой исправить ситуацию;
- при отказе – направление жалобы (претензии) в контролирующий орган.
Как составить жалобу?
При отказе от устранения нарушений жилец имеет право подать жалобу в любой из вышеуказанных органов. Основой для ее оформления являются Закон «О защите прав потребителей», Постановление Правительства РФ от 06.05.2011 №354 и ГОСТ 32144-2013, устанавливающий нормы качества электроэнергии. Жалоба подается в письменной форме в свободном стиле. Обязательными являются некоторые пункты:
- Наименование организации и ФИО лица, которому пишется претензия.
- ФИО, паспортные данные и адрес лица, подающего жалобу.
- Причины обращения и претензии со ссылками на законодательство РФ.
- В конце необходимо описать ваши требования.
- Поставить дату и подпись.
Важно четко указать выявленные нарушения. Обоснованными можно считать такие претензии:. Обоснованными можно считать такие претензии:
Обоснованными можно считать такие претензии:
- чрезмерно низкое или высокое значение напряжения;
- длительные периоды нестабильного напряжения и полная его потеря;
- отклонение частоты сигнала от нормы;
- появление импульсного напряжения.
Потребитель имеет право выставить такие требования:
- Снижение тарифа на 0,15% за каждый час поставки электроэнергии, несоответствующего качества (Постановление №354).
- Компенсация убытков при выходе из строя бытовой техники, по причине резкого скачка напряжения.
К жалобе прикладывается акт нарушений, акт или справка с ремонтной мастерской о выходе техники из строя.
жалобы на низкое напряжение в электросетиСкачать образец жалобы на низкое напряжение в электросетиМы не рекомендуем самостоятельно оформлять документы. Экономьте время – обращайтесь к нашим юристам по телефонам:
В какие сроки на нее должны отреагировать?
Организация, отвечающая за электроснабжение дома, обязана отреагировать на претензию в течение 3 дней ПП 354, если жалоба подана в госорганизацию, то срок до 30 дней, ФЗ-59 ст. 12. Для уточнения причин и оценки ущерба она имеет право направить специальную комиссию, а также привлекать независимых экспертов. Соответствующий акт оценки состояния направляется заявителю.
Причины техногенного характера
- В многоквартирных домах, особенно старой постройки, линии электросети сильно изношены, сечение может не соответствовать нормативам Правил устройства электроустановок (ПУЭ). Кроме того, имеют место факты несанкционированного ремонта, самостоятельной замены проводки, выполненной несертифицированными домашними «электриками». Контактные группы (клеммные колодки) испорчены коррозией, многочисленными подгораниями точек контакта. Возникают скрутки проводов из различных металлов, что приводит к электрохимической коррозии.При таком состоянии проводки, даже исправная и качественная трансформаторная подстанция не в состоянии обеспечить стабильные параметры при изменении тока нагрузки. Особенно заметны скачки напряжения в электросети в летний период (когда жители включают кондиционеры), и при наступлении темноты.
- Трансформаторные подстанции построены еще в прошлом веке. В результате изношенности, оборудование не в состоянии противодействовать перегрузкам по току, поэтому постоянно возникают серьезные просады напряжения. Часть таких трансформаторов конструктивно не имеют средств стабилизации.
- Наращивание дополнительных мощностей потребления на линейном уровне. Любая подстанция имеет резерв по мощности. Если он не задействован, то кратковременные перегрузки гасятся запасом по току, и напряжение остается стабильным. В результате неконтролируемой застройки, энергетики вынуждены подключать новые линии на существующие сети, полностью выбирая резерв. иногда, по причине коррумпированности представителей энергетических компаний, застройщику удается даже превысить лимит потребления.Как следствие — энергосети постоянно работают в режиме перегрузки, и малейшее увеличение потребляемой мощности неминуемо приводит к скачкам напряжения.
