Интегральный стабилизатор 7805: описание, примеры подключения

Оглавление

Характеристики стабилизатора L7805CV, его аналоги

Основные параметры стабилизатора L7805CV:

  1. Входное напряжение — от 7 до 25 В;
  2. Рассеиваемая мощность — 15 Вт;
  3. Выходное напряжение — 4,75…5,25 В;
  4. Выходной ток — до 1,5 А.

Характеристика микросхемы приведена в таблице ниже, данные значения справедливы при условии соблюдения некоторых условий. А именно температура микросхемы находится в пределах от 0 до 125 градусов Цельсия, входном напряжении 10 В, выходном токе 500 мА (если иное не оговорено в условиях, колонка Test conditions), и стандартном обвесе конденсаторами по входу 0,33 мкФ и по выходу 0,1 мкФ.

Из таблицы видно, что стабилизатор прекрасно себя ведет при питании на входе от 7 до 20 В и на выходе будет стабильно выдаваться от 4,75 до 5,25 В. С другой стороны, подача более высоких значений приводит к уже более значительному разбросу выходных значений, поэтому выше 25 В не рекомендуется, а понижение по входу менее 7 В , вообще, приведет к отсутствию напряжения на выходе стабилизатора.

При работе на больших нагрузках, более 5 Вт, на микросхему необходимо установить радиатор во избежания перегрева стабилизатора, конструкция позволяет это сделать без каких-либо вопросов. Для более точной (прецизионной) техники, естественно, такой стабилизатор не подходит, т.к. имеет значительный разброс номинального напряжения при изменении входного напряжения.

Так как стабилизатор линейный, использовать его в мощных схемах бессмысленно, потребуется стабилизация, построенная на широтно-импульсном моделировании, но для питания небольших устройств, как телефонов, детских игрушек, магнитол и прочих гаджетов, вполне пригоден L7805. Аналог отечественный — КР142ЕН5А или в простонародье «КРЕНКА». По стоимости аналог также находится в одной категории.

Устройства, которые входят в схему блока питания, и поддерживают стабильное выходное напряжение, называются стабилизаторами напряжения. Эти устройства рассчитаны на фиксированные значения напряжения выхода: 5, 9 или 12 вольт. Но существуют устройства с наличием регулировки. В них можно установить желаемое напряжение в определенных доступных пределах.

Большинство стабилизаторов предназначены на определенный наибольший ток, который они выдерживают. Если превысить эту величину, то стабилизатор выйдет из строя. Инновационные стабилизаторы оснащены блокировкой по току, обеспечивающей выключение устройства при достижении наибольшего тока в нагрузке и защищены от перегрева. Вместе со стабилизаторами, которые поддерживают положительное значение напряжения, есть и устройства, действующие с отрицательным напряжением. Они применяются в двухполярных блоках питания.

Стабилизатор 7805 изготовлен в корпусе, подобном транзистору. На рисунке видны три вывода. Он рассчитан на напряжение 5 вольт и ток 1 ампер. В корпусе есть отверстие для фиксации стабилизатора к радиатору. Модель 7805 является устройством положительного напряжения.

Зеркальное отображение этого стабилизатора — это его аналог 7905, предназначенный для отрицательного напряжения. На корпусе будет положительное напряжение, на вход поступит отрицательное значение. С выхода снимается -5 В. Чтобы стабилизаторы работали в нормальном режиме, нужно подавать на вход 10 вольт.

Характеристики стабилизатора L7805CV, его аналоги

Основные параметры
стабилизатора L7805CV:

  1. Входное напряжение — от 7 до 25 В;
  2. Рассеиваемая мощность — 15 Вт;
  3. Выходное напряжение — 4,75…5,25 В;
  4. Выходной ток — до 1,5 А.

Характеристика микросхемы
приведена в таблице ниже, данные значения справедливы при условии соблюдения некоторых условий. А именно температура микросхемы находится в пределах от 0 до 125 градусов Цельсия, входном напряжении 10 В, выходном токе 500 мА (если иное не оговорено в условиях, колонка Test conditions), и стандартном обвесе конденсаторами по входу 0,33 мкФ и по выходу 0,1 мкФ.

