Сверлильный станок для печатных плат своими руками: чертежи, фото, видео

Прошивка устройства

Был разработан простой протокол управления станком. Формат команды следующий: . После выполнения команды станок возвращает результат. Обычно это 0 или 1 (False или True).

Система команд:

Команда Описание команды Возвращаемые значения
connect: Команда выполняется в 2 этапа. При получении станок сразу же отправляет в ответ . это позволяет клиентскому приложению определить, к какому именно COM порту подключен станок. Затем станок инициирует процедуру запуска, по окончании которой отправляет . | + в случае успеха; + в случае отсутствия питания
touch: Попытка коснуться платы сверлом. при касании; если плата не обнаружена
move: x y Перемещает сверло на заданные координаты при успешном завершении; при ошибке (координаты ошибочны; обрыв питания при выполнении)
drill: x y Перемещает сверло на заданные координаты и сверлит отверстие при успешном завершении; при ошибке (ошибки команды ; отсутствие платы)
coords: Возвращает координаты местоположения сверла

Возращаемые ошибки:

Ошибка Описание ошибки
Команда не распознана
Отсутствует питание

При разработке прошивки внимание, в первую очередь, уделялось безопасности. При выполнении любой команды станок руководствуется следующими правилами:

  • любые команды кроме должны игнорироваться, если с момента включения не была выполнена процедура запуска (откат всех осей и сброс координат в ноль)
  • запрещено двигаться по осям X и Y с опущенным сверлом
  • необходимо сразу прекращать движение по оси при достижении концевого выключателя
  • необходимо возвращать , если на момент получения команды, связанной с работой двигателей, отсутствует питание
  • при исчезновении питании при выполнении команды, связанной с работой двигателей, необходимо завершить команду и вернуть 0 (False)

Технические характеристики

Характеристики примерно те же самые, что и у более крупного оборудования. Разница только в ограниченных возможностях. Ключевым параметром является мощность, которая определяет как практические способности станка, так и расход тока. Темп вращения шпиндельного блока тоже важен; он может составлять от 200 до 3000 витков за 60 секунд. В продвинутых образцах стоят редукторы, позволяющие задавать до 12 скоростей вращения.

Стоит обратить внимание и на промежуток от торца шпинделя до плоскости рабочего стола. Этот момент предопределит наибольшую высоту обрабатываемой детали

Нельзя обойти стороной также наименьшие и наибольшие сечения просверливаемых каналов: это один из ключевых параметров, по которым вообще можно оценить станок. Масса и величина станины тоже должны оцениваться — от них зависит как легкость перемещения станка, так и то, окажется ли он устойчив. Наконец, последней по списку (но не по значению!) технической характеристикой оказывается разнообразие сверл, которые можно использовать в работе с конкретной моделью.

Механика

Для перемещения по осям Х и Y применены пары винт – гайка с резьбой. Применение резьбы с шагом 1 мм удобно тем, что за один оборот винта осуществляется перемещение на 1 мм. Учитывая, что для примененных шаговых электродвигателей требуется 48 импульсов на один оборот вала, то шаг перемещения по Х и по оси Z составил примерно 0,02 мм. Существует много факторов, из-за которых величина шага может отличаться от расчётного. Например, неровности винта, неточности в изготовлении деталей, люфт некоторых элементов и т.д. Поэтому в конструкции станка были приняты некоторые меры, для уменьшения влияния наиболее существенных из них (дополнительные самодельные полимерные гайки; плавающая посадка электродвигателей, позволяющая им при работе перемещаться в определенных пределах). Каретки для платы и узла сверления перемещаются вдоль осей Х и Y, соответственно, по направляющим из DIN-рейки. Вместе соприкосновения каретки для платы и направляющих для уменьшения трения применена фторопластовая лента.

