Sven sps 820 ремонт сабвуфера схема

Оглавление

Что это такое

Главной задачей блока питания является преобразование переменного тока и дальнейшее формирование требуемого напряжения, для нормальной работы всех комплектующих ПК.

Напряжение, требуемое для работы комплектующих:

  • +12В;
  • +5В;
  • +3,3В.

Кроме этих заявленных величин существует и дополнительное величины:

  • -12В;
  • -5В.

БП выполняет роль гальванической развязки между электрическим током из розетки и комплектующими потребляющие ток. Простой пример, если произошла утечка тока и человек дотронулся до корпуса системного блока его ударило бы током, но благодаря блоку питания этого не происходит. Часто используются источники питания (ИП) формата ATX.

Где 12 вольт, а где 5? Разбираемся с цветовой маркировкой

Как узнать, на каких проводах какие напряжения формируются? Где, к примеру, 12 вольт на блоке питания компьютера? Для этого не понадобится тестер, поскольку все провода, выходящие из компьютерного блока питания, имеют строго определенную общепринятую расцветку. Поэтому вместо тестера мы вооружаемся табличкой, приведенной ниже.

Расцветка и назначение проводов блока питания ATX

Цвет Назначение Примечание
черный GND провод общий минус
красный +5 В основная шина питания
желтый +12 В основная шина питания
синий -12 В основная шина питания (может отсутствовать)
оранжевый +3.3 В основная шина питания
белый -5 В основная шина питания
фиолетовый +5 VSB дежурное питание
серый Power good питание в норме
зеленый Power on команда запустить БП

Табличка особых пояснений не требует. С зеленым проводом (Power on) мы познакомились в предыдущем разделе – на него материнская плата подает сигнал низким уровнем (замыканием на общий) на включение БП. Синий провод в новых моделях БП может отсутствовать, поскольку производители материнских плат отказались от интерфейса RS-232C (COM-порт), требующего -12 В.

Фиолетовый провод (+5 VSB ) – это как раз дежурные +5 В, питающие дежурные узлы материнской платы. По серому проводу (Power good) блок питания сообщает, что все напряжения в норме и компьютер можно включать. Если какое-то из напряжений в процессе работы выходит за допустимые пределы или пропадает, то сигнал снимается. Причем это происходит до того, как успеют разрядиться накопительные конденсаторы БП, давая процессору время на принятие экстренных мер по аварийной остановке системы. Остальные провода – это провода питания материнской платы и периферийных устройств – дисководов, внешних видеокарт и т. д.

Благодарим Вас за покупку акустической системы…

Диффузор НЧ-динамика выведен на переднюю панель, отверстие ФИ — на боковую. В ней мощность сабвуфера 30 Вт, и две колонки по 20 Вт.
Надо сказать, за несколько лет эти щелчки уже так достали человека, что он подумывал выкинуть акустику. Кроме этого в наборе выглядит привлекательным оригинальный дизайн сателлитов и удобно расположенные органы управления. Все необходимые провода для подключения комплектуются производителем: два провода мини-джек на мини-джек и шнур стерео RCA на стерео RCA длиной 1,5 метра.
Акустика 2. Сабвуфер удачно спроектирован. TopDevice TDE Теперь, потренировавшись на своих кошках, я вспоминаю про давнишнюю неисправность акустики друга и прошу отдать мне ее для опытов.
Полный размер Радиатор на месте Далее надо было прикреплять усилители к радиатору. Особо следует отметить схему предотвращения щелчка в динамиках при включении усилителя в сеть. Надо сказать, место крепления радиатора к плате очень перегревалось, это можно понять по цвету текстолита в соответствующем месте. Сам звуковой излучатель отрезается, а на его место припаивается щуп и крокодил.
Корпус сделан из МДФ. Видна богатая обвязка усилителей. Панель коммутации находится на задней стороне блока. А есть у нас большой радиатор, плата усилителя, фильтр питания, тороидальный трансформатор и плата управления с реле.