Из таблицы видно, что стабилизатор прекрасно себя ведет при питании на входе от 7 до 20 В и на выходе будет стабильно выдаваться от 4,75 до 5,25 В. С другой стороны, подача более высоких значений приводит к уже более значительному разбросу выходных значений, поэтому выше 25 В не рекомендуется, а понижение по входу менее 7 В, вообще, приведет к отсутствию напряжения на выходе стабилизатора.

Так как стабилизатор линейный, использовать его в мощных схемах бессмысленно, потребуется стабилизация, построенная на широтно-импульсном моделировании, но для питания небольших устройств
, как телефонов, детских игрушек, магнитол и прочих гаджетов, вполне пригоден L7805. Аналог отечественный — КР142ЕН5А или в простонародье «КРЕНКА». По стоимости аналог также находится в одной категории.

Рис.1

Недавно нашел в закромах интересный стабилизатор напряжения 7805UC (аналог UA7805) в корпусе TO-220 рис.1, который когда-то использовался в игровой приставке. Нарыл в Интернете даташит на сей девайс: регулятор обеспечивает стабильное выходное напряжение в пределах 4.8 до 5.2В и ток 1.5А при входном напряжении от 7 до 25В; рабочие температуры от 0 до 125 о С; выходное сопротивление 0.017 Ом. 7805UC может обеспечить пиковые нагрузки по току 2.2А.
В регуляторе реализована возможность управления переменным напряжением (положительное импульсное напряжение) в пределах от 10Гц до 100кГц с малым коэффициентом шумов — 40 мкВ.
Стабилизатор имеет внутренний ограничитель тока при коротком замыкании, а также защиту при тепловой перегрузке. Я думаю это позволит создать хороший лабораторный блок питания (БП), либо стабилизированный блок на напряжение 5В для устройств используемые в условиях в неприемлемых для большинства БП. Особенно если напряжение в сети любит скакать от 150 до 250В. В таких условиях не все БП смогут выдавать рассчитанное напряжение, когда входное напряжение с понижающего трансформатора может плавать от 7 до 20В.

Рис.2

На рис.2 приведена внутренняя архитектура микросхемы. Богатая начинка позволяет обходится скромной обвязкой — это экономит деньги, время и размеры при сборке.

рис.3
типовая схема с фиксированным напряжением и рис.4
регулируемая схема

Типовая схема подключения отображена на рис.3. Регулируемый вариант на рис.4

Рис.5

Блок питание на основе 7805UC рис.5. Необходим понижающий трансформатор ТР1 на 7..25В с выходным током 1-1.5А. Высоковольтный выключатель (1А) и предохранитель 0.5А. Для диодного моста рекомендую использовать 4 диода КД226А, каждый рассчитан на 2А, отказоустойчивые. Конденсаторы С1 и С2 электролитные для напряжения 15В. С1 100мкФх15В первичный фильтр — компенсирует импульсные скачки напряжения от трансформатора. Стабилизатор может сильно греться и необходимо установить радиатор, который будет рассеивать лишнее тепло (чем больше, тем лучше).

Характеристики стабилизаторов

Какое же напряжение подавать, чтобы стабилизатор работал как надо? Для этого ищем даташит на стабилизаторы и внимательно изучаем. Нас интересуют вот эти характеристики:

Output voltage – выходное напряжение

Input voltage – входное  напряжение

Ищем наш 7805. Он выдает нам выходное напряжение 5 Вольт. Желательным входным напряжением производители отметили напряжение в 10 Вольт. Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено.

Для электронных безделушек доли вольт не ощущаются, но для прецизионной (точной) аппаратуры лучше все таки собирать свои схемы. Здесь мы видим, что стабилизатор 7805 может нам выдать одно из напряжений диапазона 4,75 – 5,25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать 1 Ампера. Нестабилизированное постоянное напряжение может “колыхаться” в диапазоне от 7,5  и до 20 Вольт, при это на выходе будет всегда 5 Вольт.

Рассеиваемая мощность на стабилизаторе может достигать до 15 Ватт – это приличное значение для такой маленькой радиодетали. Поэтому, если нагрузка на выходе такого стабилизатора будет кушать приличный ток, думаю, стоит подумать об  охлаждении стабилизатора. Для этого ее надо посадить через пасту КПТ на радиатор. Чем больше ток на выходе стабилизатора, тем больше по габаритам должен быть радиатор. Было бы вообще идеально, если бы радиатор еще обдувался вентилятором.