- Рост энергетической нагрузки в масштабах каждой квартиры (домовладения). Современный житель (особенно в городской среде) неизбежно увеличивает количество используемых электроприборов. В каждой комнате устанавливается телевизор, в квартирах имеются компьютеры, посудомоечные машины, мультиварки. Кондиционер уже давно входит в стандартное оснащение жилища. Разумеется, каждый персональный ввод электросети ограничен автоматом защиты. Но его максимальный показатель по току не рассчитан на постоянное потребление на грани срабатывания. Когда в каждой квартире сила тока близка к порогу срабатывания автомата, сети испытывают значительные перегрузки, и напряжение падает.
- Обрыв или потеря контакта на линии нейтрали. В этом случае напряжение не пропадает (как при однофазном подключении), а резко возрастает. Превышение может составить несколько сотен вольт: зафиксированы случаи, когда напряжение в аварийной сети достигает 400–500 вольт. Понятно, что при большой нагрузке эти перепады приводят к срабатыванию линейных средств защиты. А если потребление ниже среднего, выходит из строя бытовая техника. Возможен даже пожар.
- Самовольная коммутация электросетей на вводе. Некоторые недобросовестные жильцы используют в качестве нейтрали, системы водопровода или отопления, для обхода приборов учета электроэнергии. В этом случае возникает разброс линии фазы и нуля. Помимо опасности прикосновения к радиаторам отопления, такие художества приводят к скачкам напряжения в сети.
- Подключение промышленного оборудования к линиям бытового назначения. Довольно часто можно наблюдать, как при строительстве домовладения, или объекта торговли (ларька), бригада работает с мощной бетономешалкой или сварочным трансформатором, запитанным от обычного щитка питания. Разумеется, потребление в активном режиме порядка 5–10 кВт в одной точке, приводит к просадам напряжения на линии.
- Случается, что бытовая линия электропередач расположена в непосредственной близости от высоковольтных мачт, либо контактного провода троллейбусного или трамвайного маршрута. В этом случае возможен эффект наведенного напряжения.
- Нельзя забывать о природных факторах. Речь идет не только о непосредственном грозовом разряде прямо в линию электропередач (хотя и такое случается).Статика является серьезной проблемой не только при прохождении сквозь ЛЭП грозового фронта (даже без молний), но и во время так называемых суховеев.
Уровень напряжения
Уровень напряжения, по которому оплачивает потребитель, играет еще более важную роль чем максимальная мощность.
Уровень тарифного напряжение – это напряжение по которому потребитель подключен к внешней сети.
Существует 4 уровня тарифного напряжения:
- Высокое напряжение (ВН) — 110 кВ и выше
- Среднее напряжение 1 (СН1) — 35 кВ
- Среднее напряжение 2 (СН2) — от 1 до 20 кВ
- Низкое напряжение (НН) — 0,4 кВ
Тарифы на услуги по передаче электроэнергии устанавливаются в соответствии с уровнем тарифного напряжения.
Чем выше уровень напряжения, тем ниже стоимость услуг по передаче электроэнергии.
Важный нюанс:
Для расчетов за услуги по передаче принимается наивысший уровень напряжения подстанции, к которой подключен потребитель.
Например, потребитель подключен к подстанции 35/6 кВ.
В этом случае, уровень тарифного подключения должен быть 35 кВ.
Если потребитель оплачивает слуги по передаче на уровне напряжения 6 кВ, то стоимость услуг по передаче будет в 1,5 – 2 раза дороже.
Услуги по передаче составляют примерно 40%-50% стоимости электроэнергии.
Сокращение стоимости услуг по передаче может дать очень существенную экономию электроэнергии.
Для того, что бы убедиться, что вы платите по верному тарифного напряжения, вам необходимо:
- Найти уровень напряжения указанный в акте разграничения балансовой принадлежности.
- Найти уровень напряжения, указанный в договоре электроснабжения.
- Убедиться, что уровни напряжения в обеих документах совпадают.