Больше ничего. Полный размер Плата из моей акустики, вынужденно ставшая донором. Список открыт, но пока за что-то более серьезное браться — квалификация не позволяет. Благодаря характерному дизайну сателлитов колонки хорошо сочетаются с плоским экраном монитора или телевизора.

Давно, года два назад товарищ жаловался, что его сабвуфер щелкает. Те два, что работают каскадом для запитки сабвуфера.

Колоночки работают, как новые. Красным помечено бывшее расположение дорожки. Квалификация инженера прямопропорциональна количеству сожженной аппаратуры и обратнопропорциональна ее стоимости. Повреждение сабвуфера

Затем, соблюдая осторожность, включить сетевой шнур в розетку и при помощи мультиметра переведенного в режим вольтметра замерить напряжение на выходе блока питания.
И снова ремонт непонятных SVEN’ов.

Микросхема TDA2030A

TDA2030А – это микросхема, которая исполняется в корпусе Pentawatt (корпус с пятью выводами для мощных линейных интегральных схем). Используется в основном как усилитель низкой частоты (УНЧ) в классе усиления AB. Максимальное напряжение однополярного питания составляет 44 Вольта. Вряд ли вы найдете такое напряжение в своей домашней лаборатории. Поэтому, использование этой микросхемы вполне подойдет для ваших электронных безделушек без вреда спалить микросхему.

Также TDA2030A имеет большой выходной ток вплоть до пикового 3,5 Ампер и имеет низкие гармонические и перекрестные искажения. Это значит, что усилитель, собранный на этой микросхеме, будет иметь очень даже неплохое звучание. Кроме того, микросхема включает в себя защиту от короткого замыкания и автоматически ограничивает рассеиваемую мощность. Также включена защита от перегрева, при которой микросхема автоматически отключается при высоком нагреве корпуса.

P.S. Так как в основном рынок захлестнули китайские TDAшки, не исключено, что эти защиты могут сработать не так, как надо, а могут не сработать вообще. Поэтому, не рекомендую проверять их на КЗ и на перегрев.

Спецификации

Технические характеристики акустической системы Sven SPS-820 следующие:

  • Тип системы — 2.1.
  • Мощность — 38 Вт.
  • Мощность сателлитов (колонок) — 10 Вт (суммарно 20 Вт).
  • Мощность сабвуфера — 18 Вт.
  • Частотный диапазон сателлитов — 180-20 000 Гц.
  • Частотный диапазон сабвуфера — 20-180 Гц.
  • Тип подключения — проводной, питание от сети.
  • Тип управления — ручное.
  • Разъёмы и входы — RCA, 3,5 мм.
  • Размер динамиков сателлитов — 75 мм.
  • Количество динамиков на сателлитах — 1 (суммарно 2).
  • Размер динамика сабвуфера — 100 мм.
  • Количество динамиков на сабвуфере — 1.
  • Размеры сателлитов (Ш/В/Г) — 110/185/120 мм.
  • Размеры сабвуфера (Ш/В/Г) — 150/260/270 мм.
  • Вес — 6 кг (общий).

Характеристики довольно неплохие для домашней и недорогой акустики. Единственное, что смущает, — это частотный диапазон на колонках. Скорее всего, сателлитам будет явно не хватать низких частот и немного высоких. Но недостаток первого должен будет полностью компенсировать сабвуфер, а вот с ВЧ уже поможет регулятор тембра.

Кстати, усилитель у Sven SPS-820 работает через отдельный понижающий трансформатор, что определённо лучше импульсного трансформатора. Импульсники имеют очень плохое свойство — часто выходить из строя, да и к тому же создают дополнительные помехи и фон.

