Редактор схемы логических элементов

Приложения

Таблицы истинности могут использоваться для доказательства многих других логических эквивалентностей . Например, рассмотрим следующую таблицу истинности:

Логическая эквивалентность: (п⇒q)≡(¬п∨q){\ Displaystyle (п \ Rightarrow q) \ Equiv (\ lnot p \ lor q)}
п{\ displaystyle p} q{\ displaystyle q} ¬п{\ displaystyle \ lnot p} ¬п∨q{\ Displaystyle \ lnot p \ lor q} п⇒q{\ displaystyle p \ Rightarrow q}
Т Т F Т Т
Т F F F F
F Т Т Т Т
F F Т Т Т

Это свидетельствует о том , что является логическим эквивалентом к .
п⇒q{\ displaystyle p \ Rightarrow q}¬п∨q{\ Displaystyle \ lnot p \ lor q}

Таблица истинности для наиболее часто используемых логических операторов

Вот таблица истинности, которая дает определения 7 наиболее часто используемых из :

п Q п∧Q{\ displaystyle P \ land Q} п∨Q{\ Displaystyle P \ lor Q} п ∨_ Q{\ Displaystyle P \ {\ underline {\ lor}} \ Q} п ∧_ Q{\ Displaystyle P \ {\ underline {\ land}} \ Q} п⇒Q{\ Displaystyle P \ Rightarrow Q} п⇐Q{\ Displaystyle P \ Leftarrow Q} п⇔Q{\ displaystyle P \ Leftrightarrow Q}
Т Т Т Т F Т Т Т Т
Т F F Т Т F F Т F
F Т F Т Т F Т F F
F F F F F Т Т Т Т
п Q п∧Q{\ displaystyle P \ land Q} п∨Q{\ Displaystyle P \ lor Q} п ∨_ Q{\ Displaystyle P \ {\ underline {\ lor}} \ Q} п ∧_ Q{\ Displaystyle P \ {\ underline {\ land}} \ Q} п⇒Q{\ Displaystyle P \ Rightarrow Q} п⇐Q{\ Displaystyle P \ Leftarrow Q} п⇔Q{\ displaystyle P \ Leftrightarrow Q}
И (союз) ИЛИ (дизъюнкция) XOR (исключающее или) XNOR ( исключая ни)
условное «если-то» условное «тогда-если» двусмысленное выражение «если и только если»

куда    Т    значит правда и    F    означает ложь

Сжатые таблицы истинности для бинарных операторов

Для бинарных операторов также используется сжатая форма таблицы истинности, где заголовки строк и заголовки столбцов определяют операнды, а ячейки таблицы определяют результат. Например, в булевой логике используется эта сжатая запись таблицы истинности:

Алгебраические преобразования логических выражений

Любое логическое выражение, как и его переменные (утверждения), принимают два значения: ложь или истина. Ложь обозначается нулём, а истина — единицей. Разобравшись с областью определения и областью допустимых значений, мы можем рассмотреть действия алгебры логики.

Отрицание

Отрицание и инверсия — самое простое логическое преобразование. Ему соответствует частица «не.» Это преобразование просто меняет утверждение на противоположное. Соответственно, значение утверждения тоже меняется на противоположное. Если утверждение А истинно, то «не А» — ложно. Например, утверждение «прямой угол — это угол, равный девяносто градусов» — истина. Тогда его отрицание «прямой угол не равен девяноста градусам» — ложь.

Таблица истинности для отрицания будет такова:

А не А
Л И
И Л

Конъюнкция

Конъюнкция аналогична умножению и соответствует союзу «и». Такое выражение будет верно, только если верны все утверждения, объединённые конъюнкцией. То есть, утверждение «А и Б» будет истинным, только если А — истина и Б — истина. Во всех остальных случаях выражение «А и Б» ложно. Например, высказывание «Земля круглая и плоская» будет ложно, так как первая часть истина, а вторая — ложь.