Для оси Z применен имеющийся маломощный электродвигатель со встроенным редуктором. В связи с этим при применении пары винт – гайка получается слишком медленное перемещение. Т.к. высокая точность в данном случае не требуется, то вместо этого используется перемещение каретки, с установленным на ней электродвигателем, по неподвижно закрепленной капроновой нити. Для предотвращения поломок сверла, а также для определения расстояния до платы, например, при замене сверления фрезерованием, механизм сверления соединен с кареткой пружинным механизмом с возможностью регулировки усилия пружины. При соприкосновении сверла с поверхностью платы механизм сверления остановится, а каретка продолжит движение вниз, сжимая пружину. Небольшое сжатие пружины приведет к размыканию микропереключателя упора и посылке соответствующего сигнала в электрическую часть станка.

Перемещения по всем осям ограничены концевыми выключателями, подающими соответствующие электрические сигналы. Т.к. применяемые сверла могут иметь разную длину, предусмотрена регулировка положения верхнего (дискретно) и нижнего (плавно) концевых выключателей. Для остальных концевых выключателей регулировка положения не предусмотрена.

Что такое сверлильный станок и для чего он нужен

Просверлить тонкий материал не будет проблемой, достаточно взят дрель в руки, пару секунд и работа сделана. Но что делать, если вам очень нужно сделать точное и выверенное отверстие в толстом брусе? Ручные инструменты не подойдут, потому что есть большой риск испортить заготовку. Результатом такой работы будет смещение центра отверстия, появления рваного края и изменение геометрии. Избежать таких недочетов и сделать отверстие с определенными параметрами вам поможет именно сверлильный станок. За счет надежности фиксации детали, которую вы будете обрабатывать, а также центрованию инструмента получится обеспечить точность сверления, которой не добиться при работе дрелью.

Для того, чтобы сделать своими руками присадочный станок для мебели, потребуется доработать исходный инструмент. На изготовление не уйдет много времени и сил.

Не нужно забывать и про универсальность такого инструмента – при замене сверл вы сможете работать с абсолютно любыми материалами, и с мягкой древесиной, и с металлом, а также будет несложно просверлить листовую сталь. Вместо сверл можно использовать фрезу, и тогда устройство сможет заменить даже фрезерный станок с небольшой мощностью. Кроме того, сверлильный станок поможет облегчить труд мастеру. Поверьте, работать со стационарными устройствами намного проще, и не требуется удерживать на весу тяжелые инструменты.

Из чего он должен состоять

Элементарный агрегат можно сделать из обыкновенной дрели. Можно добавить к нему дополнительные устройства – например, фрезерный узел. Но каждый станок должен состоять из нескольких обязательных элементов: сверла, зенкера, развертки и метчика.

В промышленности встречаются множество типов сверлильных агрегатов – полуавтоматы, шпиндельные, вертикальные и другие. В быту чаще всего используется так называемый присадочный мини-агрегат со скромным набором выполняемых задач. Перед тем, как сделать самодельный сверлильный станок в домашних условиях, необходимо разобраться в функциях, основных элементах и общих принципах действия такого рода механизмов.

Вертикальный вариант станка.

Вертикально-сверлильный станок.

Настольный сверлильный мини-станок.

Сверлильный станок из дрели.

Из чего состоит сверлильный станок?

Общее устройство сверлильного станка.

По функциям самыми востребованными устройствами являются шпиндельные машины, главная функция которых – передача вращательного движения к обрабатываемым деталям. На втором месте по популярности – приспособления для горизонтального и радиального сверления. Также распространен аппарат для растачивания деталей. При таком функциональном разнообразии сверлильное оборудование в целом относят к аппаратам универсального пользования.

Но при этой свободе есть ряд обязательных составляющих, без которых не бывает сверлильных станков в принципе:

  • станина;
  • рулевая рейка;
  • двигатель.

Область применения самодельных сверлильных станков

Мысли о создании сверлильного станка своими руками возникает у людей, любящих мастерить, но в то же время не занимающихся изготовлением каких-либо предметов на профессиональной основе как с использованием металла, так и прочих материалов (дерево, пластик и т.д.).