Что понадобится для изготовления

Более 90% компонентов лабораторной лаборатории уже находятся в блоке питания компьютера. Остальное придется подбирать по конкретной схеме (элементы дешевые и их будет мало), но вам обязательно понадобятся:

  • два потенциометра для регулирования напряжения и тока;
  • клеммы для подключения нагрузки (для плюсовой клеммы удобно использовать красный, а для минусовой — черный);
  • вольтметр и амперметр для измерения выходных параметров (можно использовать аналоговые приборы, можно использовать цифровые, а удобнее использовать двойной вольтметр-амперметр).
  • несколько оксидных конденсаторов на напряжение не менее 35 вольт (желательно 50+) с емкостью, соответствующей номинальной емкости канальных элементов +12 вольт (или больше, если они подходят по размеру);

Из инструментов вам обязательно понадобится мультиметр. Осциллограф не будет лишним — он проверяет наличие выходных импульсов на микросхеме ШИМ и ее реакцию на управляющее воздействие, если что-то пойдет не так. Также вам понадобится паяльник с набором расходных материалов и небольшой кузнечный инструмент (набор отверток, кусачки и т.д.).

Конструкция

Мощность того блока питания, который я вытащил из-под кровати – 250Вт. Если я сделаю БП 5В/10А, то пропадает драгоценная моща! Не дело! Подымем напряжение до 25В, может сгодится, к примеру, для зарядки аккумуляторов – там нужно напряжение порядка 15В.

Для дальнейших действий нужно сначала найти схему на исходный блок. В принципе, все схемы БП известны и гуглятся. Что именно нужно гуглить – написано на плате.

Мне мою схему подкинул друг. Вот она. (Откроется в новом окне)

Да-да, нам придется лазить во всех этих кишках. В этом нам поможет даташит на TL494

Итак, первое, что нам нужно сделать – проверить, какое максимальное напряжение может выдать блок питания по шинам +12 и +5 вольт. Для этого удаляем предусмотрительно помещенную производителем перемычку обратной связи.

Резисторы R49-R51 подтянут плюсовой вход компаратора к земле. И, вуаля, у нас на выходе – максимальное напряжение.

Пытаемся стартовать блок питания. Ага, без компьютера не стартует. Дело в том, что его нужно включить, соединив вывод PS_ON с землей. PS_ON обычно подписан на плате, и он нам еще понадобится, поэтому не будем его вырезать. А вот непонятную схему на Q10, Q9 и Q8 отключим – она использует выходные напряжение и, после их вырезания не даст нашему БП запуститься. Мягкий старт у нас будет работать на резисторах R59, R60 и конденсаторе C28.

Итак, бп запустился. Появились выходные максимальные напряжения.

Внимание! Выходные напряжения – больше тех, на которые рассчитаны выходные конденсаторы, и, поэтому, конденсаторы могут взорваться. Я хотел поменять конденсаторы, поэтому мне их было не жалко, а вот глаза не поменяешь

Аккуратно!

Итак, подучилось по +12В – 24В, а по +5В – 9.6В. Похоже, запас по напряжению ровно в 2 раза. Ну и прекрасно! Ограничим выходное напряжение нашего БП на уровне 20В, а выходной ток – на уровне 10А. Таким образом, получаем максимум 200Вт мощи.

С параметрами, вроде бы, определились.

Теперь нужно сделать управляющую электронику. Жестяной корпус БП меня не удовлетворил(и, как оказалось, зря) – он так и норовит поцарапать что-то, да еще и соединен с землей (это помешает мерить ток дешевыми операционниками).

В качестве корпуса, я выбрал Z-2W, конторы Maszczyk

Я измерил излучаемый блоком питания шум – он оказался вполне небольшим, так что, вполне можно использовать пластиковый корпус.

После корпуса я сел за Corel Draw и прикинул, как должна выглядеть передняя панель:

Три варианта действий

Проверка микросхем – достаточно сложный процесс, который, зачастую, оказывается невозможен. Причина кроется в том, что микросхема содержит большое число различных радиоэлементов. Однако даже в такой ситуации есть несколько способов проверки:

  1. внешний осмотр. Внимательно изучив каждый элемент микросхемы, можно обнаружить дефект (трещины на корпусе, прогар контактов и т.п.);
  2. проверка питания мультиметром. Иногда проблема кроется в коротком замыкании со стороны питающего элемента, его замена может помочь исправить ситуацию;
  3. проверка работоспособности. Большинство микросхем имеют не один, а несколько выходов, потому нарушение в работе хотя бы одного из элементов приводит к отказу всей микросхемы.