Таблица истинности конъюнкции

А Б А и Б
Л Л Л
Л И Л
И Л Л
И И И

Дизъюнкция

Эта операция может быть обычной или строгой, их результаты будут различаться.

Обычная дизъюнкция или логическое сложение соответствует союзу «или». Она будет истинной если хотя бы одно из утверждений, входящих в неё — истина. Например, выражение «Земля круглая или стоит на трёх китах» будет истинным, так как первое утверждение — истинно, хоть второе и ложно.В таблице это будет выглядеть так:

А Б А или Б
Л Л Л
Л И И
И Л И
И И И

Строгую дизъюнкцию или сложение по модулю также называют «исключающим или». Эта операция может принимать вид грамматической конструкции «одно из двух: либо …, либо …». Здесь значение логического выражения будет ложным, если все утверждения, входящие в него, имеют одинаковую истинность. То есть, оба утверждения либо вместе истинны, либо вместе ложны.

Таблица значений исключающего или

А Б либо А, либо Б
Л Л Л
Л И И
И Л И
И И Л

Импликация и эквивалентность

Импликация представляет собой следствие и грамматически может быть выражена как «из А следует Б». Здесь утверждение А будет называться предпосылкой, а Б — следствием. Импликация может быть ложной, только в одном случае: если предпосылка истинна, а следствие ложно. То есть, ложь не может следовать из истины. Во всех остальных случаях импликация истинна. Варианты, когда оба утверждения имеют одинаковую истинность, вопросов не вызывают. Но почему верное следствие из неверной предпосылки — истина? Дело в том, что из ложной предпосылки может следовать что угодно. Это и отличает импликацию от эквивалентности.

В математике (и других доказательных дисциплинах) импликация используется для указания необходимого условия. Например, утверждение А — «точка О — экстремум непрерывной функции», утверждение Б — «производная непрерывной функции в точке О обращается в ноль». Если О, действительно, точка экстремума непрерывной функции, то производная в этой точке будет, и вправду, равна нулю. Если же О не является точкой экстремума, то производная в этой точке может быть нулевой, а может не быть. То есть Б необходимо для А, но не достаточно.

Таблица истинности для импликации выглядит следующим образом:

А Б из А следует Б
Л Л И
Л И И
И Л Л
И И И

Логическая операция эквивалентность, по сути, является взаимной импликацией. «А эквивалентно Б» означает, что «из А следует Б» и «из Б следует А» одновременно. Эквивалентность верна, когда оба утверждения либо одновременно верные, либо одновременно неверные.

А Б А эквивалентно Б
Л Л И
Л И Л
И Л Л
И И И

В математике эквивалентность используется для определения необходимого и достаточного условия. Например, утверждение А — «Точка О является точкой экстремума непрерывной функции», утверждение Б — «В точке О производная функции обращается в ноль и меняет знак». Эти два утверждения эквивалентны. Б содержит необходимое и достаточное условие для А

Обратите внимание, что в данном примере утверждений Б на самом деле является конъюнкцией двух других: «производная в точке О обращается в ноль» и «производная в точке О меняет знак»

Прочие логические функции

Выше были рассмотрены основные логические операции, которые часто используются. Есть и другие функции, которые используются:

  • Штрих Шеффера или несовместимость представляет собой отрицание конъюнкции А и Б
  • Стрелка Пирса представляет сбой отрицание дизъюнкции.

Примеры

Для закрепления материала можно попробовать составить таблицу истинности для ранее упомянутых логических выражений. Рассмотрим три примера:

  • Штрих Шеффера.
  • Стрелка Пирса.
  • Определение эквивалентности.