Это обусловлено тем, что самодельное оборудование не сможет в полной мере заменить промышленно выпускаемые аналоги в полной мере, как по функциональности, так и по производительности, а лишь облегчит выполнение несложных ремонтных и прочих работ.

Кроме этого, радиолюбители и люди, занимающиеся самостоятельным изготовлением печатных плат, также могут поставить перед собой подобную задачу, т.к. наличие сверлильного станка значительно упрощает их работу, а приобретение оборудования заводского производства нерентабельно.

Самодельная конструкция с использованием двигателя от стиральной машины

Ghostgkd777 › Блог › Сверлильный станок для печатных плат

Всем привет! Давно шел к этому, наконец руки дошли и за 12 часов сварганил ковырялочку для печаток. Кинематику взял с двигающимся двигателем. Каламбур получился)) В общем, двигатель с патроном опускается. За основу этого узла взяты салазки и каретка “глаза” CD-ROM или любого иного привода. На ней смонтировал двигатель, подпружинил к раме, приделал рычаг для опускания, всю эту конструкцию закрепил на алюминиевом уголке, его в свою очередь через проставку к основанию из плиты стеклотекстолита. Фото всей конструкции ниже.

Дрянь еще та, я вам скажу… хорошо держит далеко не все сверла. Работа с ним приносит море негативных эмоций. А менять его на нормальный кулачковый патрон — так он слишком большой для этого моторчика. Потому этот вариант сверлилки признан как временное решение до приобретения мотора 24В и нормального патрона. Там будем строить ковырялочку посолиднее))

Но на этом остановиться было-б слишком просто! На мотор прикошачил схемку с автоматическим регулированием оборотов мотора в зависимости от нагрузки, котору я подглядел у котов выложил Sansey. Кстати, очень хороший обзор схемок управления двигателем есть там-же. Рекомендую!

Уважаемые админы и модераторы, не сочтите за рекламу другого ресурса. Материал интересный, людям пригодится, а копировать его в свой БЖ как-то нехорошо.

Я перебрал и настроил под детали, имеющиеся у меня.

Конечник установил шунтировать БЭ VT2 т.к. в верхнем положении каретки он замкнут. Контакт у него один (с того-же фена, что и мотор), лень было искать нормальные конечники))

Кстати, руки чешутся перейти с ЛУТ на фоторезист с маской. Жаль, фоторезист могу лишь заказывать в интернет магазинах т.к. до цивилизации 150км. Хотя и ЛУТом есть наработка с довольно мелким шагом (FT232RL к примеру с шагом 0,5мм между ног).

Разъем для двигателя и микрика безжалостно выдрал из флопика, ответная часть соответствующая. R1, увы, не нашел в одном корпусе нужного номинала, потому пришлось ставить “гирлянду” из трех резисторов. не запаян резистор под светодиоды подсветки т.к. не приобрел еще белых для этих целей. Будем доводить до ума =) Радиатор из древнего монитора.

За следы канифоли сильно не пинайте — не чем было чистить, да и паял вот этим:

Ну и что имеем в итоге (без БП).

Особенность конструкции статины сверлилки позволяет ковырять дырочки отверстия даже в середине довольно крупных плат, чем могут похвастаться далеко не все железные собратья.

Из особенности работы схемы. В нормальном положении при поданном питании двигатель молчит т.к. замкнутый конечник закорачивает переход БЭ VT2, закрывая его. При опускании каретки вниз конечник размыкает цепь, запускается мотор. Из-за большого пускового тока (сравнительно с режимом ХХ) схема переходит на долю секунды в режим максимальных оборотов, потом обороты падают до некоторой выбранной величины (я установил около 200 об/мин, чтоб можно было не напрягаясь попасть в кернение да и в “целый” текстолит или фольгу) до момента упора сверла в плату. Обороты падают до 100 (примерно), схема реагирует на возросший ток через якорь двигателя, переключается на максимальные обороты и плата в секунду просверлена! Обороты вновь снижаются до 200, схема готова к следующему сверлению. Блин, как удобно, я вам скажу! прям детская радость от сверления))

Ну и на сладкое видео работы. Извините, снимал и сверлил сам и на телефон, руки всего две, так что…

Оцениваем, комментируем, критикуем =) Спасибо, кто отписался.

