Как работает стабилитрон

Оглавление

Практическая часть

1) Снятие вольтамперной характеристики

Рисунок 3 Электрическая принципиальная схема для снятия вольт амперной характеристики стабилитрона

Тут приведена полярность для обратной ветви характеристики, для снятия прямой ветви соответственно изменить полярность питания и подключения измерительных приборов.

Соберём схему по рисунку 3. Для снятия вольтамперной характеристики стабилитрона вначале изменяют прямое, а затем обратное напряжение, подводимое к диоду, и следят за изменениями тока в цепи. Для построения характеристики достаточно снять 5-6 показаний приборов для прямой и 8-10 показаний для обратной ветви характеристики. Особенно тщательно следует снимать характеристику на участке стабилизации, так как здесь в широком диапазоне изменения тока диода напряжение Uст меняется незначительно. Данные наблюдений записывают в таблицу I= f (U)

2) Построение вольтамперной характеристики

График вольтамперной характеристики кремниевого стабилитрона строят по результатам таблицы. Примерный вид вольтамперной характеристики показан на рисунке 4.

Рисунок 4 Примерный вид вольтамперной характеристики

Рисунок 5 Электрическая принципиальная схема для исследования параметрического стабилизатора

Схема для исследования параметрического стабилизатора показана на рисунке 5. Поочередно осуществляется подключение нагрузочных резисторов R2 или R3 с разными сопротивлениями, тем самым изменяется нагрузочный ток.

Порядок выполнения работы

  1. Подключить к схеме для исследования параметрического стабилизатора измерительную аппаратуру и источник питания. Подготовить приборы для измерения соответствующих параметров.
  2. Рассчитать по известным параметрам схемы коэффициент стабилизации напряжения Кст стабилизатора.
  3. Определить экспериментально и записать в таблицу коэффициент стабилизации напряжения при изменениях входного напряжения от 25 до 30 В для обоих нагрузочных резисторов. Для чего установить входное напряжение стабилизатора с точностью до 0,05 В. Затем увеличив входное напряжение до 30 В снова измерить входное напряжение. По результатам измерений, записанных в таблицу,  по формуле (6) определить искомый коэффициент стабилизации, сравнив с расчётами, сделанными в п.2, учитывая, что они могут отличаться на 20-30%.
  4. Определить расчётно-экспериментальным путём минимальное и максимальное сопротивление балластного резистора. Для определения сопротивление балластного резистора по формулам (4) необходимо измерить минимальное и максимальное значения нагрузочного тока, определённое при любом входном напряжении от 25 до 30 В. В качестве напряжения Uст принять значение напряжения Uн из таблицы, округляя его до 0,1 долей вольта.
  5. Определение коэффициента стабилизации.

Используемый в лабораторной работе стабилитрон Д814Б и резисторы (балластное сопротивление R1 МЛТ-2 510 Ом, нагрузочные резисторы R2 МЛТ-1 1 кОм и R3 МЛТ-0,5 3 кОм) закреплены на плате из одностороннего фольгированного стеклотекстолита.

Первая часть лабораторной работы состоит в снятии прямой и обратной ветвей вольтамперной характеристики стабилитрона

Во второй части на основе стабилитрона собирается простейший параметрический стабилизатор. 

Меняя напряжение на входе стабилизатора, можно убедиться, что напряжение на нагрузке (резистор R2 или R3) изменяться практически не будет. Аналогично переключая резисторы R2 или R3 можно удостовериться, что изменение сопротивления нагрузки также не приводит к значительным колебаниям напряжения на ней.

Здесь были использованы сокращения материала в теоретической части, полную версию работы прочитайте тут. Специально для radioskot.ru — Denev

Схема для проверки

Рассмотрим еще одну простейшую схему для определения напряжения стабилизации, которая состоит из:

  • Регулируемого блока питания. Постоянное напряжение должно изменяться плавно потенциометром от 0 до 50 В (чем выше максимальное напряжение тем больший диапазон элементов вы сможете проверить). Это позволит проверить практически любой маломощный стабилитрон.
  • Набор токоограничивающих резисторов. Обычно они имеют номинал 1 Ком, 2,2 Ком и 4,7 Ком, но их может быть и больше. Все зависит от напряжения и тока стабилизации.
  • Вольтметр, можно использовать обыкновенный мультиметр.
  • Колодка с подпружиненными контактами. Она должна иметь несколько ячеек, чтобы была возможность подключать полупроводники с различными корпусами.