Разновидности импульсных стабилизаторов

Все стабилизирующие устройства импульсного типа по типу управления можно поделить на такие группы:

  • Ключевой с триггером Шмитта;
  • Ключевой с широтно-импульсной модуляцией;
  • С частотно-импульсной модуляцией.

С триггером Шмитта

Импульсный стабилизатор напряжения, схема которого приведена ниже, содержит в себе инвертирующий триггер Шмитта, и еще известен как релейный, или стабилизатор с двухпозиционным регулированием.

Триггер содержит в себе компаратор, который сравнивает значение напряжения в емкости с  максимально и минимально допустимыми значениями. Если показатель находится в допустимых пределах – положение ключа неизменно, как только достигается критическое значение – ключ изменяет положение. Этот процесс протекает циклично.

С ШИМ-модуляцией

Все работает так же, как и в предыдущей схеме, однако есть еще усилитель, генератор и модулятор. Модулятор сравнивает данные накопителя с опорным вольтажом, и при необходимости усиливает разность, поступающую на модулятор. Таким образом, регулируется время открытия или закрытия ключа (продолжительность импульса).

В подобной схеме частота преобразования не зависит от тока и напряжения на входе, а определяется лишь частотами на тактовом генераторе.

С частотно-импульсной модуляцией

В таком варианте исполнения прибора, импульс открытия ключа имеет постоянную длительность, а вот частота следования самих импульсов уже зависит от разности между опорным  выходным напряжением. Допустим, вырос ток на потребителе, или наоборот – упало входное напряжение – в таком случае вырастет и частота импульсов стабилизации.

В таких приборах ключ зачастую управляется мультивибратором с управляемой частотой.

По разновидностям силовой части стабилизатора выделяют такие схемы импульсных стабилизаторов:

  • Понижающий;
  • Повышающий;
  • Инвертирующий.

Понижающий

Это довольно надежные устройства, постоянно имеющие на выходе вольтаж меньше, чем на входе. Простейшая схема импульсного стабилизатора напряжения на на 12 В показана ниже:

При подаче управляющего напряжения, транзистор переходит в режим насыщения, ток движется по цепи от плюса по дросселю к нагрузке. При отключении управляющего  сигнала – транзистор закрывается, и переходит в режим отсечки. И снова при подаче отпирающего напряжения открывается ключ – весь цикл повторяется.

Повышающий

Данная схема используется там, где разность потенциалов нагрузки значительно выше, чем вольтаж на входе. Когда транзистор включен в режим насыщения, так идет от плюса по дросселю к транзистору. При отключении управляющего напряжения на транзисторе, и на дросселе возникает ЭДС самоиндукции.

Получится, что она подключена последовательно с входящим током, и через диод коммутирована с нагрузкой.  Таким образом, получается, что магнитное поле дросселя продуцирует энергию, а емкость накапливает заряд для выдачи тока на потребителя, когда транзистор перейдет в режим насыщения. Выходит, что в данной схеме дроссель служит резервной емкостью для сглаживания скачков и просадок.

Инвертирующий

Как понятно из названия, этот тип стабилизатора может, как понижать, так и повышать показатели сети относительно входящих значений. Схема, по сути, повторяет предыдущую, за тем отличием, что диод с сопротивлением и емкостью подключаются параллельно дросселю, а не ключу. Амплитуда пульсаций в таком варианте устройства зависит от емкости конденсатора, а дроссель в данной схеме уже не является частью фильтра.

Есть еще один вид устройств – регулируемый импульсный стабилизатор напряжения. В таком приборе выходящий ток обычно регулируется при помощи изменяемого сопротивления, или реостата. Благодаря возможности настройки, такой тип стабилизаторов можно использовать для питания потребителей с разным напряжением – достаточно лишь правильно подобрать номинал резистора.

Важно знать, что все перечисленные выше устройства призваны стабилизировать показатели сети только при работе с постоянным током, к примеру, такой импульсный стабилизатор напряжения на 12 Вольт отлично подойдет для бортовой сети автомобиля. Но если прибор планируется применять в бытовой сети с переменным током, то в схему обязательно нужно вносить изменения – ставить выпрямитель, а также фильтр сглаживания

Еще один нюанс – возникновение высокочастотных помех при стабилизации. Чтобы минимизировать этот эффект, необходимо использовать фильтры, причем как на входе, так и на выходе стабилизирующего прибора.