Штрих Шеффера

Штрих Шеффера — это логическое выражение, которое можно записать в виде «не (А и Б)». Здесь две переменные, и два действия. Конъюнкция в скобках, значит, она выполняется первой. В таблице будет шапка и четыре строки со значениями переменных, а также четыре столбца. Заполним таблицу:

А Б А и Б не (А и Б)
Л Л Л И
Л И Л И
И Л Л И
И И И Л

Отрицание конъюнкции выглядит как дизъюнкция отрицаний. Это можно проверить, если составить таблицу истинности для выражения «не А или не Б»

Проделайте это самостоятельно и обратите внимание, что здесь будет уже три операции

Стрелка Пирса

Рассматривая Стрелку Пирса, которая представляет собой отрицание дизъюнкции «не (А или Б)», сравним её с конъюнкцией отрицаний «не А и не Б». Заполним две таблицы:

А Б А или Б не (А или Б)
Л Л Л И
Л И И Л
И Л И И
И И И Л
А Б не А не Б не А и не Б
Л Л И И И
Л И И Л Л
И Л Л И И
И И Л Л Л

Значения выражений совпали. Изучив два эти примера, можно прийти к выводу, как раскрывать скобки после отрицания: отрицание применяется ко всем переменным в скобках, конъюнкция меняется на дизъюнкцию, а дизъюнкция — на конъюнкцию.

Определение эквивалентности

Про утверждения А и Б можно сказать, что они эквивалентны, тогда и только тогда, когда из А следует Б и из Б следует А. Запишем это как логическое выражение и построим для него таблицу истинности. «(А эквивалентно Б) эквивалентно (из А следует Б) и (из Б следует А)».

Здесь две переменных и пять действий. Строим таблицу:

А Б В = (из А следует Б) Г = (из Б следует А) Д = А эквивалентно Б Е = В и Г Д эквивалентно Е
Л Л И И И И И
Л И И Л Л Л И
И Л Л И Л Л И
И И И И И И И

В последнем столбце все значения истинные. Это значит, что приведенное определение эквивалентности верно при любых значениях А и Б. Значит, оно всегда истинно. Именно так с помощью таблицы истинности можно проверить корректность любых определений и логических построений.

Размер таблиц истинности

Если имеется n входных переменных, то существует 2 n возможных комбинаций их истинностных значений. Данная функция может выдавать истину или ложь для каждой комбинации, поэтому количество различных функций от n переменных равно двойной экспоненте 2 2 n .

п 2 п 2 2 п
1 2
1 2 4
2 4 16
3 8 256
4 16 65 536
5 32 4 294 967 296 ≈ 4,3 × 10 9
6 64 18 446 744 073 709 551 616 ≈ 1,8 × 10 19
7 128 340 282 366 920 938 463 463 374 607 431 768 211 456 ≈ 3,4 × 10 38
8 256 115,792,089,237,316,195,423,570,985,008,687,907,853,269,984,665,640,564,039,457,584,007,913,129,639,936 ≈ 1,1 × 10 77

Таблицы истинности для функций трех и более переменных приводятся редко.

Основные операции

Количество логических операций, которыми обычно оперирует логика 6:

  • Отрицание.
  • Умножение.
  • Сложение
  • Следование.
  • Дизъюнкция.
  • Равнозначность.

Остановимся на каждом из них детальнее, выясним как правильно они называются в алгебре логики, есть ли у них аналоги в обычной речи, в математике, и как их можно использовать в обычной жизни.

Отрицание или инверсия

Операция отрицания или НЕлогическое, корректнее будет название инверсия.Конечное высказывание будет противоположным первоначальному (исходному). Применяется для одного выражения, которое может быть как сложным, так и элементарным.

На примере этой простейшей операции удобно показывать, насколько лаконичны и информативны таблицы истинности. Обозначим исходное высказывание буквой А, соответственно, окончательное будет не А (или НЕ, ‾, ˥ not А). А их ложность или правдивость напишем при помощи цифр 0 и 1.

Получается, если исходное значение правда, то новое будет ложь, и наоборот.

Умножение или конъюнкция &

Логическое И или умножение еще называют конъюнкцией. Финальное высказывание будет правдивым, только если его составляющие тоже правдивы. Во всех остальных случаях оно будет ложным. Применяется для двух и более аргументов, элементарных или сложных. Обозначение А и В; А ^ В; А &В; A and В.