Для проверки подключают стабилитрон по вышеприведенной схеме и постепенно поднимают напряжение на источнике питания от 0. При этом контролируют показания вольтметра. Как только напряжение на элементе перестанет расти, независимо от его увеличения на блоке питания, это и будет стабилизацией по напряжению.

Если на элементе есть маркировка, то полученные при измерении данные сверяют с таблицей в справочнике по параметрам.

Отметим, что стабилитроны могут выпускаться в различном исполнении. Например, КС162 производятся в керамических корпусах, КС133 в стеклянных, Д814 и Д818 в металлических.

Приведем характеристики некоторых распространенных отечественных стабилитронов:

  • КС133а напряжение стабилизации равно 3,3 В, выпускаются в стеклянном корпусе;
  • КС147а поддерживает напряжение на уровне 4,7 В, корпус стеклянный;
  • КС162а– 6,2 В, корпус из керамики;
  • КС175а – 7,5 В, имеет керамический корпус;
  • КС433а – 3,3 В, выпускают в металлическом корпусе;
  • КС515а – 15 В, корпус из металла;
  • КС524г – в керамическом корпусе с напряжением 24 В;
  • КС531в – 31 В, керамический корпус;
  • КС210б – напряжение стабилизации 10 В, корпус из керамики;
  • Д814а – 7-8,5 В, в металлическом корпусе;
  • Д818б – 9 В, металлический корпус;
  • Д817б – 68 В, в корпусе из металла.

Для проверки стабилитрона с большими напряжениями стабилизации применяется другая схема, которая представлена на рисунке снизу.

Проверка производится аналогично описанному способу. Похожие приборы выпускаются китайскими производителями.

Однако, можно собрать простейшую схему для проверки стабилитронов с применением мультиметра. Это хорошо показано на видео далее.

Советуем изучить — Однофазные выпрямители: типовые схемы, осциллограммы и моделирование

Следует предупредить, что показанную на видео электрическую схему применять не рекомендуется, т.к. она небезопасна и требует соблюдения техники безопасности. В противном случае можно получить травму (в лучшем случае).

Общие рекомендации

MAX40200 – это идеальный диодный токовый переключатель с настолько малым падением напряжения прямого смещения на полупроводниковом переходе, что оно почти на порядок меньше, чем у диодов Шоттки. В MAX40200 реализована защита самой ИС и подключенных к выходу цепей от превышения температуры. В отключенном состоянии (на выводе EN установлен низкий уровень) ИС блокирует прямое и обратное напряжения до 6 В, что делает ее пригодной для большинства низковольтных портативных электронных устройств. При обратном смещении диодного перехода MAX40200 ток утечки меньше, чем у многих сопоставимых диодов Шоттки. MAX40200 работает с напряжением питания 1,5…5,5 В.

Идеальный интегральный диод MAX40200 имеет целый ряд преимуществ, среди которых:

  • незначительный ток в дежурном режиме – 7 мкА;
  • малая рассеиваемая мощность – всего 125 мкА при токе 1 А;
  • небольшое падение напряжения (примерно 18 мВ) для прямого тока – до 100 мА;
  • время переключения между прямым и обратным напряжением смещения – менее 100 мкс;
  • компактный корпус типа WLP с четырьмя выводами;
  • отпирающий/запирающий сигнал и тепловая защита.

Одной из важных особенностей ИС MAX40200, применяемой в качестве идеальных диодов, является использование MOSFET вместо обычной биполярной полупроводникой технологии, что позволяет, по сути, обеспечить для нагрузки гальваническую развязку по току. В данной статье исследуются характеристики нескольких параллельно соединенных ИС MAX40200.