Характеристики

Типовая схема интегрального стабилизатора состоит из следующих элементов:

  • источника опорного напряжения;
  • усилителя ошибки;
  • включённых между источником и нагрузкой элементов регулировки;
  • схему выключения устройства при подачи сигнала извне;
  • транзистора для защиты от короткого замыкания или перегрузки.

Интегральные микросхемы стабилизаторов представляют собой функционально завершённые устройства и имеют всего три внешних вывода: входной, выходной и заземление. Данные микросхемы производятся для фиксированных значений напряжения от 5 до 24 В и нагрузки до 1 А.

Стабилизационные устройства на ИМС обеспечиваются встроенными схемами, ограничивающими выходной ток, а также схемой защиты от перегрузок по температуре.

Какие существуют аналоги

Для некоторых приборов серии 142 существуют полные зарубежные аналоги:

Полный аналог означает, что микросхемы совпадают по электрическим характеристикам, по корпусу и расположению выводов. Но существуют еще и функциональные аналоги, которые во многих случаях замещают проектную микросхему. Так, 142ЕН5А в планарном корпусе не является полным аналогом 7805, но по характеристикам ей соответствует. Поэтому, если есть возможность установить один корпус вместо другого, то такая замена не ухудшит качество работы всего устройства.

Другая ситуация – КРЕН8Г в «транзисторном» исполнении не считается аналогом 7809 из-за того, что имеет меньший ток стабилизации (1 ампер против 1,5). Если это не критично и фактический потребляемый ток по цепи питания меньше 1 А (с запасом), то смело можно менять LM7809 на КР142ЕН8Г. И в каждом конкретном случае всегда надо прибегать к помощи справочника – зачастую можно подобрать что-то похожее по функционалу.

L7805-CV линейный стабилизатор постоянного напряжения

L7805-CV — практически для любого радиолюбителя собрать источник питания со стабилизирующим выходным напряжением на микросхеме 7805 и аналогичных из этой серии, не представляет никакой сложности. Именно об этом линейном регуляторе входного постоянного напряжения пойдет речь в данном материале.

На рисунке выше, представлена типичная схема линейного стабилизатора L7805 с положительной полярностью 5v и номинальным рабочим током 1.5А. Данные микросхемы приобрели такую известность, что за их производство взялись большинство мировых компаний. А вот на снимке ниже, представлена схема немного усовершенствованная, за счет увеличения емкости конденсаторов С1-С2.

Как правило, между радиотехниками и электронщиками этот чип называют сокращенно, не называя впереди стоящих буквенных обозначений указывающих на производителя. Ведь и так понятно для каждого, что это — стабилизатор, последняя цифра, которого указывает его напряжение на выходе.

Кто еще не сталкивался с данными электронными компонентами на практике и мало, что о них знает, то вот вам для наглядности небольшое видео по сборке схемы:

Стабилизатор напряжения 5v! На микросхеме L7805CV

Одно из важных условий — высокое качество компонентов

На самом деле при покупке комплектующих изготовитель играет значительную роль

Когда вы приобретаете любые электронные компоненты, всегда обращайте внимание на бренд детали, а также поинтересуйтесь кто их поставляет. Лично меня устраивает продукция компании «STMicroelectronics», производителя микроэлектронных компонентов

Безымянные стабилизаторы или от мало известных фирм, как правило всегда стоят дешевле, чем аналогичные от известных брендов. Но и качество таких деталей не всегда на должном уровне, особенно сказывается в их работе существенный разброс напряжения на выходе.

Практически мне много раз попадались микросхемы L7805 выдававшие выходное напряжение в пределах 4,6v, вместо 5v, а другие из этой же серии давали наоборот больше — 5,3v. К тому же, такие образцы частенько могут создавать приличный фон и повышенное потребление мощности.

Схема источника тока выполненная на микросхемах из серии L78xx

Значение выходного тока обусловлено постоянным резистором R*, включенным параллельно с конденсатором 0,1uF, именно это сопротивление в свою очередь создает нагрузку для L7805. Причем, стабилизатор не имеет заземления. На «землю» идет только один вывод сопротивления нагрузки Rн. Принцип действия такой схемы включения обязывает L7805-CV выдавать в нагрузку определенную величину тока, посредством регулирования выходного напряжения.