Описание конструкции

В основе конструкции довольно мощный 12ти вольтовый двигатель из Китая. В комплекте с двигателем они продают еще патрон, ключ и десяток сверел разного диаметра. Большинство радиолюбителей просто покупают эти двигатели и сверлят платы удерживая инструмент в руках. Я решил пойти дальше и на его основе сделать полноценный станок под подобные двигатели с открытыми чертежами для самостоятельного изготовления.


Для линейного перемещения двигателя я решил использовать полированные валы диаметром 8мм и линейные подшипники. Это дает возможность минимизировать люфты в самом ответственном месте. Эти валы можно найти в старых принтерах или купить. Линейные подшипники также широко распространены и доступны, так как применяются в 3D-принтерах.


Основная станина сделана из фанеры толщиной 5мм. Фанеру я выбрал потому, что она стоит очень дешево. Как материал, так и сама резка. С другой стороны ничего не мешает (если есть возможность) просто вырезать все те же самые детали из стали или оргстекла. Некоторые мелкие детали сложной формы напечатанны на 3D-принтере.

Для поднятия двигателя в исходное положение использованы две обычные канцелярские резинки. В верхнем положении двигатель сам отключается при помощи микропереключателя.

С обратной стороны я предусмотрел место для хренения ключа и небольшой пенал для сверел. Пазы в нем имеют разную глубину, что делает удобным хранение сверел с разным диаметром.


Но все это проще один раз увидеть на видео:

На нем есть небольшая неточность. В тот момент мне попался бракованный двигатель. На самом деле от 12В они потребляют на холостом ходу 0,2-0,3А, а не два, как говорится в видео.

Ghostgkd777 › Блог › Сверлильный станок для печатных плат

Всем привет!Давно шел к этому, наконец руки дошли и за 12 часов сварганил ковырялочку для печаток.

Кинематику взял с двигающимся двигателем. Каламбур получился)) В общем, двигатель с патроном опускается.За основу этого узла взяты салазки и каретка “глаза” CD-ROM или любого иного привода. На ней смонтировал двигатель, подпружинил к раме, приделал рычаг для опускания, всю эту конструкцию закрепил на алюминиевом уголке, его в свою очередь через проставку к основанию из плиты стеклотекстолита.Фото всей конструкции ниже.

Дрянь еще та, я вам скажу… хорошо держит далеко не все сверла. Работа с ним приносит море негативных эмоций. А менять его на нормальный кулачковый патрон — так он слишком большой для этого моторчика. Потому этот вариант сверлилки признан как временное решение до приобретения мотора 24В и нормального патрона. Там будем строить ковырялочку посолиднее))

Но на этом остановиться было-б слишком просто! На мотор прикошачил схемку с автоматическим регулированием оборотов мотора в зависимости от нагрузки, котору я подглядел у котов выложил Sansey. Кстати, очень хороший обзор схемок управления двигателем есть там-же. Рекомендую!

Уважаемые админы и модераторы, не сочтите за рекламу другого ресурса. Материал интересный, людям пригодится, а копировать его в свой БЖ как-то нехорошо.

Я перебрал и настроил под детали, имеющиеся у меня.

Конечник установил шунтировать БЭ VT2 т.к. в верхнем положении каретки он замкнут. Контакт у него один (с того-же фена, что и мотор), лень было искать нормальные конечники))

Кстати, руки чешутся перейти с ЛУТ на фоторезист с маской. Жаль, фоторезист могу лишь заказывать в интернет магазинах т.к. до цивилизации 150км. Хотя и ЛУТом есть наработка с довольно мелким шагом (FT232RL к примеру с шагом 0,5мм между ног).

Разъем для двигателя и микрика безжалостно выдрал из флопика, ответная часть соответствующая. R1, увы, не нашел в одном корпусе нужного номинала, потому пришлось ставить “гирлянду” из трех резисторов. не запаян резистор под светодиоды подсветки т.к. не приобрел еще белых для этих целей. Будем доводить до ума =) Радиатор из древнего монитора.