Комплект из нескольких идеальных диодов должен обеспечивать те же характеристики, что и один более мощный диод. Для этого необходимо подобрать некоторое количество MAX40200. Например, можно использовать две параллельно соединенных ИС для системы на 2 А и, соответственно, четыре параллельных ИС для системы на 4 А.

Дополнительная маркировка стеклянных моделей

Диоды в стеклянных корпусах имеют свои собственные обозначения, которые мы рассмотрим далее. Они настолько простые (в отличие от вариантов с пластиковыми корпусами), что практически сразу же запоминаются наизусть, нет необходимости каждый раз использовать справочник.

Цветовая маркировка используется для пластиковых диодов, например, для SOT-23. Твердый корпус модуля имеет два гибких вывода. На самом корпусе, рядом с вышеописанной полосочкой, дописываются таким же цветом несколько цифр, разделенных латинской буквой. Обычно запись имеет вид 1V3, 9V0 и так далее, разнообразие позволяет подобрать любые параметры по обозначению, как и в SMD.

Что же значит эта кодовая маркировка? Она показывает напряжение стабилизации, на которое рассчитан данный элемент. К примеру, 1V3 показывает нам, что это значение равно 1.3 В, второй же вариант – 9 вольт. Обычно чем больше сам корпус, тем большим стабилизирующим свойством он обладает. На фото ниже показан стабилитрон в стеклянном корпусе с маркировкой катода 5.1 В

Маркированный стабилитрон

Порядок проверки

Основной тест — это проверка стабилитрона по состоянию его перехода. Для определения напряжения стабилитрона, может быть проведен более полный тест, но для этого требуются некоторые дополнительные устройства в качестве источника БП.

Чтобы диагностировать DZ на работоспособность, мультиметр применяют в режиме замера сопротивления, либо в режиме тестирования диодов. Технология замеров аналогична диодам:

  1. К выводам DZ приставляют щупы, и проверяют показания на шкале индикации.
  2. Измерения проводят сначала в прямом направление, прикладывая «+» к катоду, а потом в обратном направлении, прикладывая к аноду DZ.
  3. В первом случае, прибор определяет бесконечное сопротивление, а во втором — единицы и десятки Ом. Это свидетельствует об исправности DZ.
  4. Как и в случае с обычным диодом, при прямой поляризации необходимо считывать низкое сопротивление или обрыв цепи.
  5. При обратной поляризации необходимо считывать высокое сопротивление.
  6. Диоды с низким сопротивлением или обрывом в обоих тестах закорочены. Диоды с высоким сопротивлением в обоих тестах разомкнуты. Обратное сопротивление между 20 кОм и 200 кОм указывает на поломку, а выше на исправность .
  7. Когда в результате замеров сопротивления в обоих направлениях достигает бесконечности, это свидетельствует об обрыве PN-перехода.

Это простейший тест, в котором проверяется только состояние PN-перехода. Он показывает, целостный ли компонент или закорочен. Пользователь ничего не сможет узнать о напряжении стабилитрона, рассеивании или других важных характеристиках.

Как проверить стабилитрон, не выпаивая из платы

Можно выполнить частичную проверку стабилитрона мультиметром, не выпаивая из схемы, поскольку он электрически связан с другими компонентами платы. В связи с этим, диагностировать его на пробой в таким состоянии невозможно.

Фактически, можно прозвонить DZ мультиметром на плате только по параметру стабильности напряжения питания. Для этого предварительно нужно знать исходное значение напряжения по его марке. После этого включают тестер и соединяют щупы с выводами стабилитрона. Если в ходе измерений получится напряжение, равное или выше паспортного значения напряжения DZ, то стабилитрон исправен.

Как протестировать двусторонний стабилитрон

В бытовых приборах разного назначения часто используют двухсторонние стабилитроны, которые выполнены из 2-х стабилитронов в одном корпусе, направленных навстречу друг другу.

Такой стабилитрон способен одинаково хорошо функционировать, как с импульсным напряжением, так и с переменной полярностью. Выполнение проверки на пробой у этой модели стабилитрона лишена смысла. По этой причине их можно тестировать исключительно на соответствие напряжения .