Величина тока на выходе источника L78хх

Неприятный момент, который можно наблюдать в схеме, это суммирование тока покоя Id с током на выходе. Параметры тока покоя обозначены в документации на микросхему. В основном такие стабилизаторы имеют постоянную величину тока покоя, составляющую 8мА. Это значение является наименьшим током выходной цепи чипа. Следовательно, при попытке создать источник тока, у которого значение будет меньше, чем 8мА, никак не получится.

Здесь можно скачать документацию на микросхему L78xx L78_DataSheet.pdf

В лучшем случае от L7805 можно получить выходные токи в пределах от 8мА до 1А. Впрочем, при работе на токах превышающие значение 750-850 мА, категорически рекомендуем устанавливать микросхему на радиатор. Но и работать на таких токах все же не оправдано. Обозначенный в документации ток в 1А — это его максимальное значение. В фактических условиях чип наверняка выйдет из строя из-за перегрева. Поэтому, оптимальный выходной рабочий ток должен находится в пределах от 20 мА до 750 мА.

Оптимальное сопротивление нагрузки

Одновременно с этим нужно принять во внимание значение сопротивления нагрузки. Здесь все просто, то есть используя закон Ома можно все высчитать

Например:

Исходя их таких несложных расчетов мы выяснили, какое должно быть напряжение на нагрузке с сопротивлением 100 Ом, чтобы создать выходной ток 100 мА. Согласно эти расчетам получается, что оптимальным вариантом будет использовать микросхему 7812 либо 7815, рассчитанную на 12v и 15v в соответствии, с целью иметь запас.

Заключение

Естественно, в такой схеме источника тока присутствуют ограничительные моменты. Хотя она может быть полезна для большого количества решений, в которых высокая точность не играет особой роли. Отсутствие какой либо сложности в схеме, дает возможность изготовить источник тока практически в любых условиях, тем более комплектующие для нее приобрести не составит труда.

78l05 схема включения

78l05 схема включения — это самый популярный пяти вольтовый стабилизатор напряжения, аналог маломощной микросхемы 7805. В данной статье публикуется описание, параметры и сама схема включения прибора 78L05. В сущности чуть ли не каждая фирма в мире, которая создает интегральные микросхемы, выпустила свой аналоговый элемент этого чипа. Определение производителя данного электронного элемента читается по первым двум буквам, например: LM78L05 (TAIWAN SEMICONDUCTOR), TS78L05 (TAEJIN Technology HTC Korea).

Естественно, чтобы знать точные параметры электронного прибора, для этого конечно нужно воспользоваться официальным даташитом. Хотя и в официальной спецификации 78l05 схема включения есть некоторые нюансы, в частности это представленный эскиз расположения выводов, который не достаточно графически ясно выполнен. А когда приходится делать какой-либо ремонт или производить наладку устройства, то приходится смотреть одновременно на два изображения.

То-есть определять название и порядковый номер вывода и дополнительно смотреть где расположен вывод на самом корпусе. Несмотря на то, что на этом чипе вывод под номером 1 является выходной шиной, а последний вывод входным, на практике несколько раз дезориентировало меня. В итоге я неправильно делал разводку печатной платы. Чтобы впредь не повторить таких курьезов, я нанес обозначения выводов непосредственно на эскизы корпусов: ТО-92, SOT-89, SO-8.

78L05 схема включения

Представленная здесь микросхема наверное самая простая по своей конструкции, в составе которой находятся всего-навсего сам стабилизатор и пара конденсаторов. Для обеспечения корректной работы прибора, а также чтобы избежать возможности генерирования пульсирующих напряжений, на входном и выходном трактах нужно подключить конденсаторы. Номинальные значения подключаемых емкостей должны быть не менее 0,33 мкФ и 0,1 мкФ соответственно.

При использовании для питания стабилизатора выпрямленного напряжения с частотой 50Гц, то тогда емкость по входу необходимо увеличить. Лучше установить электролитический конденсатор, который имеет большее последовательное сопротивление. В этом варианте нужно электролит зашунтировать керамическим конденсатором.

Характеристики параметров стабилизатора напряжения 78L05

  • Напряжение на выходе +5v.
  • Ток на выходе 0,1 А.
  • Оптимальное выходное напряжение от +7v до + 20v.
  • Оптимальный диапазон температур от 0 до 130 °C.