Если уровни напряжения не совпадают, вам необходимо без промедления обратиться к гарантирующему поставщику для внесения изменений в договор электроснабжения.
Стоит отметить, что, если вы оплачивали услуги по передаче электроэнергии по более высокому тарифу из-за не корректно указанного уровня напряжения, возместить эти потери будет крайне сложно.
Среднее номинальное напряжение
Средние номинальные напряжения указаны на схеме.
Формулы для определения.| Формулы для определения параметров схем замещения в относительных единицах. |
СсрЛг — средние номинальные напряжения соответственно основной и N — й ступени напряжения, на которой находится подлежащий приведению элемент; I5N — базисный ток N — й ступени напряжения.
ССр яом — среднее номинальное напряжение сети, В, где произошло КЗ; rlz, хоъ — суммарные соответственно активное и индуктивное сопротивления схемы замещения прямой последовательности относительно точки КЗ, мОм; гoi, Xoz — то же, нулевой последовательности.
Схема к пояснению среднего номинального напряжения электрической ступени. |
Приняв для каждой электрической ступени среднее номинальное напряжение, считают, что номинальные напряжения всех элементов, включенных на данной ступени, равны ее среднему номинальному напряжению. Это допущение для некоторых элементов установки может не соответствовать действительности, так как их действительные номинальные напряжения могут несколько отличаться от указанных средних значений. Однако ошибка в вычислении токов короткого замыкания получается незначительной.
В этих выключателях, также применяемых только на средние номинальные напряжения, элементы изоляции аналогичны водяным выключателям ( ср.
Кривые зависимости приведенного времени для периодической слагающей тока к. я. а — при питании от генератора с АРВ. б — при питании от генератора без АРВ. / [ ЬП-приведенное время для периодической слагающей тока к. з.. t — действительное время, с. Р / / ь — от. |
Базисное напряжение принимается для каждой ступени напряжения равным ее среднему номинальному напряжению.
Схема к пояснению среднего номинального напряжения электрической ступени. |
На сборных шинах расчетной схемы и должны быть указаны эти средние номинальные напряжения.
Механизм автоматического переноса нагрузки для переключателя, показанного на 4 — 45.| Установка подземных трансформаторов в подвальном киоске с защитой масляными выключателями с плавкой вставкой. /, 2 — вторичные магистрали. 3 — первичные магистрали. 4-выключатель с плавкой вставкой. 5 — трансформатор. 6 — цепь освещения. |
Масляные плавкие предохранители имеют широкое применение, а предохранители на среднее номинальное напряжение работают уже около 40 лет в подземных распределительных цепях в сырых и сухих колодцах и подвалах.
Базисное напряжение рекомендуется принимать для каждой ступени напряжения равным ее среднему номинальному напряжению.
Схема сети с несколькими ступенями трансформации. |
Параметры переменного тока и напряжения
Величина переменного тока, как и напряжения, постоянно меняется во времени. Количественными показателями для измерений и расчётов применяются их следующие параметры:
Период T – время, в течении которого происходит один полный цикл изменения тока в оба направления относительно нуля или среднего значения.
Частота f – величина, обратная периоду, равная количеству периодов за одну секунду.
Один период в секунду это один герц (1 Hz)
f = 1/T
Циклическая частота ω – угловая частота, равная количеству периодов за 2π секунд.
ω = 2πf = 2π/T
Обычно используется при расчётах тока и напряжения синусоидальной формы. Тогда в пределах периода можно не рассматривать частоту и время, а исчисления производить в радианах или градусах. T = 2π = 360°
Начальная фаза ψ – величина угла от нуля (ωt = 0) до начала периода.
Измеряется в радианах или градусах. Показана на рисунке для синего графика синусоидального тока.
Начальная фаза может быть положительной или отрицательной величиной, соответственно справа или слева от нуля на графике.