Частные случаи прозвонки

В некоторых случаях мультиметр, при испытании рабочего диода Зенера в режиме замера сопротивления при обратной полярности, демонстрирует величину, существенно отличающуюся от ожидаемого показателя. Это происходит в том случае, когда внутренний источник электропитания, больше напряжение стабилизации DZ. Это объясняется тем, что он будет снижать свое внутреннее сопротивление до того времени, пока не будет достигнуто напряжения стабилизации. Этот факт требуется учитывать при выполнении тестирования стабилитронов.

Иногда, при прозвонке тестер демонстрирует значительное сопротивление, как при прямом, так и при обратном потенциале. Это может случаться, когда применяется двуханодная конструкция стабилитрона, для которого показатель полярности не имеет существенного значения. Для того, чтобы проверить такой стабилитрон, напряжение должно быть выше стабилизирующего. Одновременно потребуется поменять полярность. Измеряя токи, протекающие через DZ и сопоставляя VA-характеристики тестируемого, определяют его работоспособность.

Зачем нужен стабилитрон

Он несколько схож с диодом, визуально, в стеклянном и металлическом исполнении, и относится он к полупроводниковым приборам. Выводы данного устройства, называются аналогично, анод и катод, хотя его задача несколько иная.

Немного вспомним про назначение стабилитрона, он стабилизирует напряжение в электронных схемах. Диод Зенера, это его изначальное название, работает в режиме пробоя. Подписывается на принципиальной схеме как VD, включение производится катодом к плюсу.

Проверка стабилитрона мультиметром

Проверка мультиметром стабилитрона, абсолютно идентична проверки диода. В рабочем состоянии он не должен пропускать ток в обе стороны, так же, не должно быть короткого замыкания при его проверке.

Устанавливаем на приборе режим измерения сопротивления или проверки диодов, прикладываем плюсовой щуп на катод, который с полоской, должно показывать бесконечное сопротивление. Поменяли щупы местами, на дисплее отображается некоторое сопротивление (падение напряжения).

Проверяем мультиметром стабилитрон 1N49471А

Напомню, этот стабилитрон на номинальное напряжение 24 вольта, подавая на его напряжение от 22,8 до 25,2 вольт, он всё равно выдаст 24. Производим действия, описанные выше. При прямом включении стабилитрона, это когда плюс к аноду, присутствует некоторое сопротивление. Меняем щупы, нет показание, сопротивление огромное, стабилитрон, скорее всего рабочий.

Дать сто процентную гарантию невозможно при данном способе проверки. Как его проверить наверняка и узнать какое у него напряжение стабилизации, если номинал не указан? Я рассказу в следующем уроке.

Внешне стабилитрон похож на диод, выпускается в стеклянном и металлическом корпусе. Его главное свойство заключается в сохранении постоянного напряжения на своих выводах при достижении определенного потенциала. Это наблюдается у него при достижении напряжения туннельного пробоя.

Обычные диоды при таких значениях быстро доходят до теплового пробоя и перегорают. Стабилитроны, их еще называют диодами Зенера, в режиме туннельного или лавинного пробоя могут находиться постоянно, без вреда для себя, не доходя до теплового пробоя. Прибор изготавливается из монокристаллического кремния, в электронной аппаратуре выступает как стабилизатор или опорное напряжение. Высоковольтные защищают от перенапряжений, интегральные стабилитроны со скрытой структурой используются в качестве эталонного напряжения в аналого-цифровых преобразователях.

Немного подробнее о модуле и принципе его работы

Это полупроводниковый диод, который имеет свойство выдавать определенное значение напряжения вне зависимости от подаваемого на него тока. Это утверждение не является до конца верным абсолютно для всех вариантов, потому что разные модели имеют разные характеристики. Если подать очень сильный ток на не рассчитанный для этого модуль SMD (или любой другой тип), он попросту сгорит. Поэтому подключение выполняется после установки токоограничивающего резистора в качестве предохранителя, значение выходного тока которого равняется максимально возможному значению входного тока на стабилизатор.

Он очень похож на обыкновенный полупроводниковый диод, но имеет отличительную черту – его подключение выполняется наоборот. То есть минус от источника питания подается на анод стабилитрона, а плюс – на катод. Таким образом, создается эффект обратной ветви, который и обеспечивает его свойства.