Самыми простыми для проверки являются микросхемы серии КР142. На них имеется всего три вывода, поэтому при подаче на вход любого уровня напряжения, на выходе мультиметром проверяется его уровень и делается вывод о состоянии микросхемы.

Следующими по сложности проверки являются микросхемы серии К155, К176 и т.п. Для проверки нужно использовать колодку и источник питания с конкретным уровнем напряжения, подбираемым под микросхему. Так же как и в случае с микросхемами серии КР142, мы подаем сигнал на вход и контролируем его уровень на выходе с помощью мультиметра.

Проверка микросхемы мультиметром и специальным тестером

Вздутые — не вздутые, все равно перепаяйте. Можете емкость померить, если есть чем. Думаю, это оно, возбуждение. Микросхемы стоят на одном радиаторе? Ежели так то изолируйте их от радиатора, у Вас имеет место быть банальное самовозбуждение, у TDA 3-ий вывод электрически соединён с корпусом, получается петля и от этого самовозбуждение. Была такая же проблема, через 10мин работы сильно разогревалась одна сторона и начинала тарахтеть, судя по всему срабатывает термозащита. Но мне помогла замена микросхемы. Причина: почемуто со времененем у одного канала увеличился ток покоя, а далее понятно -саморазогрев и срабатывание защиты. Никакого возбуда не было.

Индуктивность и тиристоры

Проверка катушки на обрыв осуществляется замером ее сопротивления мультиметром. Элемент считается исправным, если сопротивление меньше бесконечности. Надо заметить, что не все мультиметры способны проверять индуктивность.

Проверка тиристора происходит следующим образом. Прикладываем красный щуп к аноду, а черный – к катоду. В окошке мультиметра должно отобразиться бесконечное сопротивление.

После этого управляющий электрод соединяем с анодом, наблюдая за падением сопротивления на дисплее мультиметра до сотен Ом. Управляющий электрод открепляем от анода – сопротивление тиристора не должно измениться. Так ведет себя полностью исправный тиристор.

TDA2030a как проверить ? | Петрович Мастер

Дневники Файлы Справка Социальные группы Все разделы прочитаны. Как проверить исправность цифровых микросхем без выпайки их из платы. Очень часто когда приходится ремонтировать цифровую технику сталкиваешься с такой проблемой — одна цифрова микросхема закорачивает другую микросхему, поэтому когда проверяешь сигнал на выходе микросхемы и его там нет, можно придти к ложному выводу что микросхема не исправна.

Я обычно разрываю печатные дорожки к другим микросхемам. Но есть ли другой способ чтобы проверять микросхемы без разрыва дорожек? Кто знает поскажите пожалуйста. Вот пример: Ремонтировал цифровое радио. Не было сигнала с выхода регистра сдвига включенного по схеме делителя частоту. Проверил осциллографом сигнал на входе — сигнал был. Подумал что несправен делитель. Но когда отпаял один выход, сигналы появились на всех выходах, включая тот который отпаял.

Значит микросхема исправна. Оценка 0. Крупнейшее в Китае предприятие по производству прототипов печатных плат, более , клиентов и более 10, онлайн-заказов ежедневно. Для шинных буферов типа SN74LS и др помогает надевание сверху на впаянную неисправную микросхему микросхемы исправной. Кратковременно можно подать проводом сигнал нужной полярности и проследить изменения осциллом-микросхемы обычно из строя не выходят. Если изменилось, то скорее всего сдохла 1-я, если не изменилось то 2-я.

Это вообще, конечно шаманство, но иногда помогает. Если есть повторяющиеся блоки, но по осциллографу не понятно, можно тестером вызванивать одинаковые микросхемы в этих похожих блоках. Но лучше всего, это хорошо представлять как это все должно работать. Если же это невозможно, то вышеописанное, костер и прыжки вокруг него с бубном шамана.