Мгновенное значение – величина напряжения или тока измеренная относительно нуля в любой выбранный момент времени t.
i = i(t); u = u(t)
Последовательность всех мгновенных значений в любом интервале времени можно рассмотреть как функцию изменения тока или напряжения во времени.
Например, синусоидальный ток или напряжение можно выразить функцией:
i = Iampsin(ωt); u = Uampsin(ωt)
С учётом начальной фазы:
i = Iampsin(ωt + ψ); u = Uampsin(ωt + ψ)
Здесь Iamp и Uamp – амплитудные значения тока и напряжения.
Амплитудное значение – максимальное по модулю мгновенное значение за период.
Iamp = max|i(t)|; Uamp = max|u(t)|
Может быть положительным и отрицательным в зависимости от положения относительно нуля.
Часто вместо амплитудного значения применяется термин амплитуда тока (напряжения) – максимальное отклонение от нулевого значения.
Среднее значение (avg) – определяется как среднеарифметическое всех мгновенных значений за период T.
Среднее значение является постоянной составляющей DC напряжения и тока.
Для синусоидального тока (напряжения) среднее значение равно нулю.
Средневыпрямленное значение – среднеарифметическое модулей всех мгновенных значений за период.
Для синусоидального тока или напряжения средневыпрямленное значение равно среднеарифметическому за положительный полупериод.
Среднеквадратичное значение (rms) – определяется как квадратный корень из среднеарифметического квадратов всех
мгновенных значений за период.
Для синусоидального тока и напряжения амплитудой Iamp (Uamp)
среднеквадратичное значение определится из расчёта:
Среднеквадратичное – это действующее, эффективное значение, наиболее удобное для практических измерений и расчётов.
Является объективным количественным показателем для любой формы тока.
В активной нагрузке переменный ток совершает такую же работу за время периода,
что и равный по величине его среднеквадратичному значению постоянный ток.
Примечания
- ГОСТ 32144-2013 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения.
- Грищенко А.И., Зиноватный П.С. Энергетическое право России. (Правовое регулирование электроэнергетики в 1885—1918 гг.). — М.: «Юрист», 2008. — С. 118.
- Грищенко А.И., Зиноватный П.С. Энергетическое право России. (Правовое регулирование электроэнергетики в 1885—1918 гг.). — М.: «Юрист», 2008. — С. 13.
- План электрификации РСФСР. — 2-е изд. — М.: Госполитиздат, 1955. — С. 213,355,356,361. — 660 с.
- Производство пара, паровые машины, пароме турбины, двигатели внутреннего сгорания, газовые турбины, ветряные двигатели, водяные двигатели, насосы и компрессоры, теплосиловое хозяйство, электротехника, освещение // Hütte Справочник для инженеров, техников и студентов. — М.-Л.: ОНТИ, 1936. — Т. 3. — С. 950.
- Проект общесоюзного стандарта «Номинальные напряжения стационарных установок сильного тока» (Взамен ОСТ 4760 и ОСТ 5155)(2-я редакция, Октябрь 1938 г.) // Электричество. — 1939. — № 1. — С. 30.
- Основные напряжения ГОСТ 721-41.
- Левитин Е. Государственный общесоюзный стандарт на радиовещательные приемники // Радио. — 1951. — № 9. — С. 11-13.
- Левитин Е.А., Левитин Л.Е. Радиовещательные приемники. — Издание второе, переработанное и дополненное. — М.: Энергия, 1967. — С. 349.
- Основные напряжения ГОСТ 21128-75.
Электрические сети. Номинальные напряжения. Допустимые отклонения
Номинальные напряжения электрических сетей, источников и приёмников электрической энергии постоянного и переменного тока промышленной частоты определяются комплексом документов: ГОСТ 23366, ГОСТ 721, ГОСТ 21128, ГОСТ 6962 и ГОСТ 29322.