Похожим модулем является стабистор – он подключается напрямую, без предохранителя. Используется в тех случаях, когда параметры входного электричества точно известны и не колеблются, а на выходе получается тоже точное значение.

Немного теории

Стабильная зарплата, стабильная жизнь, стабильное государство. Последнее не про Россию, конечно :-). Если глянуть в толковый словарик, то можно толково разобрать, что же такое “стабильность”. На первых строчках Яндекс мне сразу выдал обозначение этого слова: стабильный – это значит постоянный, устойчивый, не изменяющийся. Но чаще всего этот термин используется именно в электронике и электротехнике. В электронике очень важны постоянные значения какого-либо параметра. Это может быть сила тока, напряжение, частота сигнала и другие его характеристики. Отклонение сигнала от какого-либо заданного параметра может привести к неправильной работе радиоэлектронной аппаратуры и даже к ее поломке

Поэтому, в электронике очень важно, чтобы все стабильно работало и не давало сбоев

В электронике и электротехнике стабилизируют напряжение. От значения напряжения зависит работа радиоэлектронной аппаратуры. Если оно изменится в меньшую, или даже еще хуже, в большую сторону, то аппаратура в первом случае может неправильно работать, а во втором случае и вовсе колыхнуть ярким пламенем.

Для того, чтобы не допустить взлетов и падения напряжения, были изобретены различные стабилизаторы напряжения. Как вы поняли из словосочетания, они используются чтобы стабилизировать “играющее” напряжение.

Работа схемы стабилизатора

Электрические устройства, которые не чувствительны небольшим перепадам напряжения питания могут обойтись обычным блоком питания. А более капризные приборы уже не смогут работать без стабильного питания, и могут попросту сгореть. Поэтому есть необходимость во вспомогательной схеме выравнивания напряжения на выходе.

Рассмотрим схему работы простого стабилизатора, выравнивающего постоянное напряжение, на транзисторе и стабилитроне, который играет роль основного элемента, определяет, выравнивает напряжение на выходе блока питания.

Перейдем к конкретному рассмотрению электрической схемы обычного стабилизатора для выравнивания постоянного напряжения.

  • Имеется трансформатор для понижения напряжения с переменным напряжением на выходе 12 В.
  • Такое напряжение поступает на вход схемы, а конкретнее, на диодный выпрямительный мост, а также фильтр, выполненный на конденсаторе.
  • Выпрямитель, выполненный на основе диодного моста, преобразует переменный ток в постоянный, однако получается скачкообразная величина напряжения.
  • Полупроводниковые диоды должны работать на наибольшей силе тока с резервом 25%. Такой ток может создавать блок питания.
  • Обратное напряжение не должно снижаться меньше, чем выходное напряжение.
  • Конденсатор, играющий роль своеобразного фильтра, выравнивает эти перепады питания, преобразуя форму напряжения в практически идеальную форму графика. Емкость конденсатора должна находиться в пределах 1-10 тысяч мкФ. Напряжение должно быть тоже выше входной величины.

Советуем изучить — Что такое шинопровод, где и как используются, виды шинопроводов

Нельзя забывать о следующем эффекте, что после электролитического конденсатора (фильтра) и диодного выпрямительного моста переменное напряжение повышается на величину около 18%. А значит, что в результате получается не 12 В на выходе, а около 14,5 В.

Применение стабилитрона

Диод Зенера в основном используется в коммерческих и промышленных применениях. Ниже приведены основные применения стабилитрона:

В качестве стабилизатора напряжения — стабилитрон используется для регулирования напряжения. Он обеспечивает постоянное напряжение от источника напряжения к нагрузке. Стабилитрон подключается параллельно нагрузке и поддерживает постоянное напряжение UZ и, следовательно, стабилизирует напряжение.

Для защиты измерителя — стабилитрон обычно используется в мультиметрах для защиты измерителя от случайных перегрузок. Измерительный элемент подключен параллельно с диодом Зенера. Когда в цепи происходит перегрузка, большая часть тока проходит через стабилитрон. Таким образом, измерительный элемент защищается от повреждений.