Как видно, при помощи таблицы истинности из 15 ячеек можно описать то, на описание чего при помощи слов пришлось бы потратить минимум 5 полноценных предложений.

Логическое И в обычной жизни:

  • Хорошая певица должна быть талантливой и упорной (наличие только одного качества не позволит проявить миру свой талант).
  • По условиям задачи А – число меньше 30, В – число делиться на 3. Нужно найти решение А ˄ В.

Решение: Первое множество содержит числа 1,2,3….29. Второе – 3,6,9,…27. Решением будет множество на пересечении множеств А и В, что хорошо покажут диаграммы Эйлера-Венна. А ˄ В будет истинным для множества чисел 3,6,9,….27.

Сложение или дизъюнкция V

Логическое ИЛИ, сложение по-другому называют дизъюнкцией. Оно истинно всегда, кроме случая, если ложны все составные высказывания. Функция распространяется на простые и сложные исходные аргументы. Обозначение А или В; A v В; А ог В.

В обычной жизни нас окружает логическое ИЛИ:

  • «Чтобы сдать тесты на «отлично», нужно старательно готовиться ИЛИ должно повезти с билетом».
  • Есть задача с 2-мя условиями: А – число делится на 5, В – число делится на 2.

Решение: Первое множество чисел включает в себя 5, 10, 15…Второе – 10, 20, 30…Решение, при котором истинно Аv В – совокупность обеих множеств (5, 10, 15, 20, 25, 30…).

Следование или импликация

Для этого случая важно значение каждого выражения и даже его очередность, потому что первый аргумент считается условием, второй – следствием. Импликация будет ложной лишь в одном случае – если первое составляющее правдиво, а второе нет

Такое логическое следование имеет аналог в обычной речи «если.. то», то есть одно событие зависит от другого. Символьно связи выражают следующим образом:

Логическое следование в обычной жизни:

  • Если пойти к врачу, можно выздороветь (но можно выздороветь и без похода к врачу, а можно и после визита в больницу не выздороветь).
  • По условию задачи, А – если число делится на 10, то В делится на 5.

Строгая дизъюнкция

Такая логическая операция выдаст истину, если любое из составляющих высказываний будет истинным, независимо очередности.

Это пример исключающей функции. Аналог в словесном выражении – «либо». Разница от простой дизъюнкции в том, что конечное выражение будет истинным, только если будет правдой одна переменная.

Эквиваленция или равнозначность 

Операция, выдающая истину в случае, если обе исходные переменные истины или неправдивы.Обозначают А ~В, А  В.

Словесная аналогия – «тогда и только тогда, когда», математическая – «необходимо и достаточно». Если сравнить таблицы истинности для предыдущих операций, очевидно, что она противоположна «исключающему ИЛИ», то ее можно посчитать так:

Пример эквивалентности из обычной жизни:

  • Если вечером на горизонте солнце темно-красного цвета, значит, завтра будет ветреный день.
  • В задаче 2 условия: А – сумма цифр числа равно 9, В – число делится на 9. АВ означает, что число делится на 9, если сумма цифр равна 9.

Пример задания

Пусть необходимо построить таблицу для логического выражения F = (A → B) * (A + B). Эта формула состоит из двух логических переменных A и B и нескольких операций. Начинают построение с определения строк. Используя формулу 2n+1 для рассматриваемого примера можно установить, что их число будет: x = 22 + 1 = 5.

Теперь следует определить число столбцов. Для этого используется формула, в которой учитывается количество переменных и операций. Последние можно просто посчитать, сложив количество разных знаков, используемых в записи формулы. Но правильней сначала расставить порядок операций, а затем посчитать. Согласно порядку действия над операциями их нумерацию можно представить в следующей очерёдности:

  1. Импликация в первой скобке.
  2. Инверсия во второй скобке переменной A.
  3. Отрицание во второй скобке неизвестной B.
  4. Сложение во втором члене.
  5. Конъюнкция.