Противное это занятие. Литиевые батарейки Fanso для систем телеметрии и дистанционного контроля. Системы телеметрии находят все более широкое применение во многих отраслях на промышленных и коммунальных объектах. Требования, предъявляемые к условиям эксплуатации приборов телеметрии и, как следствие, источников питания для них, могут быть довольно жесткими. Компания Fanso предоставляет широкий спектр продукции высокого качества, подтверждаемого выходным контролем, которая рассчитана на различные условия применения.

Дедукционному методу полноценной замены пока нет. Компэл совместно с Texas Instruments приглашают на вебинар, посвященный системам-на-кристалле для построения ультразвуковых расходомеров жидкостей и газов на базе ядра MSP Вебинар проводит господин Йоханн Ципперер — эксперт по ультразвуковым технологиям, непосредственно участвовавший в создании данного решения.

Можно еще пройтись тестером с прозвонкой по ножкам микросхемы на наличие закорачивания на землю и на питание , особенно помогает когда стоит планар с большим количеством выводов. Опции темы. Обратная связь — РадиоЛоцман — Вверх. Перевод: zCarot. Как проверить исправность цифровых микросхем без выпайки их из платы Очень часто когда приходится ремонтировать цифровую технику сталкиваешься с такой проблемой — одна цифрова микросхема закорачивает другую микросхему, поэтому когда проверяешь сигнал на выходе микросхемы и его там нет, можно придти к ложному выводу что микросхема не исправна.

Отправить личное сообщение для vladelectron. Найти ещё сообщения от vladelectron. Отправить личное сообщение для LEAS. Найти ещё сообщения от LEAS. Файловый архив. Скачиваний: 1. Загрузок: 17 Литиевые батарейки Fanso для систем телеметрии и дистанционного контроля Системы телеметрии находят все более широкое применение во многих отраслях на промышленных и коммунальных объектах.

Дедукционному методу полноценной замены пока нет Цитата: Сообщение от LEAS помогает надевание сверху на впаянную неисправную микросхему микросхемы исправной. Отправить личное сообщение для Werdis. Найти ещё сообщения от Werdis. Скачиваний: 1 1. Похожие темы. Продам полупроводники отеч. Ваши права в разделе. Вы не можете создавать новые темы Вы не можете отвечать в темах Вы не можете прикреплять вложения Вы не можете редактировать свои сообщения BB коды Вкл.

Информация Неисправность Прошивки Схемы Справочники Маркировка Корпуса Сокращения и аббревиатуры Частые вопросы Полезные ссылки

Справочная информация

  • Диагностика
  • Определение неисправности
  • Выбор метода ремонта
  • Поиск запчастей
  • Устранение дефекта
  • Настройка

Учитывайте, что некоторые неисправности являются не причиной, а следствием другой неисправности, либо не правильной настройки. Подробную информацию Вы найдете в соответствующих разделах.

Неисправности

Все неисправности по их проявлению можно разделить на два вида — стабильные и периодические. Наиболее часто рассматриваются следующие:

  • не включается
  • не корректно работает какой-то узел (блок)
  • периодически (иногда) что-то происходит

Если у Вас есть свой вопрос по определению дефекта, способу его устранения, либо поиску и замене запчастей, Вы должны создать свою, новую тему в соответствующем разделе.

О прошивках

Большинство современной аппаратуры представляет из себя подобие программно-аппаратного комплекса. То есть, основной процессор управляет другими устройствами по программе, которая может находиться как в самом чипе процессора, так и в отдельных микросхемах памяти.

На сайте существуют разделы с прошивками (дампами памяти) для микросхем, либо для обновления ПО через интерфейсы типа USB.

  • Прошивки ТВ (упорядоченные)
  • Запросы прошивок для ТВ
  • Прошивки для мониторов
  • Запросы разных прошивок
  • . и другие разделы

По вопросам прошивки Вы должны выбрать раздел для вашего типа аппарата, иначе ответ и сам файл Вы не получите, а тема будет удалена.