Для формирования сигнала — стабилитрон используется для преобразования синусоидальной волны в прямоугольную. Это можно сделать, подключив два стабилитрона встречно последовательно с сопротивлением.

Когда напряжение, подаваемое на нагрузку, меньше напряжения пробоя стабилитрона, диод Зенера имеет высокое внутреннее сопротивление, что эквивалентно разрыву электрической сети (разомкнутый контакт) и ток протекает только через нагрузку. Когда напряжение становится больше напряжения пробоя стабилитрона, сопротивление стабилитрона резко снижается, что является аналогом короткого замыкания (контакт замкнут) и
ток протекает через стабилитрон, а не через нагрузку. Из-за чего происходит сильное падение напряжения в цепи, после падения напряжения в цепи ниже напряжения пробоя стабилитрона, сопротивление диода Зенера восстанавливается и ток перестает протекать через него. Таким образом, осуществляется защита чувствительных элементов электрической цепи от перенапряжения.

Параметрический стабилизатор – основные параметры

В маломощных схемах на нагрузку до 20 миллиампер применяется устройство с малым коэффициентом действия, и называется параметрическим стабилизатором. В устройстве таких приборов имеются транзисторы, стабилитроны и стабисторы.

Они применяются в основном в компенсационных устройствах стабилизации в качестве опорных источников питания. Параметрические стабилизаторы в зависимости от технических данных могут быть 1-каскадными, мостовыми и многокаскадными.

Стабилитрон в устройстве прибора подобен подключенному диоду. Но обратный пробой напряжения больше подходит для стабилитрона и является базой его нормальной работы. Эта характеристика нашла популярность для разных схем, где необходимо создавать ограничение сигнала входа по напряжению.

Такие стабилизаторы являются быстродействующими приборами, и защищают участки с повышенной чувствительностью от импульсных помех. Применение таких элементов в новых схемах является показателем их повышенного качества, которое обеспечивает постоянное функционирование в разных режимах.

Схема стабилизатора

Базой этого прибора является схема подключения стабилитрона, применяющаяся и в других видах приборов вместо источника питания.

Схема включает в себя делитель напряжения из балластного сопротивления и стабилитрона, к которому параллельно подключена нагрузка. Устройство выравнивает напряжение на выходе при переменном питании и нагрузочном токе.

Действие схемы происходит следующим образом. Напряжение, повышающееся на входе прибора, вызывает повышение тока, который проходит через сопротивление R1 и стабилитрон VD.

На стабилитроне напряжение остается постоянным из-за его вольтамперной характеристики. Поэтому не меняется и напряжение на нагрузке. В итоге все преобразованное напряжение будет приходить на сопротивление R1.

Такой принцип действия схемы позволяет сделать расчет всех параметров.

Принцип действия стабилитрона

Если стабилитрон сравнивать с диодом, то при подключении диода в прямом направлении по нему может проходить обратный ток, который имеет незначительную величину в несколько микроампер.

При повышении обратного напряжения до некоторой величины возникнет пробой электрический, а если ток очень велик, то произойдет и тепловой пробой, поэтому диод выйдет из строя.

Конечно, диод может работать при электрическом пробое при снижении тока, проходящего через диод.

Стабилитрон спроектирован так, что его характеристика на участке пробоя имеет повышенную линейность, а разность потенциалов пробоя достаточно стабильна. Стабилизация напряжения с помощью стабилитрона выполняется при его функционировании на обратной ветви свойства тока и напряжения, а на прямой ветке графика стабилитрон работает как обычный диод. На схеме стабилитрон обозначается:

Параметры стабилитрона

Его главные параметры можно увидеть по характеристике напряжения и тока.

  • Напряжение стабилизации является напряжением на стабилитроне при прохождении тока стабилизации. Сегодня производятся стабилитроны с таким параметром, равным 0,7-200 вольт.
  • Наибольший допустимый ток стабилизации. Он ограничен величиной наибольшей допустимой мощности рассеивания, которая зависит от температуры внешней среды.
  • Наименьший ток стабилизации, рассчитывается наименьшей величиной тока, протекающего через стабилитрон, при этом сохраняется действие стабилизатора.
  • Дифференциальное сопротивление – это величина, равная отношению приращения напряжения к малому приращению тока.