Если есть необходимость в получении отрицательного стабилизированного напряжения -5v, то тогда нужно воспользоваться микросхемой 79L05. Ориентироваться в обозначениях очень просто — вторая цифра в коде означает, что этот прибор выполняет стабилизацию положительного напряжения, а цифра 9 — отрицательного напряжения. Буква L в коде, показывает номинальный ток 0,1 А, имеются модели с букой «m» — это ток 0,5 А, а если вообще без буквы, то этот прибор рассчитан на ток в 1 А. Последние две цифры в кодовом обозначении показывают номинальное выходное напряжение от 5 до 24v.

Аналоги отечественный производителей

На внутреннем рынке также представлен широкий выбор отечественных аналогов этого стабилизатора напряжений — КР1157ЕНхх, КР1181ЕНхх. В частности микросхему 78L05 можно заменять аналогами КР1157ЕН5 и КР1181ЕН5. Кренки серии КР1181 имеют корпус TO-92, а КР1157ЕН5 выполнены в более массивном корпусе с допустимым током 0,25 А, который можно устанавливать на теплоотвод.

Корпус TO-92 — обозначение функций контактов по их номерам

В настоящее время тяжело найти какое-либо электронное устройство не использующее стабилизированный источник питания. В основном в качестве источника питания, для подавляющего большинства различных радиоэлектронных устройств, рассчитанных на работу от 5 вольт, наилучшим вариантом будет применение трехвыводного интегрального 78L05 .

L05 схемы самодельных устройств

Регуляторы напряжения имеют разные типы. Это интегральная схема, основной целью которой является регулирование нерегулируемого входного напряжения и обеспечение постоянного регулируемого выходного напряжения. Общим типом классификации является 3 терминальных стабилизатора напряжения и 5 или многопозиционный стабилизатор напряжения.

Эти регуляторы обеспечивают постоянное выходное напряжение. Фиксированный регулятор напряжения может быть положительным регулятором напряжения или отрицательным регулятором напряжения. Положительный стабилизатор напряжения обеспечивает постоянное положительное выходное напряжение.

Разновидности 12В стабилизаторов

Подобные устройства могут быть собраны на транзисторах или на интегральных микросхемах. Их задача – обеспечить значение номинального напряжения Uном в нужных пределах, несмотря на колебания входящих параметров. Наиболее популярны следующие схемы:

  • линейная;
  • импульсная.

Схема линейной стабилизации представляет собой простой делитель по напряжению. Его работа заключается в том, что при подаче на одно «плечо» Uвх, на другом «плече» изменяется сопротивление. Это поддерживает Uвых в заданных пределах.

Важно! При такой схеме при большом разбросе значений между входным и выходным напряжениями происходит падение КПД (некоторое количество энергии переходит в тепло), и требуется применение теплоотводов. Импульсная стабилизация контролируется ШИМ-контроллером

Он, управляя ключом, регулирует длительность токовых импульсов. Контроллер проводит сравнение величины опорного (заданного) напряжения с напряжением на выходе. Входное напряжение подаётся на ключ, который, открываясь и закрываясь, подаёт полученные импульсы через фильтр (ёмкость или дроссель) на нагрузку

Импульсная стабилизация контролируется ШИМ-контроллером. Он, управляя ключом, регулирует длительность токовых импульсов. Контроллер проводит сравнение величины опорного (заданного) напряжения с напряжением на выходе. Входное напряжение подаётся на ключ, который, открываясь и закрываясь, подаёт полученные импульсы через фильтр (ёмкость или дроссель) на нагрузку.

К сведению. Импульсные стабилизаторы напряжения (СН) обладают большим КПД, требуют меньшего отвода тепла, но электрические импульсы при работе создают помехи для электронных устройств. Самостоятельная сборка подобных схем имеет существенные сложности.

Классический стабилизатор

Такое устройство имеет в своём составе: трансформатор, выпрямитель, фильтры и узел стабилизации. Стабилизация обычно осуществляется при помощи стабилитронов и транзисторов.

Основную работу выполняет стабилитрон. Это своеобразный диод, который подключается в схему в обратной полярности. Рабочий режим у него – режим пробоя. Принцип работы классического СН:

  • при подаче на стабилитрон Uвх < 12 В элемент находится в закрытом состоянии;
  • при поступлении на элемент Uвх > 12 В он открывается и удерживает заявленное напряжение постоянным.