Ряд стандартных напряжений
Ряд стандартных напряжений установлен ГОСТ 23366 для постоянного и переменного тока промышленной частоты. Напряжение на выводах проектируемого оборудования должно соответствовать значениям этого ряда, за исключением некоторых случаев . Ниже приведены стандартный ряд напряжений для потребителей электрической энергии
. Основной ряд напряжений постоянного и переменного тока потребителей электрической представлен в таблице 1, вспомогательный ряд напряжений переменного тока — в таблице 2, а постоянного тока — в таблице 3. Таблица 1 — Ряд напряжений постоянного и переменного тока потребителей электрической энергии
№ п/п | U, В | № п/п | U, В |
1 | 0,6 | 14 | 1140 |
2 | 1,2 | 15 | 3000 |
3 | 2,4 | 16 | 6000 |
4 | 6 | 17 | 10000 |
5 | 9 | 18 | 20000 |
6 | 12 | 19 | 35000 |
7 | 27 | 20 | 110000 |
8 | 40 | 21 | 220000 |
9 | 60 | 22 | 330000 |
10 | 110 | 23 | 500000 |
11 | 220 | 24 | 750000 |
12 | 380 | 25 | 1150000 |
13 | 660 |
Таблица 2 — Вспомогательный ряд напряжений переменного тока потребителей электрической энергии
№ п/п | U, В |
1 | 1,5 |
2 | 5 |
3 | 15 |
4 | 24 |
5 | 36 |
6 | 80 |
7 | 2000 |
8 | 3500 |
9 | 15000 |
10 | 25000 |
11 | 150000 |
Таблица 3 — Вспомогательный ряд напряжений постоянного тока потребителей электрической энергии
№ п/п | U, В | № п/п | U, В | № п/п | U, В | № п/п | U, В |
1 | 0,25 | 11 | 24 | 21 | 300 | 31 | 5000 |
2 | 0,4 | 12 | 30 | 22 | 400 | 32 | 8000 |
3 | 4,5 | 13 | 36 | 23 | 440 | 33 | 12000 |
4 | 1,5 | 14 | 48 | 24 | 600 | 34 | 25000 |
5 | 2 | 15 | 54 | 25 | 800 | 35 | 30000 |
6 | 3 | 16 | 80 | 26 | 1000 | 36 | 40000 |
7 | 4 | 17 | 100 | 27 | 1500 | 37 | 50000 |
8 | 5 | 18 | 150 | 28 | 2000 | 38 | 60000 |
9 | 15 | 19 | 200 | 29 | 2500 | 39 | 100000 |
10 | 20 | 20 | 250 | 30 | 4000 | 40 | 150000 |
Стандартный ряд напряжений для источников и преобразователей (например: генератор, трансформатор и т.п.) электрической энергии
. Ряд напряжений для переменного тока приведен в таблице 4, для постоянного — в таблице 5.
Таблица 4 — Ряд напряжений переменного тока источников и преобразователей электрической энергии
№ п/п | U, В | № п/п | U, В |
1 | 6 | 15 | 10500 |
2 | 12 | 16 | 13800 |
3 | 28,5 | 17 | 15750 |
4 | 42 | 18 | 18000 |
5 | 62 | 19 | 20000 |
6 | 115 | 20 | 24000 |
7 | 120 | 21 | 27000 |
8 | 208 | 22 | 38500 |
9 | 230 | 23 | 121000 |
10 | 400 | 24 | 242000 |
11 | 690 | 25 | 347000 |
12 | 1200 | 26 | 525000 |
13 | 3150 | 27 | 787000 |
14 | 6300 | 28 | 1200000 |
Таблица 5 — Ряд напряжений постоянного тока источников и преобразователей электрической энергии
№ п/п | U, В | № п/п | U, В |
1 | 4,5 | 8 | 230 |
2 | 6 | 9 | 460 |
3 | 12 | 10 | 600 |
4 | 28,5 | 11 | 1200 |
5 | 48 | 12 | 3300 |
6 | 62 | 13 | 6600 |
7 | 115 |
При выборе напряжения следует отдавать предпочтение основному ряду.