Стабилитрон, подключенный в схеме как простой диод в прямом направлении, характеризуется величинами постоянного напряжения и наибольшим допустимым прямым током.

Что это такое

В литературе дается следующее определение:

Стабилитрон или диод Зенера это прибор, предназначенный для стабилизации напряжения в электрических цепях. Работает при обратном смещении в режиме пробоя. До наступления пробоя имеет высокое сопротивление перехода. Протекающие при этом токи незначительны. Широко используются в электронике и в электротехнике.

Если говорить простыми словами, то стабилитрон предназначен для стабилизации напряжения в электронных схемах. В цепь он включается в обратном направлении. При достижении напряжения, превышающего напряжение стабилизации, происходит обратимый электрический пробой pn-перехода. Как только оно понизится до номинала, пробой прекращается, и стабилитрон закрывается.

Советуем изучить — Технология пайки

На нижеприведенном рисунке представлена графическая схема для чайников, позволяющая понять принцип действия диода Зенера.

Основными преимуществами является невысокая стоимость и небольшие габариты. Промышленность выпускает устройства с напряжением стабилизации о 1,8 — 400 В в металлических, керамических или корпусах из стекла. Это зависит от мощности, на которую рассчитан стабилитрон и других характеристик.

Для стабилизации высоковольтного напряжения от 0,4 до нескольких десятков кВ, применяются стабилитроны тлеющего разряда. Они имеют стеклянный корпус и до появления полупроводниковых приборов применялись в параметрических стабилизаторах.

Аналогичными свойствами обладают приборы, меняющие свое сопротивление в зависимости от приложенного напряжения – это варисторы. Между стабилитроном и варистором разница заключается в том, что последний обладает двунаправленными симметричными характеристиками. А это значит, что в отличие от диодов, он не имеет полярности. Кратко варистор предназначен для обеспечения защиты от перенапряжения электронных схем.

Для предохранения аппаратуры от скачков напряжения применяют супрессоры. Между стабилитроном и супрессором отличия заключаются в том, что первый постепенно изменяет свое внутреннее сопротивление в зависимости от приложенного напряжения. Второй при достижении определенного порога напряжения открывается сразу. Т.е. его внутреннее сопротивление стремится к нулю. Основное назначение супрессоров — защита аппаратуры от скачков питания.

На рисунке ниже представлено условно графическое обозначение (УГО по ГОСТ) полупроводника и его вольт-амперная характеристика.

На рисунке цифрами указан участок 1-2. Он является рабочим и предназначен для стабилизации напряжения в цепях. Если прибор включить в прямом направлении, то он будет работать как обычный диод.

Рекомендуем посмотреть следующий видеоролик, чтобы подробнее изучить принцип действия стабилитрона, обозначение элементов и область их применения.

Немного теории

Стабильная зарплата, стабильная жизнь, стабильное государство. Последнее не про Россию, конечно :-).  Если глянуть в толковый словарик, то можно толково разобрать, что же такое “стабильность”. На первых строчках Яндекс мне сразу выдал обозначение этого слова: стабильный – это значит постоянный, устойчивый, не изменяющийся.

Но чаще всего этот термин используется именно в электронике и электротехнике. В электронике очень важны постоянные значения какого-либо параметра. Это может быть сила тока, напряжение, частота сигнала и другие его характеристики. Отклонение сигнала от какого-либо заданного параметра может привести к неправильной работе радиоэлектронной аппаратуры и даже к ее поломке

Поэтому, в электронике очень важно, чтобы все стабильно работало и не давало сбоев

В электронике и электротехнике стабилизируют напряжение. От значения напряжения зависит работа  радиоэлектронной аппаратуры.  Если оно изменится в меньшую,  или даже еще хуже, в большую сторону, то аппаратура  в первом случае может неправильно работать, а во втором случае и вовсе колыхнуть ярким пламенем.

Для того, чтобы не допустить взлетов и падения напряжения, были изобретены различные стабилизаторы напряжения. Как вы поняли из словосочетания, они используются чтобы стабилизировать “играющее” напряжение.