В итоге получится, что столбцов будет: Y = 2 + 5 = 7. Теперь нужно построить таблицу 7Х5. В шапку первого и второго столбца вписывают переменные, а затем операции над ними. Затем в строках, соответствующих A и B нужно записать всё, что с ними может произойти. В итоге останется только правильно посчитать последний столбец.

Для этого нужно использовать законы. Необходимо выполнить логическое умножение значений в скобках. Первой и второй строчке будет соответствовать операция произведения один на один, что в ответе даст единицу. Третьей и четвёртой — ноль на один, что в итоге даст ноль. Последний столбец является главным для рассматриваемой логической функции. По нему можно узнать значение логической функции для любых форм переменных A и B.

Это довольно простая задача, содержащая всего две переменных. Но в реальности, например, в программировании, их может быть намного больше. Решать такие задания методом перебора проблематично. Поэтому при решении сложных примеров функцию вначале пытаются упростить.

Например, заданно выражение (x + y + z) * (x + y). По сути, оно записано в совершенно нормальной конъюнктивной форме. Но для приведения его к этому виду нужно, чтобы во втором выражении стояла z

Для того чтобы её добавить необходимо обратить внимание на то, что внутри скобок стоит логическое сложение. Поэтому дописав к нему ноль, результат не изменится

Добавить ноль через z можно, как ноль умножить на НЕ z. В итоге получится выражение (x + y + z) * (x + y + z + z), для которого, используя алгоритм составить таблицу уже не так и сложно.

Примеры решения задач «Логические выражения и таблица истинности»

Теория по этой теме по этой теме Пройти тестирование по этой теме Контрольная по этой теме

 №1.

Докажите, что А <=> В равносильно (A\/ ¬B) /\ (¬A\/ B)

 Для доказательства равносильности двух высказываний достаточно построить таблицу истинности для высказывания (A\/ ) /\ (\/ B) и сравнить ее с таблицей истинности эквивалентности:

А

В

¬B

A\/¬B

¬A

¬AVB

(A\/¬B) /\ (¬A \/B)

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Последние столбцы этих функций совпадают, значит, они равносильны. ЧТД.

№2.

Укажите, какое логическое выражение равносильно выражению 

A /\ ¬ (¬B \/ C)

   1) ¬A \/ ¬B \/ ¬C

   2) A /\ ¬B /\ ¬C  

   3) A /\ B /\ ¬C 

   4) A /\ ¬B /\ C

Ответ:  3

№3.

Постройте таблицу истинности для логического выражения:

1)A=>B<=> ¬А \/  B 

Ответ:

А

В

A=>B

¬А

A → B<=> ¬А

A → B<=> ¬А \/  B

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2)F=A<=>B<=>(¬А \/  B) /\ (¬B\/  А)

Ответ:

№4.

Определите истинность следующего высказывания: «За окном светит солнце, и нет дождя».

Решение:

Нам дано сложное составное высказывание. Выделим из него простые высказывания:

А = «За окном светит солнце»

В = «За окном дождь»

 Составим логическую функцию, соответствующую данному высказыванию.

F(A, B) = A /\ ¬B

построим таблицу истинности для данной логической функции.

A

B

¬B

A /\ ¬B

1

1

1

1

1

1

1

 Ответ: логическое выражение принимает значение истина только при наборе F(1,0)=1.Следовательно, данное нам высказывание истинно только тогда, когда первое простое высказывание истинно, а второе ложно.

№5.

Определите истинность следующего высказывания: «Гости смеялись, шутили и не расходились по домам».

Решение:

Выделим из данного сложного высказывания простые высказывания:

А = «Гости смеялись»

В = «Гости шутили»

С = «Гости расходились по домам»

Составим логическую функцию, соответствующую данному высказыванию.

F(A, B, С) = A/\ B /\¬C

Построим таблицу истинности для данной логической функции.