Схемы аппаратуры

Начинающие ремонтники часто ищут принципиальные схемы, схемы соединений, пользовательские и сервисные инструкции. Это могут быть как отдельные платы (блоки питания, основные платы, панели), так и полные Service Manual-ы. На сайте они размещены в специально отведенных разделах и доступны к скачиванию гостям, либо после создания аккаунта:

  • Схемы телевизоров (запросы)
  • Схемы телевизоров (хранилище)
  • Схемы мониторов (запросы)
  • Различные схемы (запросы)

Внимательно читайте описание. Перед запросом схемы или прошивки произведите поиск по форуму, возможно она уже есть в архивах. Поиск доступен после создания аккаунта.

Справочники

На сайте Вы можете скачать справочную литературу по электронным компонентам (справочники, таблицу аналогов, SMD-кодировку элементов, и тд.).

Marking (маркировка) — обозначение на электронных компонентах

Современная элементная база стремится к миниатюрным размерам. Места на корпусе для нанесения маркировки не хватает. Поэтому, производители их маркируют СМД-кодами.

Package (корпус) — вид корпуса электронного компонента

При создании запросов в определении точного названия (партномера) компонента, необходимо указывать не только его маркировку, но и тип корпуса. Наиболее распостранены:

  • DIP (Dual In Package) – корпус с двухрядным расположением контактов для монтажа в отверстия
  • SOT-89 — пластковый корпус для поверхностного монтажа
  • SOT-23 — миниатюрный пластиковый корпус для поверхностного монтажа
  • TO-220 — тип корпуса для монтажа (пайки) в отверстия
  • SOP (SOIC, SO) — миниатюрные корпуса для поверхностного монтажа (SMD)
  • TSOP (Thin Small Outline Package) – тонкий корпус с уменьшенным расстоянием между выводами
  • BGA (Ball Grid Array) — корпус для монтажа выводов на шарики из припоя

Усилитель звука на микросхеме TDA2030A мощностью 14 Вт.

С помощью данного набора, можно собрать простой и компактный усилитель мощностью 14 Ватт на известной всем микросхеме TDAA. Эти микросхемы не дорогие и в своё время были очень популярны, они обладают достойным звучанием и их часто можно встретить в заводской аудио аппаратуре. Ссылки на набор и другие необходимые компоненты вы можете найти на нашем сайте kavmaster. В комплект набора входят печатная плата, на которой расписано где какая деталь должна быть установлена, небольшой набор необходимых деталей и инструкция по сборке усилителя, где можно найти параметры усилителя, принципиальную схему, список компонентов и внешний вид уже собранный усилитель.

Зарядное устройство из БП ноутбука

Можно соорудить зарядный девайс из блока питания ноутбука.

Величина выходного напряжения варьируется в районе 19 вольт, а значение силы тока составляет около 6 ампер. Этих параметров достаточно, чтобы обеспечить заряд аккумуляторной батареи, но напряжение слишком высокое. Решить проблему можно двумя способами.

Без переделки БП

Потребуется последовательным образом с аккумулятором машины подключить так называемый балласт в виде мощной лампы от оптики. Источник освещения будет использоваться в качестве ограничителя тока. Простой и доступный вариант. К плюсовому выходу блока питания ноутбука подключается один контакт лампы, а второй ее контакт подсоединяется к плюсу аккумуляторной батареи. Минус от блока питания подключается напрямую к отрицательной клемме аккумулятора по проводу. После этого БП можно включать в бытовую сеть. Способ очень простой, но есть вероятность выхода из строя источника освещения. Это приведет к неработоспособности как аккумулятора, так и блока.

Канал It’s simple опубликовал ролик, в котором наглядно показал, как выполнить подзарядку машинного аккумулятора с помощью обычного БП от ноутбука и лампочки.

С переделкой блока питания

Потребуется понизить параметр напряжения БП, чтобы напряжение на выходе составляло около 14-14,5 В.