Как определить номинал стабилитрона

Всех приветствую на станицах сайта посвящённых электроники, сегодня изучим способ, как определить номинал стабилитрона. Это статья немного дополняет предыдущую, не менее важную страницу. Для определения рабочего напряжения стабилитрона, маркировка которого не вида, затёрта или просто очень мелко написана, задача выполнимая любому начинающему ремонтнику электроники.

Как узнать напряжение стабилизации неизвестного стабилитрона

Перебирая скопившиеся радиоэлементы, я набрал внушительное количество стабилитронов, некоторые были без опознавательных знаков. Подобная незадача и подтолкнула, написаю данной инструкции. Для внесения порядка на рабочем столе. Сегодня рассмотрим пару способом определения номинала стабилитрона.

Устройство для определения напряжения стабилизации неизвестного стабилитрона

Схема данного устройства, очень проста в использовании и изготовлении, сейчас поясню принцип её работы.Для этого нам необходимо, блок питания с регулировкой напряжения и его индикации, если такого нет в наличии, ниже рассмотрим способ проверки без него. Плюс ко всему необходим ограничительный резистор номиналом от 1 до 2 кОм и соединительные провода.

На фото все видно наглядно, к блоку питания с регулировкой последовательно подключается ограничительный резистор соответствующего номинала, далее подключаем сам испытуемый стабилитрон, катодом к плюсу. После, замыкаем цепь на отрицательный вывод блока питания. Параллельно неизвестному стабилитрону, подключаем мультиметр в режиме измерения напряжения.

Будет очень хорошо, если ваш лабораторный блок питания имеет встроенную защиту от короткого замыкания, в некоторых случаях это, спасёт вас от лишнего ремонта. Начинаем потихоньку, добавлять выходное напряжение, и смотрим за изменением на дисплее мультиметра.

Для определения напряжения стабилитрона, мы возьмём 1N4742A очень распространённая модель. Для любопытных, его аналогом является С12 5Т, они стабилизируют 12 вольт. Подключаем всё согласно схеме и регулируем источник питания, мой имеет придел 14 вольт. Всё работает отлично и небольшими погрешностями приборов, но в целом всё нормально.

Подобным способом можно проверить любой стабилитрон, насколько вам позволит выбранный источник питания. Способ действительно хороший и простой.

Как узнать, насколько стабилитрон без регулируемого блока питания

Это действительно сложнее, но в некоторых случаях под силу. Можно использовать зарядное устройство для сотового телефона, или зарядку от видео регистратора, зарядное устройство для автомобильного аккумулятора. Но лучше всего, иметь в наличии несколько батареек, из них постепенно собираем батарею и меряем напряжение на них и сравниваем с напряжением на стабилитроне, бюджетный вариант, но рабочий. Главное условие, без мультиметра, не обойтись. Интересуйтесь подобными вопросами, и сложности станут под силу.

Сегодня мы научились способам, как определить номинал стабилитрона, у кого есть соображения поэтому и другим вопросам, пишите, все почитаем и обсудим.

energytik.net

Заключение

Раньше, во времена дефицитных деталей и начала расцвета электроники, стабилитрон часто использовался, как ни странно, для стабилизации выходного напряжения блока питания. В старых советских книгах по электронике можно увидеть вот такой участок цепи различных источников питания:

Слева, в красной рамке, я пометил знакомый вам участок цепи блока питания. Здесь мы получаем постоянное напряжение из переменного. Справа же, в зеленой рамке, схема стабилизации ;-).

В настоящее время трехвыводные (интегральные) стабилизаторы напряжения вытесняют стабилизаторы на стабилитронах, так как они в разы лучше стабилизируют напряжение и обладают хорошей мощностью рассеивания.

На Али можно взять сразу целый набор стабилитронов, начиная от 3,3 Вольт и до 30 Вольт.  Выбирайте на ваш вкус и цвет.

Можете посмотреть видео на тему “КАК РАБОТАЕТ СТАБИЛИТРОН (ДИОД ЗЕНЕРА)”, рекомендую.