Внимание! Подача Uвх, превышающего максимальные значения, указанные для определённого вида стабилитрона, приводит к его выходу из строя. Схема классического линейного СН

Схема классического линейного СН

Интегральный стабилизатор

Все элементы конструкции таких устройств располагаются на кристалле из кремния, сборка заключена в корпусе интегральной микросхемы (ИМС). Они собраны на базе двух типов ИМС: полупроводниковых и гибридно-плёночных. У первых компоненты твердотельные, у вторых – изготовлены из плёнок.

Главное! У таких деталей всего три вывода: вход, выход и регулировка. Такая микросхема может выдавать стабильно напряжение величиной 12 В при интервале Uвх = 26-30 В и токе до 1 А без дополнительной обвязки.

Схема СН на ИМС

Технические характеристики

Первые версии (как можно было определить из различных datasheet на 78L05), были разработаны в 1970-х американской Fairchild Semiconductor. Их внешний вид напоминал обычный транзистор, так как у неё было три ножки и на этом сходство заканчивалось. Внутри небольшого корпуса размещалось чудо инженерной мысли, содержащее целый набор электронных компонентов.

Маркировка

В маркировке зашифрована минимальная информация об электрических параметрах. Цифры «78» указывают на положительную полярность, далее «L» — на небольшой ток (до 0,1 мА) и «05» — напряжение (до 5 В) в подключаемой нагрузке. В конце обозначения следуют символы, по которым определяют точность стабилизации, диапазон рабочих температур и тип корпуса.

В настоящее время производство полных копий 78L05 освоили многие компании. С таким обозначением её выпускает китайская Wing Shing Computer Components (WS). На мировом рынке в основном распространены модификации американских Texas Instruments, Fairchild (LM78L05) и STMicroelectronics (L78L05). В России наиболее часто встречаются версии от STM, их и рассмотрим в этой статье.

Цоколевка

Особый интерес представляет распиновка 78l05 в smd-исполнении (SO-8), так как он имеет 8 ножек. В тоже время классический вариант этой микросхемы в корпусе ТО-92 оснащен только тремя выводами, с назначением: input (вход), ground (земля), output (выход). При этом их количество не должно смущать, так как некоторые из них ни к чему не подключены или электрически соединены между собой внутри пластиковой упаковки. Чтобы разобраться с цоколевкой, лучше посмотреть на рисунок ниже, так как она у некоторых производителей не совпадает с общепринятой.

Как видно цоколевка 78l05 (ТО-92) от WS зеркальная, этим она отличается от стандартов STM и Texas Instruments. У многих китайских производителей она совпадает с WS, например у Changjiang Electronics Tech (cj 78l05). Стоит учитывать эту особенность, так как она может стать причиной неработоспособности схемы.

Максимальные параметры

В подавляющем большинстве схем L78L05 выполняет роль фиксированного регулятора напряжения на 5 В. При этом, для его устойчивой работы, на вход должно подаваться на 2-3 В большее (от 7 В), чем получаемое на выходе. Если предусмотреть хороший теплоотвод, то он способен выдерживать выходной ток до 100 мА. Приведем перечень максимальных параметров этой микросхемы.

  • входное напряжение до 30 В;
  • ток на выходе до 0.1 А;
  • нагрев кристалла до +125ОС;
  • температура хранения -65 … +150ОС;
  • мощность рассеивания – ограничена внутренней защитой.

Электрические параметры

Номинальные электрические характеристики на L78L05 приводятся для типовой схемы тестирования.  В столбце «Test conditions» указаны условия тестирования при нормальной температуре кристалла (TJ) до 25 ОС. Она должна находиться в допустимых пределах, в зависимости от модификации устройства. Ниже представлена сводная таблица электрических параметров, наиболее часто встречающихся микросхем серии L78L05.

Типовая схема тестирования содержит конденсаторы на 0,33 мкФ и 0,1 мкФ. При этом используется напряжение в VO=10 В. Если не указано иного, то ток на выходе IO составляет 40 мА.

Как видно из представленных данных, L78L05 немного отличаются между собой отдельными значениями. Есть некоторые особенности модификаций, которые стоит отметить. Например, если в обозначении присутствует символ «B», то устройство способно работать при низких температурах окружающей среды (от -40ОС). L78L05A, с дополнительной буквой «A» в конце маркировки, имеют повышенную точность стабилизации выходного напряжения ±4%. А у обычных «С» этот разброс в два раза больше и составляет ±8%.