A

B

C

¬C

A /\ B/\¬C

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Ответ: логическое выражение принимает значение истина только при наборе F(1,1,0)=1.Следовательно, данное нам высказывание истинно только тогда, когда первое и второе простые высказывания истинны, а второе ложно.

№6.

На языке алгебры логики составьте истинное тождество, соответствующее заданному условию задачи:

Школьника, Миша, остававшийся в классе на перемене, был вызван к директору по поводу разбитого в это время окна в кабинете. На вопрос директора о том, кто это сделал, мальчик ответили следующее: «Я не бил окно, и Коля тоже…»

Известно, что он либо сказал чистую правду, либо в одной части заявления соврал, а другое его высказывание истинно, либо оба факта исказил.

Решение:

Пусть

А = «Окно разбил Миша»

В = «Окно разбил Коля»

Если Миша сказал чистую правду, то¬А /\ ¬В = 1.

Если в одной части заявления Миша соврал, а другое его высказывание истинно, то (¬А /\ В) \/ (А /\¬В) = 1

Если Миша оба факта исказил, то А /\ В = 1.

Ответ:

Истинное тождество, соответствующее условию задачи будет выглядеть так: ¬А /\ ¬В  \/¬А /\ В \/А /\ ¬ В \/ А /\ В = 1.

Логические выражения и таблица истинности

Примеры задач с решениями по этой теме Пройти тестирование по теме Контрольная по теме

 Таблица истинности — таблица, показывающая,  какие значения принимает составное высказывание при  всех сочетаниях (наборах)  значений  входящих в него простых высказываний.

Логическое выражение — составные высказывания в виде формулы.

Равносильные логические выражения – логические выражения, у которых последние столбцы таблиц истинности совпадают. Для обозначения равносильности используется знак «=».

Алгоритм построения  таблицы  истинности:

1.подсчитать количество переменных n в логическом выражении;

2. определить число строк в таблице по формуле m=2n, где n — количество переменных;

3. подсчитать количество логических операций в формуле;

4. установить последовательность выполнения логических операций с учетом скобок и приоритетов;

5. определить количество столбцов: число переменных + число операций;

6. выписать наборы входных переменных;

7. провести заполнение таблицы истинности по столбцам, выполняя логические операции в соответствии с установленной в пункте 4 последовательностью.

Заполнение таблицы:

1.разделить колонку значений первой переменной пополам и заполнить верхнюю часть «0», а нижнюю «1»;

2.разделить колонку  значений  второй переменной на четыре части и заполнить каждую четверть чередующимися группами «0» и «1», начиная с группы «0»;

3.продолжать деление колонок значений последующих переменных на 8, 16 и т.д. частей и заполнение их группами «0» или «1» до тех пор, пока группы «0» и «1» не будут состоять из одного символа.

Пример 1. Для формулы  A/\ (B \/ ¬B /\¬C) постройте  таблицу истинности.

 Количество логических переменных 3, следовательно, количество строк — 23 = 8.

Количество логических операций в формуле 5, количество логических переменных 3, следовательно количество столбцов — 3 + 5 = 8.

Пример 2. Определите истинность  логического выражения  F(А, В) = (А\/ В)/\(¬А\/¬В) .

1. В выражении две переменные А и В (n=2).

2.  mстрок=2n, m=22=4 строки.

3. В формуле 5 логических операций.

4. Расставляем порядок действий

1) А\/ В;  2) ¬А;  3) ¬В;  4) ¬А\/¬В;  5) (А\/ В)/\(¬А\/¬В).

5. Кстолбцов=n+5=2+5=7 столбцов.

А

В

А\/ В

¬А

¬В

¬А\/¬В

F

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

 Вывод: логическое выражение принимает значение истина при наборах F(0,1)=1 и F(1,0)=1.

Пример 3. Построёте таблицу истинности для логического выражения

F = (A\/ B) /\ ¬С

  1. В данной функции три логические переменные – А, В, С
  2. количество строк таблицы = 23 =8
  3. В формуле 3 логические операции.
  4. Расставляем порядок действий

1) А\/ В;  2) ¬С; 3) (AVB) /\ ¬С  .