Рассмотрим процесс изготовления и сборки зарядного девайса на примере блока питания от ноутбука Great Wall:

  1. Сначала следует разобрать корпус блока питания. При разборке не повредите его, поскольку он будет использоваться для дальнейшей эксплуатации. Плату, которая расположена внутри, можно подключить к вольтметру, чтобы точно узнать, какое ее рабочее напряжение. В нашем случае оно составляет 19,2 вольта. Используется плата, построенная на микросхемах TEA1751+TEA1761.
  2. Выполняется задача по снижению величины напряжения. Для этого потребуется найти резисторный элемент, расположенный на выходе. Нужна деталь, соединяющая шестой контакт схемы ТЕА1761 с положительным выводом блока питания. Этот резисторный элемент следует выпаять при помощи паяльника и произвести замер его сопротивления. Рабочий параметр составляет 18 кОм.
  3. Вместо демонтированного элемента устанавливается подстроечный резисторный компонент на 22 кОм, но перед впаиванием его следует настроить на 18 кОм. Аккуратно запаяйте деталь, чтобы не повредить другие элементы схемы.
  4. Постепенно понижая величину сопротивления, надо добиться того, чтобы на выходе параметр напряжения составил 14-14,5 вольт.
  5. Когда вы получите напряжение оптимальное для зарядки автомобильного аккумулятора, запаянный резистор можно отпаять. Производится замер его параметра сопротивления, в нашем случае он составляет 12, 37 кОм. По этой величине или близкой к ней подбирается постоянный резистор. Мы используем два резистора на 10 кОм и 2,6 кОм. Концы обеих деталей устанавливаются в термокембрик, после чего происходит их впаивание в плату.
  6. Полученную в итоге схему рекомендуем протестировать перед сборкой устройства. Параметр напряжения на выходе составит 14,25 вольт, этого достаточно для заряда батарейки.
  7. Приступаем к сборке девайса. Подключите провода с зажимами. Перед их впаиванием убедитесь в том, что на выходе соблюдается полярность. В зависимости от блока ноутбука, минусовой контакт может быть выполнен в виде центрального провода, а положительный — в виде оплетки.
  8. В итоге вы получаете девайс, который может правильно заряжать АКБ. Величина тока в ходе заряда варьируется в районе 2-3 ампер. Если этот параметр падает до 0,2-0,5 ампер, то процедуру подзарядки можно считать завершенной. Для более удобного использования ЗУ оборудуют амперметром, зафиксировав его на корпусе. Можно использовать светодиодную лампу, которая будет говорить автовладельцу о завершении процесса зарядки.

Канал kt819a предоставил ролик, в котором подробно рассмотрено зарядное устройство, сделанное из БП ноутбука.

https://youtube.com/watch?v=Ph1xw-hQu78

стерео усилитель на TDA2030 (15вт)

В этой статье будет рассказано о том, как проверить на работоспособность микросхему с использованием обычного мультиметра. Иногда определить причину неисправности довольно просто, а иногда на это уходит много времени, и в результате поломка так и остается невыясненной. В этом случае надо сделать замену детали. Проверка микросхем — достаточно сложный процесс, который, зачастую, оказывается невозможен. Причина кроется в том, что микросхема содержит большое число различных радиоэлементов. Однако даже в такой ситуации есть несколько способов проверки:. Самыми простыми для проверки являются микросхемы серии КР

Режимы Standby и Mute

Исходя из информации в даташите приведем пример напряжений для управления микросхемой TDA7265, допустим что питание микросхемы у нас +-20В, таким образом подавая на ножку 5 микросхемы следующие напряжения получаем:

  • STANDBY — при напряжении большем чем «+Vs — 2,5», в нашем примере от 17,5 до 20В;
  • MUTE — при напряжении между «+Vs — 2,5» и «+Vs — 6», в нашем примере от 14 до 17,5В;
  • PLAY — при напряжении меньшем чем «+Vs — 6», в нашем примере от 0 до 14В.

Получается что для того чтобы усилитель постоянно был включен (PLAY) и не нужно было собирать схему управления STANDBY-MUTE достаточно подключить ножку 5 микросхемы к общему (0В).

Литература:

  • Баширов С.Р., Баширов А.С. — Современные интегральные усилители.
  • Документация, даташит на микросхему TDA7265: (256 Кб).