За следы канифоли сильно не пинайте — не чем было чистить, да и паял вот этим:

Ну и что имеем в итоге (без БП).

Особенность конструкции статины сверлилки позволяет ковырять дырочки отверстия даже в середине довольно крупных плат, чем могут похвастаться далеко не все железные собратья.

Из особенности работы схемы. В нормальном положении при поданном питании двигатель молчит т.к. замкнутый конечник закорачивает переход БЭ VT2, закрывая его. При опускании каретки вниз конечник размыкает цепь, запускается мотор. Из-за большого пускового тока (сравнительно с режимом ХХ) схема переходит на долю секунды в режим максимальных оборотов, потом обороты падают до некоторой выбранной величины (я установил около 200 об/мин, чтоб можно было не напрягаясь попасть в кернение да и в “целый” текстолит или фольгу) до момента упора сверла в плату. Обороты падают до 100 (примерно), схема реагирует на возросший ток через якорь двигателя, переключается на максимальные обороты и плата в секунду просверлена! Обороты вновь снижаются до 200, схема готова к следующему сверлению.Блин, как удобно, я вам скажу! прям детская радость от сверления))

Ну и на сладкое видео работы. Извините, снимал и сверлил сам и на телефон, руки всего две, так что…

Оцениваем, комментируем, критикуем =) Спасибо, кто отписался.

Станок из асинхронного двигателя от стиральной машины

Естественно, двигатель можно взять не только от стиральной машины. Просто данный пример – самый распространенный в быту. Этот вариант самодельного станка для сверления позволит выполнять самые разные отверстия с высокой точностью, вплоть до микроотверстий.

Основные принципы те же, что и с дрелью, но в этом случае понадобится стол мощнее: вибрация при работе такого аппарата будет намного сильнее. Подвижную часть аппарата лучше всего выполнять по предварительным чертежам.


Станок для сверления печатный плат.

Вес двигателя от холодильника значительно больше, чем вес дрели целиком, стол и стойка должны быть на порядок массивнее.

Для изготовления понадобятся следующие заготовки:

  • шестерня;
  • подшипники – две штуки;
  • две трубки;
  • стальное зажимное кольцо;
  • специальный шестигранник для шкива.

Стальное кольцо соединяется с двумя подшипниками, шестигранником и металлической трубкой, образуя надежный узел. Главным механизмом в таком станке являются шестерни и трубка с надпилами. Движение трубки происходит за счет соединения зубьев шестерни с надпилами. Шестигранник своей осью должен вписываться в трубку.

Описанная схема сложная и далеко не всем по силам. Оптимальным способом будет изготовление агрегата с асинхронным двигателем полностью по аналогии с самодельными станками из дрели. Единственным негативным нюансом будет его значительная вибрация во время работы.

Пошаговая инструкция

Иллюстрация Описание действия
Подбор комплектации ФОТО: youtube.com Подбор материалов и деталей от старой техники, пригодной для использования
Новый электронный блок ФОТО: youtube.com Изготовление новых деталей и блоков управления
Головка с мотором и трансмиссией ФОТО: youtube.com Узел крепления вертикальной стойки к станине ФОТО: youtube.com Сборка станка
Опробование нового станка ФОТО: youtube.com Опробование

Общая информация о сверлильных станках

Любой сверлильный станок необходим для того, чтобы обеспечить возможность эффективной и точной обработки деталей, изготовленных из различных материалов. Там, где необходима высокая точность обработки (а это относится и к процессу сверления отверстий), из технологического процесса необходимо максимально исключить ручной труд. Подобные задачи и решает любой сверлильный станок, в том числе и самодельный. Практически не обойтись без станочного оборудования при обработке твердых материалов, для сверления отверстий в которых усилий самого оператора может не хватить.