Номинальное напряжение электрооборудования до 1000 В
Номинальное напряжение оборудования до 1000 В регламентировано стандартом ГОСТ 21128. Ряд номинальных напряжений приведён в таблице 6 .
Таблица 6 — Номинальное напряжение источников, преобразователей, систем электроснабжения, сетей и приёмников до 1000 В
Род и вид тока | Номинальное напряжение, В | |
источников и преобразователей | систем электроснабжения, сетей и приёмников | |
Постоянный | 6; 12; 28,5; 48; 62; 115; 230; 460 | 6; 12; 27; 48; 60; 110; 220(230); 440 |
Переменный: | ||
однофазный | 6; 12; 28,5; 42; 62; 115; 230 | 6; 12; 27; 40; 60; 110; 220(230) |
трёхфазный | 42; 62; 230; 400; 690 | 40; 60; 220(230); 380(400); 660(690); (1000) |
Среднее и действующее значение переменного тока
Среднее значение переменного тока равно величине постоянного тока, при котором через поперечное сечение проводника проходит такое же количество электричества, что и при переменном токе. Обозначается среднее значение тока, напряжения и ЭДС соответственно
Определяются средние значения по формулам:
Эффективным или действующим значением переменного тока называется такой ток, который за одинаковый промежуток времени выделит в одном и том же проводнике такое же количество теплоты, что и данный переменный ток. Определяется действующее значение переменного тока, напряжения и ЭДС по формулам:
Практическое значение действующего значения велико.
1. Его регистрируют большинство измерительных приборов (с электромагнитной, динамической, ферродинамической и др. измерительными системами).
2. Шкалы всех приборов градуируются для отсчета действующего значения
studopedia.ru
История
Разработка варистора в виде нового типа выпрямитель на основе закись меди слой на меди, созданный в работе Л.О. Грондал и П. Гейгером в 1927 году.
Варистор из оксида меди показал различное сопротивление в зависимости от полярности и величины приложенного напряжения. Он был построен из небольшого медного диска, одна сторона которого была образована слоем закиси меди. Такое расположение обеспечивает низкое сопротивление току, протекающему от полупроводникового оксида к стороне меди, но высокое сопротивление току в противоположном направлении, при этом мгновенное сопротивление непрерывно изменяется с приложенным напряжением.
В 1930-х годах небольшие варисторные сборки с максимальным размером менее одного дюйма и, по-видимому, с неограниченным сроком службы нашли применение в замене громоздких электронных ламповых схем в качестве модуляторов и демодуляторов в системы несущего тока для телефонной передачи.
Другие применения варисторов в телефонной установке включали защиту цепей от скачков напряжения и шума, а также подавление щелчков на приемнике (наушник
) элементы для защиты ушей пользователей от хлопков при переключении цепей. Эти варисторы были сконструированы путем размещения четного количества дисков выпрямителя в стеке и соединения концов клемм и центра в антипараллельной конфигурации, как показано на фотографии Western Electric Варистор типа 3В, июнь 1952 г. (внизу).
- Варистор Western Electric 3B производства 1952 года для использования в телефонных аппаратах в качестве подавителя щелчков.
- Схема традиционной конструкции варисторов, используемых в качестве глушителей щелчков в телефонии.
- Условное обозначение традиционного варистора, используется сегодня для диак. Он отражает поведение диода в обоих направлениях тока.
- Варистор Western Electric Type 44A, изготовленный в 1958 году, установлен на элементе телефонной трубки U1 для подавления щелчков.
В Телефонный аппарат Western Electric тип 500 в 1949 году представила схему динамического выравнивания контура с использованием варисторов, которые шунтировали относительно высокие уровни тока контура на короткие контуры центрального офиса для автоматической регулировки уровней сигналов передачи и приема. На длинных петлях варисторы сохраняли относительно высокое сопротивление и не меняли существенно сигналы.