  1. количество столбцов таблицы = 3 + 3 = 6

А

В

С

A\/B

¬С

(A\/B) /\ ¬С

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Пример 4.  Определите истинность формулы: F = ((С \/В) =>  В) /\ (А /\ В) => В.

Построим таблицу истинности этой формулы.

Ответ: формула является тождественно истинной.

Пример 5. Символом F обозначено одно из указанных ниже логических выражений от трех аргументов: X, Y, Z.

Дан фрагмент таблицы истинности выражения F:

X

Y

Z

F

1

1

1

1

Какое выражение соответствует F?

 1) ¬X/\¬Y/\Z                      2) ¬X\/¬Y\/Z                  3) X\/Y\/¬Z              4) X\/Y\/Z

 Решение (вариант 1, через таблицы истинности):

Чтобы решить данную задачу можно построить часть таблицы истинности для каждой из четырех функций, заданных в ответе для заданных наборов входных переменных, и сравнить полученные таблицы с исходной:

X

Y

Z

F

¬X

¬Y

¬Z

¬X/\¬Y/\Z

¬X\/¬Y\/Z

X\/Y\/¬Z

X\/Y\/Z

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

 Очевидно, что значения заданной функции F совпадают со значениями выражения X\/Y\/¬Z. Следовательно, правильный ответ – 3.

Ответ: 3

 Решение (Вариант 2):

Чтобы не строить таблицу истинности для каждого выражения, можно просто перепроверить предложенные ответы по заданной таблице истинности. Т.е. в каждую из четырех предложенных функций последовательно подставлять значения переменных X, Y  и Z, из заданной таблицы истинности и вычислять значения логического выражения. Если значения вычисляемого выражения совпадут со значением F во всех трех строчках заданной таблицы, то это и есть искомое выражение.

 Рассмотрим данный конкретный пример:

1)первое заданное выражение  ¬X/\¬Y/\Z = 0 при X=0, Y=0, Z=0, что не соответствует первой строке таблицы;

2)второе заданное выражение ¬X\/¬Y\/Z = 1 при X=0, Y=0, Z=1, что не соответствует  второй строке таблицы;

3)третье выражение   X\/Y\/¬Z    соответствует F при всех предложенных комбинациях X,Y и Z;

4)четвертое выражение X\/Y\/Z = 1 при X=0, Y=0, Z=1, что не соответствует второй строке таблицы.

Ответ: 3

Виды логических операций

В качестве наименьшей единицы измерения объёма данных принято считать бит. В него заносится одно из двух значений — ложь (0) или правда (1). Каждая ячейка, соответствующая биту, находится лишь в одном из этих состояний. Существуют определённые операции, используемые для действий с ячейками:

  1. AND (И) — применяется для сравнения двух бит. Результатом действия будет единица, но лишь в том случае, если значения двух ячеек одинаковое. При остальных вариантах итог будет иметь устойчивое нулевое состояние.
  2. OR (ИЛИ) — по сути, операция обратная AND. Результат становится нулевым, если содержимое двух сравниваемых бит одинаковое. В остальных случаях он равный единице.
  3. XOR (ИЛИ) — если значения, содержащиеся в двух сравниваемых битах противоположны, при выполнении логического действия результат будет равный единице. Во всех остальных случаях он будет равняться нулю.
  4. NOT (НЕ) — действие, используемое для одного бита. Если первоначально ячейка находилась в нулевом состоянии, то после выполнения над ней операции она станет равной единице и наоборот. Фактические это логическая инверсия.

Эти операции являются основными элементами при составлении таблиц истинности и получения возможного результата. На основании их построена алгебра Буля. Некоторые элементы получаются путём объединения нескольких операций. Так, существует состояние: NAND (И-НЕ) и NOR (ИЛИ-НЕ). Первый элемент является инверсией операции «И», а второй — «ИЛИ». На основании рассмотренных операторов строится работа всех цифровых интегральных схем.