Конструкция настольного сверлильного станка с ременной передачей (нажмите для увеличения)

Любой станок для сверления – это конструкция, собранная из множества составных частей, которые надежно и точно фиксируются друг относительно друга на несущем элементе. Часть из этих узлов закреплена на несущей конструкции жестко, а некоторые могут перемещаться и фиксироваться в одном или нескольких пространственных положениях.

Пример двигателей, используемых при изготовлении самодельного сверлильного мини-станка

Базовыми функциями любого сверлильного станка, за счет которых и обеспечивается процесс обработки, является вращение и перемещение в вертикальном направлении режущего инструмента – сверла. На многих современных моделях таких станков рабочая головка с режущим инструментом может перемещаться и в горизонтальной плоскости, что позволяет использовать это оборудование для сверления нескольких отверстий без передвижения детали. Кроме того, в современные станки для сверления активно внедряют системы автоматизации, что значительно увеличивает их производительность и повышает точность обработки.

Ниже для примера представлены несколько вариантов конструкции самодельных сверлильных станков для плат. Любая из данных схем может послужить образцом для вашего станка.

Сверлильный станок для печатных плат своими руками

Сверление отверстий в печатных платах процесс долгий и трудоемкий, требующий высокой точности, ведь от качества отверстий будет зависеть качество печатной платы. Надоело мне сверлить платы ручной электродрелью, поэтому решил сделать небольшой сверлильный станок специально для печатных плат. Конструкцию станка хотелось сделать, как можно проще и надежнее, чтобы его мог изготовить любой радиолюбитель. Поэтому недолго думая я разработал простую и очень надежную конструкцию миниатюрного сверлильного станка для печатных плат, чертеж которого представлен на этом рисунке.

Чертеж сверлильного станка для печатных плат

Детали для сверлильного станка легко изготовить на токарном станке или заказать знакомому токарю. Основанием станка служит прямоугольный кусок ДСП размером 160х200 мм. Электродвигатель для сверлильного станка я взял от старого струйного принтера.

Цанговый патрон для крепления сверла купил на Алике

Если будете заказывать патрон обратите внимание на диаметр вала электродвигателя, потому, что валы бывают четырех размеров 2.35 мм, 3.17 мм, 4.05 мм, 5.05 мм, поэтому посадочный диаметр патрона должен точно соответствовать диаметру вала. Благо в Китае сего добра навалом

В комплекте с любым патроном прилагается пять цанговых переходников под разные сверла диаметр которых 0.5 мм, 1 мм, 1.5 мм, 2.5 мм, 3 мм.

Для сверления отверстий в печатных платах лучше всего использовать специальные сверла из твердого сплава сделанные в Японии купленные в Китае на Алике. Диаметр хвостовика 3 мм, диаметр рабочей части сверла 0.9 мм. Как показала практика это самый универсальный размер отверстий подходит для большинства радиодеталей.

Для питания электродвигателя и светодиодной подсветки применяется простейший 12 вольтовый блок питания состоящий из трансформатора, четырех диодов и конденсатора. Спрятано это дело под металлическим кожухом на котором установлен выключатель отключающий сетевое питание трансформатора 220В.

Схема блока питания для сверлильного станка состоит из четырех диодов IN4007 и одного конденсатора 1000mf 25V. Так, что проблем с радиодеталями быть не должно. Трансформатор любой маломощный на 12В 0.5А. Светодиодная подсветка подключается параллельно к контактам электродвигателя. В качестве источника света я использовал небольшую прямоугольную светодиодную панельку.

Схема блока питания для сверлильного станка

Чтобы выглядело аккуратно решил изготовить печатную плату.

Печатная плата блока питания для сверлильного станка

Механизм подачи очень простой. При нажатии на рычаг плата поднимается вверх и таким образом происходит сверление отверстий. Конечно можно было сделать с верхней подачей, как в обычных сверлильных станках… Но зачем усложнять конструкцию? Все и так отлично работает. Станок на 100% справляется со своей задачей. Рекомендую!

Рекомендую посмотреть видеоролик о том, как сделать сверлильный станок для печатных плат своими руками

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!