Другой тип варистора был сделан из Карбид кремния Р. О. Грисдейла в начале 1930-х гг. Его использовали для защиты телефонных линий от молнии.
В начале 1970-х годов японские исследователи признали полупроводниковые электронные свойства оксида цинка (ZnO) полезными как новый тип варистора в керамика процесс спекания, при котором функция напряжения-тока аналогична функции пары соединенных друг с другом Стабилитроны. Этот тип устройства стал предпочтительным методом защиты цепей от скачков напряжения и других разрушительных электрических помех и стал известен как металлооксидный варистор (MOV). Случайная ориентация зерен ZnO в объеме этого материала обеспечивала одинаковые вольт-амперные характеристики для обоих направлений протекания тока.
Какой уровень напряжения указать в заявке на подключение к электросетям?
Я взял заявку для технологического присоединения энергопринимающих устройств….. Не могу выбрать уровень напряжения. В заявке указано 0.23: 0,38: 6: 10: 20 кВ, Что это такое и как выбрать необходимое?
Ответы и комментарии
Альберт, никого не слушайте, слушайте меня.;) Если у вас дома нет и не планируется трехфазных приборов, типа мощной сплит-системы, скважинного насоса и вы не собираетесь устанавливать гриль для кур, смело просите 0,22 кВ. Для быта гораздо предпочтительнее 220В, чем 380В по целому ряду объективных и субъективных причин. Одна из них — возможное появление в розетке 380В, вторая — автоматический выключатель в ТУ укажут 25 или 32А…..это значит, что при перегрузке на одной фазе более 5-6 кВт, будет отключаться весь дом, т.к. автоматический выключатель состоит из трех фазных автоматов, соединенных механической связью….. Могу привести еще несколько обоснований в пользу 220В но, думаю, этих достаточно человеку, не знающему, как выбрать нужное при таком шикарном выборе…..
добавить комментарий · Был ли этот ответ полезен вам? Да / Нет
Александр, смею напомнить, что еще есть такие электроприемники, как бани-сауны, отопительные котлы и проч. нагревательные приборы, которые кроме кур еще греют, для них тоже может потребоваться 0,38 кВ. А еще есть такие сетевые организации, которые активно принуждают потребителей подключать 0,38 кВ при мощности больше 5 кВт, дабы выравнивать нагрузку по фазам в своих сетях.
Господин Альберт не указал изначально, для каких целей ему необходимо электричество, поэтому я предположил, что на жилой дом, а не коттедж бизнес-класса. Ну и, мне кажется фразой» Если у вас дома нет и не планируется трехфазных приборов» я объяснил господину Альберту, из каких соображений надо исходить при выборе напряжения. Об активно принуждающих СО. Да плевать, как им удобно. Класс напряжения выбирает заявитель. Во всяком случае так написано в Правилах ТП
Источник
Подводя итоги
Как видите, напряжение 220 В является пережитком старой системы, которые все еще допускается в ваших розетках в качестве частного варианта, как производной от номинала 230 В. Но что касается разброса от минимума до максимума, то здесь следует быть особенно осторожным. Все дело в том, что большинство производителей выпускают бытовое оборудование на определенные пределы напряжения, к примеру от 200 до 240 В, поэтому в случае повышения разности потенциалов на отметку 250 В, являющуюся допустимой, прибор может попросту выйти со строя.
Если у вас в квартире наблюдается подобная ситуация, можете сделать простую процедуру:
проверьте норму на интересующем вас приборе;
Рис. 2: проверьте норму напряжения
измерьте напряжение в розетке;
Рис. 3. Замерьте напряжение в сети
сопоставьте эти величины.
Если напряжение в сети значительно больше допустимого для устройства, вам понадобится стабилизатор или новый прибор. Если же номинал напряжения в сети больше допустимого ГОСТом, то срочно обращайтесь в энергоснабжающую организацию.